

Deitel® Series Page
How To Program Series
Android How to Program
C How to Program, 7/E
C++ How to Program, 9/E
C++ How to Program, Late Objects Version, 7/E
Java™ How to Program, 9/E
Java™ How to Program, Late Objects Version, 8/E
Internet & World Wide Web How to Program, 5/E
Visual Basic® 2012 How to Program
Visual C#® 2012 How to Program, 5/E
Visual C++® 2008 How to Program, 2/E
Small Java™ How to Program, 6/E
Small C++ How to Program, 5/E

Simply Series
Simply C++: An App-Driven Tutorial Approach
Simply Java™ Programming: An App-Driven

Tutorial Approach
Simply Visual Basic® 2010, 4/E: An App-Driven

Tutorial Approach

CourseSmart Web Books
www.deitel.com/books/CourseSmart/

C++ How to Program, 7/E, 8/E & 9/E
Simply C++: An App-Driven Tutorial Approach
Java™ How to Program, 7/E, 8/E & 9/E

Simply Visual Basic 2010: An App-Driven
Approach, 4/E

Visual Basic® 2012 How to Program
Visual Basic® 2010 How to Program
Visual C#® 2012 How to Program, 5/E
Visual C#® 2010 How to Program, 4/E

Deitel® Developer Series
C++ for Programmers, 2/E
Android for Programmers: An App-Driven

Approach
C# 2010 for Programmers, 3/E
Dive Into® iOS 6: An App-Driven Approach
iOS 6 for Programmers: An App-Driven Approach
Java™ for Programmers, 2/E
JavaScript for Programmers

LiveLessons Video Learning Products
www.deitel.com/books/LiveLessons/

Android® App Development Fundamentals
C++ Fundamentals
C# Fundamentals
iOS 6 App Development Fundamentals
Java™ Fundamentals
JavaScript Fundamentals
Visual Basic® Fundamentals

To receive updates on Deitel publications, Resource Centers, training courses, partner offers and more,
please register for the free Deitel® Buzz Online e-mail newsletter at:

www.deitel.com/newsletter/subscribe.html

and join the Deitel communities on Twitter®

@deitel

Facebook®

facebook.com/DeitelFan

and Google+
gplus.to/deitel

To communicate with the authors, send e-mail to:
deitel@deitel.com

For information on government and corporate Dive-Into® Series on-site seminars offered by Deitel &
Associates, Inc. worldwide, visit:

www.deitel.com/training/

or write to
deitel@deitel.com

For continuing updates on Prentice Hall/Deitel publications visit:
www.deitel.com
www.pearsonhighered.com/deitel/

Visit the Deitel Resource Centers that will help you master programming languages, software develop-
ment, Android and iPhone/iPad app development, and Internet- and web-related topics:

www.deitel.com/ResourceCenters.html

www.deitel.com/books/LiveLessons/
www.deitel.com/books/CourseSmart/
www.deitel.com/newsletter/subscribe.html
www.deitel.com/training/
www.deitel.com
www.pearsonhighered.com/deitel/
www.deitel.com/ResourceCenters.html

Paul Deitel
Deitel & Associates, Inc.

Harvey Deitel
Deitel & Associates, Inc.

Vice President and Editorial Director: Marcia J. Horton
Executive Editor: Tracy Johnson
Associate Editor: Carole Snyder
Director of Marketing: Christy Lesko
Marketing Manager: Yezan Alayan
Marketing Assistant: Jon Bryant
Director of Production: Erin Gregg
Managing Editor: Scott Disanno
Associate Managing Editor: Robert Engelhardt
Operations Specialist: Lisa McDowell
Art Director: Anthony Gemmellaro
Cover Design: Abbey S. Deitel, Harvey M. Deitel, Anthony Gemmellaro
Cover Photo Credit: © Shutterstock/Excellent backgrounds
Media Project Manager: Renata Butera

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook appear
on page vi.

The authors and publisher of this book have used their best efforts in preparing this book. These efforts include the
development, research, and testing of the theories and programs to determine their effectiveness. The authors and pub-
lisher make no warranty of any kind, expressed or implied, with regard to these programs or to the documentation
contained in this book. The authors and publisher shall not be liable in any event for incidental or consequential dam-
ages in connection with, or arising out of, the furnishing, performance, or use of these programs.

Copyright © 2014, 2011, 2009 Pearson Education, Inc., publishing as Prentice Hall. All rights reserved. Manufac-
tured in the United States of America. This publication is protected by Copyright, and permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or
by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission(s) to use material
from this work, please submit a written request to Pearson Education, Inc., One Lake Street, Upper Saddle River, New
Jersey 07458, or you may fax your request to 201-236-3290.

Many of the designations by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been
printed in initial caps or all caps.

Microsoft and/or its respective suppliers make no representations about the suitability of the information contained in
the documents and related graphics published as part of the services for any purpose. All such documents and related
graphics are provided “as is” without warranty of any kind. Microsoft and/or its respective suppliers hereby disclaim
all warranties and conditions with regard to this information, including all warranties and conditions of merchant-
ability, whether express, implied or statutory, fitness for a particular purpose, title and non-infringement. In no event
shall Microsoft and/or its respective suppliers be liable for any special, indirect or consequential damages or any dam-
ages whatsoever resulting from loss of use, data or profits, whether in an action of contract, negligence or other tortious
action, arising out of or in connection with the use or performance of information available from the services.

The documents and related graphics contained herein could include technical inaccuracies or typographical errors.
Changes are periodically added to the information herein. Microsoft and/or its respective suppliers may make improve-
ments and/or changes in the product(s) and/or the program(s) described herein at any time. Partial screen shots may
be viewed in full within the software version specified.

Library of Congress Cataloging-in-Publication Data on file.

10 9 8 7 6 5 4 3 2 1

ISBN-10: 0-13-337933-7

ISBN-13: 978-0-13-337933-4

To our review team

Shay Friedman
Octavio Hernandez
Stephen Hustedde
José Antonio González Seco
Shawn Weisfeld

We are grateful for your guidance and expertise.

Paul and Harvey Deitel

Trademarks
DEITEL, the double-thumbs-up bug and DIVE INTO are registered trademarks of Deitel and Associates,
Inc.

Microsoft® and Windows® are registered trademarks of the Microsoft Corporation in the U.S.A. and
other countries. This book is not sponsored or endorsed by or affiliated with the Microsoft Corporation.

UNIX is a registered trademark of The Open Group.

Throughout this book, trademarks are used. Rather than put a trademark symbol in every occurrence of
a trademarked name, we state that we are using the names in an editorial fashion only and to the benefit
of the trademark owner, with no intention of infringement of the trademark.

Chapters 24–35 and Appendices D–G are PDF documents posted online at the book’s
Companion Website (located at www.pearsonhighered.com/deitel/).

Preface xix

Before You Begin xxxv

1 Introduction to Computers, the Internet
and Visual C# 1

1.1 Introduction 2
1.2 Hardware and Moore’s Law 2
1.3 Data Hierarchy 3
1.4 Computer Organization 6
1.5 Machine Languages, Assembly Languages and High-Level Languages 7
1.6 Object Technology 8
1.7 Internet and World Wide Web 10
1.8 C# 12

1.8.1 Object-Oriented Programming 12
1.8.2 Event-Driven Programming 12
1.8.3 Visual Programming 12
1.8.4 An International Standard; Other C# Implementations 12
1.8.5 Internet and Web Programming 13
1.8.6 Introducing async/await 13

1.8.7 Other Key Contemporary Programming Languages 13
1.9 Microsoft’s .NET 14

1.9.1 .NET Framework 14
1.9.2 Common Language Runtime 15
1.9.3 Platform Independence 15
1.9.4 Language Interoperability 15

1.10 Microsoft’s Windows® Operating System 16
1.11 Windows Phone 8 for Smartphones 17

1.11.1 Selling Your Apps in the Windows Phone Marketplace 18
1.11.2 Free vs. Paid Apps 18
1.11.3 Testing Your Windows Phone Apps 18

1.12 Windows Azure™ and Cloud Computing 19
1.13 Visual Studio Express 2012 Integrated Development Environment 19

Contents

www.pearsonhighered.com/deitel/

viii Contents

1.14 Painter Test-Drive in Visual Studio Express 2012 for Windows Desktop 19
1.15 Painter Test-Drive in Visual Studio Express 2012 for Windows 8 23

2 Dive Into® Visual Studio Express 2012
for Windows Desktop 33

2.1 Introduction 34
2.2 Overview of the Visual Studio Express 2012 IDE 34
2.3 Menu Bar and Toolbar 39
2.4 Navigating the Visual Studio IDE 41

2.4.1 Solution Explorer 43
2.4.2 Toolbox 44
2.4.3 Properties Window 44

2.5 Using Help 46
2.6 Using Visual App Development to Create a Simple App that Displays

Text and an Image 47
2.7 Wrap-Up 57
2.8 Web Resources 58

3 Introduction to C# Apps 65
3.1 Introduction 66
3.2 A Simple C# App: Displaying a Line of Text 66
3.3 Creating a Simple App in Visual Studio 72
3.4 Modifying Your Simple C# App 77
3.5 Formatting Text with Console.Write and Console.WriteLine 80
3.6 Another C# App: Adding Integers 81
3.7 Memory Concepts 85
3.8 Arithmetic 86
3.9 Decision Making: Equality and Relational Operators 90
3.10 Wrap-Up 94

4 Introduction to Classes, Objects, Methods
and strings 106

4.1 Introduction 107
4.2 Classes, Objects, Methods, Properties and Instance Variables 107
4.3 Declaring a Class with a Method and Instantiating an Object of a Class 108
4.4 Declaring a Method with a Parameter 113
4.5 Instance Variables and Properties 116
4.6 UML Class Diagram with a Property 121
4.7 Software Engineering with Properties and set and get Accessors 121
4.8 Auto-Implemented Properties 123
4.9 Value Types vs. Reference Types 123
4.10 Initializing Objects with Constructors 125
4.11 Floating-Point Numbers and Type decimal 128
4.12 Wrap-Up 134

Contents ix

5 Control Statements: Part 1 142
5.1 Introduction 143
5.2 Algorithms 143
5.3 Pseudocode 144
5.4 Control Structures 144
5.5 if Single-Selection Statement 146
5.6 if…else Double-Selection Statement 148
5.7 while Repetition Statement 152
5.8 Formulating Algorithms: Counter-Controlled Repetition 154
5.9 Formulating Algorithms: Sentinel-Controlled Repetition 158
5.10 Formulating Algorithms: Nested Control Statements 166
5.11 Compound Assignment Operators 171
5.12 Increment and Decrement Operators 171
5.13 Simple Types 174
5.14 Wrap-Up 175

6 Control Statements: Part 2 189
6.1 Introduction 190
6.2 Essentials of Counter-Controlled Repetition 190
6.3 for Repetition Statement 191
6.4 Examples Using the for Statement 195
6.5 do…while Repetition Statement 199
6.6 switch Multiple-Selection Statement 201
6.7 break and continue Statements 209
6.8 Logical Operators 211
6.9 Structured-Programming Summary 216
6.10 Wrap-Up 221

7 Methods: A Deeper Look 231
7.1 Introduction 232
7.2 Packaging Code in C# 232
7.3 static Methods, static Variables and Class Math 234
7.4 Declaring Methods with Multiple Parameters 236
7.5 Notes on Declaring and Using Methods 240
7.6 Method-Call Stack and Activation Records 241
7.7 Argument Promotion and Casting 242
7.8 The .NET Framework Class Library 243
7.9 Case Study: Random-Number Generation 245

7.9.1 Scaling and Shifting Random Numbers 249
7.9.2 Random-Number Repeatability for Testing and Debugging 250

7.10 Case Study: A Game of Chance; Introducing Enumerations 250
7.11 Scope of Declarations 255
7.12 Method Overloading 258
7.13 Optional Parameters 260

x Contents

7.14 Named Parameters 262
7.15 Recursion 263
7.16 Passing Arguments: Pass-by-Value vs. Pass-by-Reference 266
7.17 Wrap-Up 269

8 Arrays; Introduction to Exception Handling 285
8.1 Introduction 286
8.2 Arrays 286
8.3 Declaring and Creating Arrays 288
8.4 Examples Using Arrays 289

8.4.1 Creating and Initializing an Array 289
8.4.2 Using an Array Initializer 290
8.4.3 Calculating a Value to Store in Each Array Element 291
8.4.4 Summing the Elements of an Array 292
8.4.5 Using Bar Charts to Display Array Data Graphically 293
8.4.6 Using the Elements of an Array as Counters 295
8.4.7 Using Arrays to Analyze Survey Results; Introduction to

Exception Handling 296
8.5 Case Study: Card Shuffling and Dealing Simulation 299
8.6 foreach Statement 303
8.7 Passing Arrays and Array Elements to Methods 305
8.8 Passing Arrays by Value and by Reference 307
8.9 Case Study: GradeBook Using an Array to Store Grades 311
8.10 Multidimensional Arrays 316
8.11 Case Study: GradeBook Using a Rectangular Array 321
8.12 Variable-Length Argument Lists 327
8.13 Using Command-Line Arguments 329
8.14 Wrap-Up 331

9 Introduction to LINQ and the List Collection 351
9.1 Introduction 352
9.2 Querying an Array of int Values Using LINQ 353
9.3 Querying an Array of Employee Objects Using LINQ 357
9.4 Introduction to Collections 362
9.5 Querying a Generic Collection Using LINQ 365
9.6 Wrap-Up 367
9.7 Deitel LINQ Resource Center 367

10 Classes and Objects: A Deeper Look 371
10.1 Introduction 372
10.2 Time Class Case Study 372
10.3 Controlling Access to Members 376
10.4 Referring to the Current Object’s Members with the this Reference 377
10.5 Time Class Case Study: Overloaded Constructors 379

Contents xi

10.6 Default and Parameterless Constructors 385
10.7 Composition 386
10.8 Garbage Collection and Destructors 389
10.9 static Class Members 390
10.10 readonly Instance Variables 393
10.11 Data Abstraction and Encapsulation 394
10.12 Class View and Object Browser 396
10.13 Object Initializers 398
10.14 Wrap-Up 398

11 Object-Oriented Programming: Inheritance 405
11.1 Introduction 406
11.2 Base Classes and Derived Classes 407
11.3 protected Members 409
11.4 Relationship between Base Classes and Derived Classes 410

11.4.1 Creating and Using a CommissionEmployee Class 410
11.4.2 Creating a BasePlusCommissionEmployee Class without

Using Inheritance 415
11.4.3 Creating a CommissionEmployee–BasePlusCommissionEmployee

Inheritance Hierarchy 420
11.4.4 CommissionEmployee–BasePlusCommissionEmployee Inheritance

Hierarchy Using protected Instance Variables 423
11.4.5 CommissionEmployee–BasePlusCommissionEmployee Inheritance

Hierarchy Using private Instance Variables 428
11.5 Constructors in Derived Classes 433
11.6 Software Engineering with Inheritance 434
11.7 Class object 434
11.8 Wrap-Up 435

12 OOP: Polymorphism, Interfaces and
Operator Overloading 441

12.1 Introduction 442
12.2 Polymorphism Examples 444
12.3 Demonstrating Polymorphic Behavior 445
12.4 Abstract Classes and Methods 448
12.5 Case Study: Payroll System Using Polymorphism 450

12.5.1 Creating Abstract Base Class Employee 451
12.5.2 Creating Concrete Derived Class SalariedEmployee 453
12.5.3 Creating Concrete Derived Class HourlyEmployee 455
12.5.4 Creating Concrete Derived Class CommissionEmployee 457
12.5.5 Creating Indirect Concrete Derived Class

BasePlusCommissionEmployee 458
12.5.6 Polymorphic Processing, Operator is and Downcasting 460

xii Contents

12.5.7 Summary of the Allowed Assignments Between Base-Class
and Derived-Class Variables 465

12.6 sealed Methods and Classes 466
12.7 Case Study: Creating and Using Interfaces 466

12.7.1 Developing an IPayable Hierarchy 468
12.7.2 Declaring Interface IPayable 469
12.7.3 Creating Class Invoice 469
12.7.4 Modifying Class Employee to Implement Interface IPayable 471
12.7.5 Modifying Class SalariedEmployee for Use with IPayable 473
12.7.6 Using Interface IPayable to Process Invoices and Employees

Polymorphically 474
12.7.7 Common Interfaces of the .NET Framework Class Library 476

12.8 Operator Overloading 477
12.9 Wrap-Up 480

13 Exception Handling: A Deeper Look 486
13.1 Introduction 487
13.2 Example: Divide by Zero without Exception Handling 488
13.3 Example: Handling DivideByZeroExceptions and FormatExceptions 491

13.3.1 Enclosing Code in a try Block 493
13.3.2 Catching Exceptions 493
13.3.3 Uncaught Exceptions 494
13.3.4 Termination Model of Exception Handling 495
13.3.5 Flow of Control When Exceptions Occur 495

13.4 .NET Exception Hierarchy 496
13.4.1 Class SystemException 496
13.4.2 Determining Which Exceptions a Method Throws 497

13.5 finally Block 497
13.6 The using Statement 504
13.7 Exception Properties 505
13.8 User-Defined Exception Classes 509
13.9 Wrap-Up 513

14 Graphical User Interfaces with
Windows Forms: Part 1 518

14.1 Introduction 519
14.2 Windows Forms 520
14.3 Event Handling 522

14.3.1 A Simple Event-Driven GUI 522
14.3.2 Auto-Generated GUI Code 524
14.3.3 Delegates and the Event-Handling Mechanism 526
14.3.4 Another Way to Create Event Handlers 527
14.3.5 Locating Event Information 528

14.4 Control Properties and Layout 529

Contents xiii

14.5 Labels, TextBoxes and Buttons 533
14.6 GroupBoxes and Panels 536
14.7 CheckBoxes and RadioButtons 539
14.8 PictureBoxes 547
14.9 ToolTips 549
14.10 NumericUpDown Control 551
14.11 Mouse-Event Handling 553
14.12 Keyboard-Event Handling 556
14.13 Wrap-Up 559

15 Graphical User Interfaces with
Windows Forms: Part 2 569

15.1 Introduction 570
15.2 Menus 570
15.3 MonthCalendar Control 579
15.4 DateTimePicker Control 580
15.5 LinkLabel Control 583
15.6 ListBox Control 587
15.7 CheckedListBox Control 591
15.8 ComboBox Control 594
15.9 TreeView Control 598
15.10 ListView Control 603
15.11 TabControl Control 609
15.12 Multiple Document Interface (MDI) Windows 614
15.13 Visual Inheritance 621
15.14 User-Defined Controls 626
15.15 Wrap-Up 630

16 Strings and Characters: A Deeper Look 638
16.1 Introduction 639
16.2 Fundamentals of Characters and Strings 640
16.3 string Constructors 641
16.4 string Indexer, Length Property and CopyTo Method 642
16.5 Comparing strings 643
16.6 Locating Characters and Substrings in strings 646
16.7 Extracting Substrings from strings 649
16.8 Concatenating strings 650
16.9 Miscellaneous string Methods 651
16.10 Class StringBuilder 652
16.11 Length and Capacity Properties, EnsureCapacity Method and Indexer

of Class StringBuilder 653
16.12 Append and AppendFormat Methods of Class StringBuilder 655
16.13 Insert, Remove and Replace Methods of Class StringBuilder 657
16.14 Char Methods 660

xiv Contents

16.15 (Online) Introduction to Regular Expressions 662
16.16 Wrap-Up 663

17 Files and Streams 669
17.1 Introduction 670
17.2 Data Hierarchy 670
17.3 Files and Streams 672
17.4 Classes File and Directory 673
17.5 Creating a Sequential-Access Text File 682
17.6 Reading Data from a Sequential-Access Text File 691
17.7 Case Study: Credit Inquiry Program 695
17.8 Serialization 701
17.9 Creating a Sequential-Access File Using Object Serialization 702
17.10 Reading and Deserializing Data from a Binary File 706
17.11 Wrap-Up 708

18 Searching and Sorting 715
18.1 Introduction 716
18.2 Searching Algorithms 717

18.2.1 Linear Search 717
18.2.2 Binary Search 721

18.3 Sorting Algorithms 726
18.3.1 Selection Sort 726
18.3.2 Insertion Sort 730
18.3.3 Merge Sort 734

18.4 Summary of the Efficiency of Searching and Sorting Algorithms 740
18.5 Wrap-Up 741

19 Data Structures 746
19.1 Introduction 747
19.2 Simple-Type structs, Boxing and Unboxing 747
19.3 Self-Referential Classes 748
19.4 Linked Lists 749
19.5 Stacks 762
19.6 Queues 766
19.7 Trees 769

19.7.1 Binary Search Tree of Integer Values 770
19.7.2 Binary Search Tree of IComparable Objects 777

19.8 Wrap-Up 782

20 Generics 789
20.1 Introduction 790
20.2 Motivation for Generic Methods 791
20.3 Generic-Method Implementation 793

Contents xv

20.4 Type Constraints 796
20.5 Overloading Generic Methods 798
20.6 Generic Classes 799
20.7 Wrap-Up 808

21 Collections 814
21.1 Introduction 815
21.2 Collections Overview 815
21.3 Class Array and Enumerators 818
21.4 Nongeneric Collections 821

21.4.1 Class ArrayList 821
21.4.2 Class Stack 826
21.4.3 Class Hashtable 828

21.5 Generic Collections 833
21.5.1 Generic Class SortedDictionary 834
21.5.2 Generic Class LinkedList 836

21.6 Covariance and Contravariance for Generic Types 840
21.7 Wrap-Up 843

22 Databases and LINQ 849
22.1 Introduction 850
22.2 Relational Databases 851
22.3 A Books Database 852
22.4 LINQ to Entities and the ADO.NET Entity Framework 856
22.5 Querying a Database with LINQ 857

22.5.1 Creating the ADO.NET Entity Data Model Class Library 858
22.5.2 Creating a Windows Forms Project and Configuring It to

Use the Entity Data Model 862
22.5.3 Data Bindings Between Controls and the Entity Data Model 864

22.6 Dynamically Binding Query Results 869
22.6.1 Creating the Display Query Results GUI 870
22.6.2 Coding the Display Query Results App 871

22.7 Retrieving Data from Multiple Tables with LINQ 874
22.8 Creating a Master/Detail View App 879

22.8.1 Creating the Master/Detail GUI 880
22.8.2 Coding the Master/Detail App 881

22.9 Address Book Case Study 883
22.9.1 Creating the Address Book App’s GUI 884
22.9.2 Coding the Address Book App 885

22.10 Tools and Web Resources 889
22.11 Wrap-Up 889

23 Web App Development with ASP.NET 897
23.1 Introduction 898

xvi Contents

23.2 Web Basics 899
23.3 Multitier App Architecture 900
23.4 Your First Web App 902

23.4.1 Building the WebTime App 904
23.4.2 Examining WebTime.aspx’s Code-Behind File 913

23.5 Standard Web Controls: Designing a Form 914
23.6 Validation Controls 918
23.7 Session Tracking 925

23.7.1 Cookies 926
23.7.2 Session Tracking with HttpSessionState 927
23.7.3 Options.aspx: Selecting a Programming Language 928
23.7.4 Recommendations.aspx: Displaying Recommendations

Based on Session Values 932
23.8 Case Study: Database-Driven ASP.NET Guestbook 933

23.8.1 Building a Web Form that Displays Data from a Database 935
23.8.2 Modifying the Code-Behind File for the Guestbook App 940

23.9 Online Case Study: ASP.NET AJAX 941
23.10 Online Case Study: Password-Protected Books Database App 942
23.11 Wrap-Up 942

Chapters on the Web 949

A Operator Precedence Chart 950

B Simple Types 952

C ASCII Character Set 954

Appendices on the Web 955

Index 957

Chapters 24–35 and Appendices D–G are PDF documents posted online at the book’s
Companion Website (located at www.pearsonhighered.com/deitel/).

24 XML and LINQ to XML

25 Windows 8 UI and XAML

26 Windows 8 Graphics and Multimedia

www.pearsonhighered.com/deitel/

Contents xvii

27 Building a Windows Phone 8 App

28 Asynchronous Programming with async and await

29 Web App Development with ASP.NET: A Deeper
Look

30 Web Services

31 Building a Windows Azure™ Cloud
Computing App

32 GUI with Windows Presentation Foundation

33 WPF Graphics and Multimedia

34 ATM Case Study, Part 1: Object-Oriented Design
with the UML

35 ATM Case Study, Part 2: Implementing an Object-
Oriented Design

D Number Systems

E UML 2: Additional Diagram Types

F Unicode®

G Using the Visual C# 2012 Debugger

This page intentionally left blank

Welcome to the Visual C#® 2012 computer programming language and the world of Mi-
crosoft® Windows® and Internet and web programming with Microsoft’s .NET platform.
Please read the book’s back cover and inside back cover—these concisely capture the
book’s essence. In this Preface we provide more details.

This book is appropriate for introductory course sequences based on the curriculum
recommendations of two key professional organizations—the ACM and the IEEE. The
examples are accessible to computer science, information technology, software engineering
and business students in novice-level and intermediate-level C# courses. The book can also
be used by professional programmers.

At the heart of the book is the Deitel signature live-code approach—rather than using
code snippets, we present concepts in the context of complete working programs followed
by sample executions. Read the Before You Begin section after this Preface for instructions
on setting up your computer to run the hundreds of code examples. The source code is avail-
able at www.deitel.com/books/vcsharp2012htp and www.pearsonhighered.com/deitel.
Use the source code we provide to compile and run each program as you study it—this will
help you master Visual C# and related Microsoft technologies faster and at a deeper level.

We believe that this book and its supplements for students and instructors will give
you an informative, engaging, challenging and entertaining introduction to Visual C#. If
you have questions, we’re easy to reach at deitel@deitel.com—we’ll respond promptly.
For book updates, visit www.deitel.com/books/vcsharp2012htp, join our social media
communities on Facebook (www.deitel.com/DeitelFan), Twitter (@deitel), Google+
(gplus.to/deitel) and LinkedIn (bit.ly/DeitelLinkedIn), and subscribe to the
Deitel® Buzz Online newsletter (www.deitel.com/newsletter/subscribe.html).

Visual C#® 2012, the Visual Studio® 2012 IDE, .NET 4.5,
Windows® 7 and Windows® 8
The new Visual C# 2012 and its associated technologies motivated us to write Visual C#
2012 How to Program, 5/e. These are some of the key features of this new edition:

• Use with Windows 7, Windows 8 or both. The book is designed so that you can
continue to use Windows 7 now and begin to evolve to Windows 8, if you like,
or you can move right to Windows 8. All of the code examples in Chapters 1–24
and 28–35 were tested on both Windows 7 and Windows 8. The code examples
for the Windows-8-specific chapters—Chapter 25 (Windows 8 UI and XAML),
Chapter 26 (Windows 8 Graphics and Multimedia) and Chapter 27 (Building a
Windows Phone 8 App)—were tested only on Windows 8.

• C# and Visual C#. The C# language has been standardized internationally by
ECMA and ISO (the standards document is available free of charge at bit.ly/
ECMA334). Visual C# 2012 is Microsoft’s implementation of this standard.

Preface

www.deitel.com/books/vcsharp2012htp
www.pearsonhighered.com/deitel
www.deitel.com/books/vcsharp2012htp
www.deitel.com/DeitelFan
www.deitel.com/newsletter/subscribe.html

xx Preface

• Modular multi-GUI treatment with Windows Forms, Windows 8 UI and WPF.
The printed book features Windows Forms GUI; optional online chapters con-
tain treatments of Windows 8 UI (user interface) and WPF GUI. Windows 8 UI
apps are called Windows Store apps. In Chapter 25, you’ll learn how to create and
test Windows Store apps and upload them to Microsoft’s Windows Store.

• Modular treatment of graphics and multimedia with Windows 8 and WPF. The
book features optional online chapters on both Windows 8 Graphics and Multi-
media (Chapter 26) and WPF Graphics and Multimedia (Chapter 33).

• Database with LINQ to Entities. In the previous edition of this book, we dis-
cussed LINQ (Language Integrated Query) to SQL (Microsoft’s SQL Server da-
tabase system). Microsoft stopped further development on LINQ to SQL in
2008 in favor of the newer and more robust LINQ to Entities and the
ADO.NET Entity Framework, which we’ve switched to in this edition, keeping
the discussion friendly for novices.

• SQL Server database. We use Microsoft’s free SQL Server Express 2012 (which
installs with the free Visual Studio Express 2012 for Windows Desktop) to pres-
ent the fundamentals of database programming. Chapters 22–23 and 29–30 use
database and LINQ capabilities to build an address-book desktop app, a web-
based guestbook app, a bookstore app and an airline reservation system app.

• ASP.NET 4.5. Microsoft’s .NET server-side technology, ASP.NET, enables you
to create robust, scalable web-based apps. In Chapter 23, you’ll build several
apps, including a web-based guestbook that uses ASP.NET and the ADO .NET
Entity Framework to store data in a database and display data in a web page. The
chapter also discusses the IIS Express web server for testing your web apps on
your local computer.

• Building a Windows Phone 8 App. Windows Phone 8 is Microsoft’s latest oper-
ating system for smartphones. It features multi-touch support for touchpads and
touchscreen devices, enhanced security features and more. In Chapter 27, you’ll
build a complete working Windows Phone 8 app and test it on the Windows
Phone simulator; we’ll discuss how to upload apps to the Windows Phone Store.

• Building a Windows Azure™ Cloud Computing App. Windows Azure is a cloud
computing platform that allows you to develop, manage and distribute your apps
in the cloud. Chapter 31 shows you how to build a Windows Azure app that can
store data in the cloud.

• Asynchronous programming with async and await. Asynchronous programming
is simplified in Visual C# 2012 with the new async and await capabilities. We
introduce asynchronous programming with async and await in Chapter 28.

Object-Oriented Programming
• Early-objects approach. The book introduces the basic concepts and terminology

of object technology in Chapter 1. In Chapter 2, Dive Into Visual Studio 2012 Ex-
press for Windows Desktop, you’ll visually manipulate objects, such as labels and
images. In Chapter 3, Introduction to C# Apps, you’ll write Visual C# program code

Complete Code Examples xxi

that manipulates preexisting objects. You’ll develop your first customized classes
and objects in Chapter 4. Presenting objects and classes early gets you “thinking
about objects” immediately and mastering these concepts more thoroughly.

• Rich coverage of programming fundamentals. Chapters 5 and 6 present a friendly
treatment of control statements and problem solving.

• A clear, example-driven presentation of classes, objects, inheritance, polymor-
phism and interfaces.

• Optional case study: Using the UML to develop an object-oriented design and Vi-
sual C# implementation of an Automated Teller Machine (ATM). The UML™
(Unified Modeling Language™) is the industry-standard graphical language for
modeling object-oriented systems. We introduce the UML in the early chapters.
Online Chapters 34 and 35 include an optional case study on object-oriented de-
sign using the UML. We design and implement the software for a simple automat-
ed teller machine. We analyze a typical requirements document that specifies the
system to be built. We determine the classes needed to implement that system, the
attributes the classes need to have, the behaviors the classes need to exhibit and we
specify how the classes must interact with one another to meet the system require-
ments. From the design we produce a complete working Visual C# implementa-
tion. Students often report a “light bulb moment”—the case study helps them “tie
it all together” and truly understand object orientation.

• Three programming paradigms. We discuss structured programming, object-orient-
ed programming and generic programming.

Complete Code Examples
We include a broad range of example programs selected from computer science, business,
simulation, game playing, graphics, multimedia and many other areas (Fig. 1).

Examples

Account class
Address book case study
Airline reservation web-service
Animating the width and

height of a video
Applying transforms to a poly-

gon
Array initializer
ArrayList class
BasePlusCommissionEmployee

class
Binary search
Blackjack game web-service
Books database

Card shuffling and dealing
CheckedListBox control
ComboBox control
CommissionEmployee class
Common Windows 8 UI con-

trols
Common WPF controls
Compound interest calcula-

tions
Counter-controlled repetition
Craps dice game simulation
Creating and using a text file
Creating custom windows and

using timers

Credit-inquiry program
Data binding
Date class
DateTimePicker control
Defining gradients in XAML
Dice rolling
Directory class
Document navigation using
XNode

Drawing basic shapes
Drawing polylines and poly-

gons
Employee class
File class

Fig. 1 | A small sample of the book’s hundreds of examples. (Part 1 of 2.)

xxii Preface

Interesting, Entertaining and Challenging Exercises
• Extensive self-review exercises and answers are included for self-study.

• Each chapter concludes with a substantial set of exercises, which generally in-
cludes simple recall of important terminology and concepts, identifying the errors
in code samples, writing individual program statements, writing small portions
of Visual C# classes, writing complete programs and implementing major proj-
ects. Figure 2 lists a small sampling of the book’s hundreds of exercises, including
selections from our Making a Difference exercises set, which encourage you to use
computers and the Internet to research and solve significant social problems—we
hope you’ll approach these exercises with your own values, politics and beliefs.

Formatting fonts
Generic class Stack
Generic class List
GradeBook class
Guestbook app
HourlyEmployee class
Session tracking in ASP.NET
Invoice class
IPayable interface
Keyboard events
LinkLabel control
LINQ to Objects with arrays
ListBox control
Math tutor using web services
Menus

NegativeNumberException

NumericUpDown control
Object serialization
Overloaded constructors
PictureBox displaying images
Reading sequential-access files
Recursive Factorial method
REST Web services with

JSON and XML
SalariedEmployee class
Searching directories with

LINQ
Sequential search
Sorting an array
Stack unwinding

StringBuilder class
TabControl

Text-to-speech and speech-to-
text

Time class
Toolbars
TreeView control
TV GUI showing GUI

customization
Poll analysis
Polymorphism demonstration
Querying a database with

LINQ to Entities
Queue class
RadioButton control

Exercises

Airline Reservations System
All Possible Three-Letter Words

from a Five-Letter Word
Baseball Database App
Binary Tree Traversals
Blackjack
Body Mass Index Calculator
Bucket Sort
Building Your Own Computer
Calendar and Appointments
Carbon Footprint Calculator

Card Shuffling and Dealing
Car-Pool Savings Calculator
Coin Tossing
Complex Numbers
Computer-Assisted Instruction
Computerization of Health

Records
Cooking with Healthier

Ingredients
Credit Limit Calculator
Dice Rolling

Ecofont
Eight Queens
Employee Class
Enforcing Privacy with

Cryptography
Enhanced Painter
Factorials
Fuzzy Dice Order Form
Game of Craps
Gas Mileage
Generic Method Overloading

Fig. 2 | A sampling of the book’s exercises. (Part 1 of 2.)

Examples

Fig. 1 | A small sample of the book’s hundreds of examples. (Part 2 of 2.)

Illustrations and Figures xxiii

Illustrations and Figures
Abundant tables, line drawings, UML diagrams, programs and program outputs are in-
cluded. A sampling of these is shown in Figs. 3 and 4.

Guess the Number Game
Invoice Class
Knight’s Tour
MDI Text Editor
Nutrition Information
Palindromes
Phishing Scanner
Phone-Book Web Service
Pig Latin
Polymorphic Banking Program

Using Account Hierarchy
Pythagorean Triples

Quicksort
Quiz App
Rational Numbers
Restaurant Bill Calculator
Salary Calculator
Sales Commissions
Savings-Account Class
Sieve of Eratosthenes
Tortoise and Hare Simulation
SMS Language
Spam Scanner
Story Writer

Student Poll
Target-Heart-Rate Calculator
Tax Plan Alternatives: The

“FairTax”
Telephone-Number Word

Generator
Tic-Tac-Toe
Towers of Hanoi
Turtle Graphics
Typing Tutor
Web-based Address Book
World Population Growth

Main text tables, drawings and diagrams

Anchoring demonstration
Ajax-enabled web app
Binary tree graphical represen-

tation
Circular, doubly linked list
Circular, singly linked list
Client receiving a response

from a web server
Client requesting a response

from a web server
Creating a web service
Collection classes of the .NET

Framework
Common built-in commands

from the WPF command
library

Components and controls
Custom-control creation
DatePicker properties/event
Doubly linked list
Entity-relationship diagram

for the Books database

Escape sequences
GroupBox properties
HttpSessionState properties
Implicit conversions between

simple types
Increment and decrement

operators
insertAtBack operation repre-

sented graphically
insertAtFront operation rep-

resented graphically
Interaction between a web-

service client and a SOAP
web service

Interfaces of the .NET Frame-
work Class Library

Keyboard events and event
arguments

Keywords and contextual
keywords

Linked list graphical
representation

LINQ to XML class hierarchy
Master/Detail app
Math class methods
Mouse events and event

arguments
.NET Framework Class

Library namespaces
Number of comparisons for

common Big O notations
Object methods inherited by

all classes
Polymorphic interface for the
Employee hierarchy classes

Precedence of arithmetic oper-
ators

removeFromBack operation
represented graphically

removeFromFront operation
represented graphically

Rules of forming structured
apps

SDI and MDI forms

Fig. 3 | A sampling of the book’s tables, drawings and diagrams. (Part 1 of 2.)

Exercises

Fig. 2 | A sampling of the book’s exercises. (Part 2 of 2.)

xxiv Preface

Other Features
• We use LINQ to query files, databases, XML and collections. The introductory

LINQ to Objects chapter (Chapter 9), is intentionally simple and brief to en-
courage instructors to begin covering LINQ technology early. Later in the book,
we take a deeper look, using LINQ to Entities (Chapters 22–23 and 29–30) and
LINQ to XML (Chapters 24, 30 and 31).

• Local type inference. When you initialize a local variable in its declaration, you
can omit the variable’s type—the compiler infers it from the initializer value.

• Object initializers. For new objects, you can use object initializer syntax (similar
to array initializer syntax) to assign values to the new object’s public properties
and public instance variables.

• We emphasize the IDE’s IntelliSense feature that helps you write code faster and
with fewer errors.

• Files and strings.

• Data structures chapter sequence, including searching and sorting, data struc-
tures, generics and collections.

Searching and sorting
algorithms with Big O values

Single-entry/single-exit
sequence, selection and
repetition statements

string format specifiers
Three-tier architecture
Traditional web app reloading

the page for every user
interaction

Tree structure for the
document article.xml

Validation app enhanced by
ASP.NET Ajax

XSL style-sheet elements

Object-oriented design case study drawings and diagrams

Use case diagram for the ATM system from the
user’s perspective

Class diagram with an association among classes
Class diagram showing composition relationships
Class diagram for the ATM system model
Classes with attributes
State diagram for the ATM
Activity diagram for a BalanceInquiry transaction
Activity diagram for a Withdrawal transaction
Classes in the ATM system with attributes and

operations
Communication diagram of the ATM executing

a balance inquiry

Communication diagram for executing a balance
inquiry

Sequence diagram that models a Withdrawal exe-
cuting

Use case diagram for a modified version of our
ATM system that also allows users to transfer
money between accounts

Class diagram showing composition relation-
ships of a class Car

Class diagram for the ATM system model
including class Deposit

Activity diagram for a Deposit transaction
Sequence diagram that models a Deposit executing

Fig. 4 | A sampling of the object-oriented design case study drawings and diagrams.

Main text tables, drawings and diagrams

Fig. 3 | A sampling of the book’s tables, drawings and diagrams. (Part 2 of 2.)

Companion Website xxv

• Integrated exception handling. We introduce exception handling early (Chapter 8,
Arrays; Introduction to Exception Handling) to ensure that we do not access an
array element outside the array’s bounds. Chapter 10, Classes and Objects:
A Deeper Look, shows how to indicate an exception when a member function re-
ceives an invalid argument. We cover the complete details of exception handling in
Chapter 13, Exception Handling: A Deeper Look.

• Visual C# XML capabilities. Extensible Markup Language (XML) is pervasive in
the software-development industry, e-business and throughout the .NET platform.
In optional online Chapter 24, we introduce XML syntax and programmatically
manipulate the elements of an XML document using LINQ to XML. XAML is an
XML vocabulary that’s used to describe graphical user interfaces, graphics and mul-
timedia. We discuss XAML in optional online Chapters 25–26 and 32–33.

• Web app development with ASP.NET 4.5 and ASP.NET AJAX. Optional online
Chapter 29 extends Chapter 23’s ASP.NET discussion with a case study on
building a password-protected, web-based bookstore app. Also, we introduce in
Chapter 29 ASP.NET AJAX controls and use them to add AJAX functionality to
web apps to give them a look and feel similar to that of desktop apps.

• WCF (Windows Communication Foundation) web services. Web services enable
you to package app functionality in a manner that turns the web into a library of
reusable services. Optional online Chapter 30 includes case studies on building an
airline reservation web service, a blackjack web service and a math question gen-
erator web service that’s called by a math tutor app.

• WPF (Windows Presentation Foundation) GUI, graphics and multimedia. We
extend the core book’s GUI coverage in optional online Chapters 32–33 with an
introduction to Windows Presentation Foundation (WPF)—a XAML-based Mi-
crosoft framework that preceded Windows 8 UI and integrates GUI, graphics
and multimedia capabilities. We implement a painting app, a text editor, a color
chooser, a book-cover viewer, a television video player, various animations, and
speech synthesis and recognition apps.

Companion Website
The printed book contains the core content (Chapters 1–23) for introductory course se-
quences. Several optional online chapters are available for advanced courses and profes-
sionals. Figure 5 lists the chapters and appendices that are available in searchable PDF
format on the book’s password-protected Companion Website at:

See the inside front cover of the book for an access code.

www.pearsonhighered.com/deitel

Online chapters

Chapter 24, XML and LINQ to XML

Chapter 25, Windows 8 UI and XAML

Fig. 5 | Online chapters and appendices in Visual C# 2012 How to Program, 5/e. (Part 1 of 2.)

www.pearsonhighered.com/deitel

xxvi Preface

VideoNotes
The Companion Website also includes extensive VideoNotes—watch and listen as co-au-
thor Paul Deitel discusses key code examples in the core chapters of the book. VideoNotes
allow for self-paced instruction with easy navigation, including the ability to select, play,
rewind, fast-forward and stop within each video.

We’ve created a jump table that maps each VideoNote to the corresponding figures
in the book (www.deitel.com/books/vcsharphtp5/jump_table.pdf). VideoNotes are
free with the purchase of a new textbook. If you have a used book you can purchase access
to the VideoNotes for this book as follows:

1. Go to www.pearsonhighered.com/deitel/.

2. Scroll to Visual C# 2012 How to Program, 5/e and click Companion Website.

3. Click the Register button.

4. On the registration page, enter your student access code found beneath the
scratch-off panel on the inside front cover of this book. Do not type the dashes.
You can use lower- or uppercase. The access code can be used only once. This sub-
scription is valid for twelve months upon activation and is not transferable. If this
access code on your book has already been revealed, it may no longer be valid. If
this is the case, click the Website Purchase link and follow the instructions.

5. Once your personal Login Name and Password are confirmed, you can begin us-
ing the Visual C# 2012 How to Program, 5/e Companion Website.

Chapter 26, Windows 8 Graphics and Multimedia

Chapter 27, Building a Windows Phone 8 App

Chapter 28, Introduction to Concurrency: async and await

Chapter 29, Web App Development with ASP.NET: A Deeper Look

Chapter 30, Web Services

Chapter 31, Building a Windows Azure™ Cloud Computing App

Chapter 32, GUI with Windows Presentation Foundation

Chapter 33, WPF Graphics and Multimedia

Chapter 34, ATM Case Study, Part 1: Object-Oriented Design with the UML

Chapter 35, ATM Case Study, Part 2: Implementing an Object-Oriented Design

Appendix D, Number Systems

Appendix E, UML 2: Additional Diagram Types

Appendix F, Unicode®

Appendix G, Using the Visual Studio 2012 Debugger

Index (The online index includes the content from the printed book and the online content.
The printed book index covers only the printed material.)

Online chapters

Fig. 5 | Online chapters and appendices in Visual C# 2012 How to Program, 5/e. (Part 2 of 2.)

www.deitel.com/books/vcsharphtp5/jump_table.pdf
www.pearsonhighered.com/deitel/

Book Overview and Chapter Dependencies xxvii

Book Overview and Chapter Dependencies
This section discusses the book’s modular organization to help instructors plan their syllabi.

Introduction to Visual C# and Visual Studio 2012 Express
Chapter 1, Introduction to Computers, the Internet and Visual C#, introduces comput-
ing fundamentals and Microsoft’s .NET platform. If you do not need to cover these fun-
damentals, you should still cover the Painter app test-drive. The vast majority of the book’s
examples will run on Windows 7 and Windows 8 using Visual Studio Express 2012 for
Windows Desktop, which we test-drive in Section 1.14. Chapters 25–26 can be run only on
Windows 8 using Visual Studio Express 2012 for Windows 8, which we test-drive in
Section 1.15. There are other versions of Visual Studio Express 2012 for web development
and Windows Phone development—we cover these in the corresponding chapters.

Chapter 2, Dive Into® Visual Studio Express 2012 for Windows Desktop, shows
how to develop a simple GUI app that displays text and an image. We’ll look at Visual
Studio Express 2012 for Windows 8 in more depth in Chapter 25.

Introduction to Visual C# Fundamentals and Object-Oriented Programming
The chapters in this module of the book:

• Chapter 3, Introduction to C# Apps

• Chapter 4, Introduction to Classes, Objects, Methods and strings

• Chapter 5, Control Statements: Part 1

• Chapter 6, Control Statements: Part 2

• Chapter 7, Methods: A Deeper Look

• Chapter 8, Arrays; Introduction to Exception Handling

present C# programming fundamentals (data types, operators, control statements, meth-
ods and arrays) and introduce object-oriented programming. These chapters should be
covered in order. Chapter 8 introduces exception handling with an example that demon-
strates accessing an element outside an array’s bounds.

Object-Oriented Programming: A Deeper Look
The chapters in this module of the book:

• Chapter 9, Introduction to LINQ and the List Collection

• Chapter 10, Classes and Objects: A Deeper Look

• Chapter 11, Object-Oriented Programming: Inheritance

• Chapter 12, OOP: Polymorphism, Interfaces and Operator Overloading

• Chapter 13, Exception Handling: A Deeper Look

• Chapter 34, ATM Case Study, Part 1: Object-Oriented Design with the UML

• Chapter 35, ATM Case Study, Part 2: Implementing an Object-Oriented Design

provide a deeper look at object-oriented programming, including classes, objects, inheri-
tance, polymorphism, interfaces and exception handling. Chapter 9, Introduction to LINQ
and the List Collection, introduces Microsoft’s Language Integrated Query (LINQ) tech-
nology, which provides a uniform syntax for manipulating data from various data sources,

xxviii Preface

such as arrays, collections and, as you’ll see in later chapters, XML and databases. This chap-
ter can be deferred, but it’s required for one example in Chapter 17 (Fig. 17.6) and many of
the later chapters starting with Chapter 22, Databases and LINQ. Online Chapters 34–35
present an optional object-oriented design and implementation case study that requires the
C# and object-oriented programming concepts presented in Chapters 3–8 and 10–13.

Windows Forms Graphical User Interfaces (GUIs)
There are now three GUI technologies in Windows—Windows Forms (which is a legacy
technology), Windows 8 UI (available only on Windows 8) and Windows Presentation
Foundation (WPF). We surveyed instructors teaching Visual C# and they still prefer Win-
dows Forms for their classes, so we provide a two-chapter introduction to Windows Forms:

• Chapter 14, Graphical User Interfaces with Windows Forms: Part 1

• Chapter 15, Graphical User Interfaces with Windows Forms: Part 2

in the print book, then use Windows Forms GUIs in several other print and online chap-
ters. Most examples in Chapters 14–15 can be presented after Chapter 4. For those who
wish to present or study Microsoft’s more recent GUI, graphics and multimedia technol-
ogies, we provide two-chapter online introductions to Windows 8 UI, graphics and mul-
timedia (Chapters 25–26) and WPF GUI, graphics and multimedia (Chapters 32–33).

Strings and Files
We introduce strings beginning in Chapter 4 and use them throughout the book.
Chapter 16, Strings and Characters: A Deeper Look, investigates strings in more depth.
Chapter 17, Files and Streams, introduces text-file processing and object-serialization for
input/output of entire objects. Chapter 16 can be presented at any point after Chapter 4.
Chapter 17 requires C#, object-oriented programming and Windows Forms concepts pre-
sented in Chapters 3–14.

Searching, Sorting and Data Structures
The chapters in this module of the book:

• Chapter 18, Searching and Sorting

• Chapter 19, Data Structures

• Chapter 20, Generics

• Chapter 21, Collections

introduce searching, sorting and data structures. Most C# programmers should use
.NET’s built-in searching, sorting and collections (prepackaged data structures) capabili-
ties, which are discussed in Chapter 21. For instructors who wish to present how to im-
plement customized searching, sorting and data structures capabilities, we provide
Chapters 18–20, which require the concepts presented in Chapters 3–8 and 10–13.

Databases and an Introduction to Web App Development
Chapter 22, Databases and LINQ, introduces database app development using the
ADO.NET Entity Framework and LINQ to Entities. The chapter’s examples require C#,
object-oriented programming and Windows Forms concepts presented in Chapters 3–14.
Chapter 23, Web App Development with ASP.NET, introduces web app development.

Book Overview and Chapter Dependencies xxix

The last example in this chapter requires the LINQ and database techniques presented in
Chapter 22.

Extensible Markup Language (XML)
Chapter 24, XML and LINQ to XML, introduces XML, which is used in several later chap-
ters. The first few sections of this chapter are required to understand the XAML markup
that’s used to build Windows 8 GUI, graphics and multimedia apps (Chapters 25–26),
Windows Phone 8 apps (Chapter 27) and WPF GUI, graphics and multimedia apps
(Chapters 32–33). The remainder of the chapter discusses LINQ to XML, which allows you
to manipulate XML using LINQ syntax. These capabilities are used in Chapters 30 and 31.

Windows 8 UI, Graphics and Multimedia; Windows Phone
The chapters in this module of the book:

• Chapter 25, Windows 8 UI and XAML

• Chapter 26, Windows 8 Graphics and Multimedia

• Chapter 27, Building a Windows Phone 8 App

present Windows 8 UI, graphics and multimedia, and Windows Phone 8 app develop-
ment. These chapters can be used only on computers running Windows 8 and depend on
event-handling concepts that are presented in Chapter 14, and the introduction to XML
at the beginning of Chapter 24 (see Section 24.1 for details). Developing a Windows
Phone 8 app is similar to developing a Windows 8 UI app.

Asynchronous Programming
Chapter 28, Asynchronous Programming with async and await, demonstrates .NET’s
and Visual C#’s new simplified asynchronous programming capabilities. These are com-
monly used in Web app and Web service development (among many other uses).

Web App Development and Web Services
The chapters in this module of the book:

• Chapter 29, Web App Development with ASP.NET: A Deeper Look

• Chapter 30, Web Services

• Chapter 31, Building a Windows Azure™ Cloud Computing App

continue our discussion of Web app development from Chapter 23 and introduce web ser-
vices, including a case study on cloud computing with Windows Azure. Chapters 30 and
31 depend on the LINQ to XML discussion in Chapter 24.

Windows Presentation Foundation (WPF) GUI, Graphics and Multimedia
The chapters in this module of the book

• Chapter 32, GUI with Windows Presentation Foundation

• Chapter 33, WPF Graphics and Multimedia

discuss Windows Presentation Foundation GUI, graphics and multimedia. These chap-
ters can be used on computers running Windows 7 or Windows 8 and depend on event-
handling concepts that are presented in Chapter 14 and the introduction to XML at the
beginning of Chapter 24.

xxx Preface

Teaching Approach
Visual C# 2012 How to Program, 5/e contains a rich collection of examples. We concen-
trate on building good software and stress program clarity.

Live-Code Approach. The book is loaded with “live-code” examples. Most new concepts
are presented in the context of complete working Visual C# apps, followed by one or more
executions showing program inputs and outputs. In the few cases where we show a code
snippet, to ensure correctness we first tested it in a complete working program then copied
the code from the program and pasted it into the book.

Syntax Shading. For readability, we syntax shade the code, similar to the way most inte-
grated-development environments and code editors syntax color the code. Our syntax-
shading conventions are:

Code Highlighting. We place gray rectangles around each program’s key code segments.

Using Fonts for Emphasis. We place the key terms and the index’s page reference for each
defining occurrence in bold text for easy reference. We show on-screen components in the
bold Helvetica font (for example, the File menu) and Visual C# program text in the Lucida
font (for example, int count = 5). We use italics for emphasis.

Objectives. The chapter objectives preview the topics covered in the chapter.

Programming Tips. We include programming tips to help you focus on important as-
pects of program development. These tips and practices represent the best we’ve gleaned
from a combined seven decades of programming and teaching experience.

comments appear like this
keywords appear like this

constants and literal values appear like this

all other code appears in black

Good Programming Practice
The Good Programming Practices call attention to techniques that will help you pro-
duce programs that are clearer, more understandable and more maintainable.

Common Programming Error
Pointing out these Common Programming Errors reduces the likelihood that you’ll
make them.

Error-Prevention Tip
These tips contain suggestions for exposing and removing bugs from your programs; many
of the tips describe aspects of Visual C# that prevent bugs from getting into programs.

Performance Tip
These tips highlight opportunities for making your programs run faster or minimizing the
amount of memory that they occupy.

Portability Tip
The Portability Tips help you write code that will run on a variety of platforms.

Obtaining the Software Used in Visual C# How to Program, 5/e xxxi

Summary Bullets. We present a detailed bullet-list summary of each chapter.

Terminology. We include a list of the important terms defined in each chapter.

Index. We’ve included an extensive index for reference. Defining occurrences of key terms
in the index are highlighted with a bold page number.

Obtaining the Software Used in Visual C# How to Program, 5/e
We wrote the code examples in Visual C# 2012 How to Program, 5/e using Microsoft’s free
Visual Studio Express 2012 products, including:

• Visual Studio Express 2012 for Windows Desktop (Chapters 1–24, 28 and 32–
35), which includes Visual C# and other Microsoft development tools. This runs
on Windows 7 and 8.

• Visual Studio Express 2012 for Web (Chapters 23 and 29–31)

• Visual Studio Express 2012 for Windows 8 (Chapters 25–26)

• Visual Studio Express 2012 for Windows Phone (Chapter 27)

Each of these is available for download at

Instructor Supplements
The following supplements are available to qualified instructors only through Pearson
Education’s Instructor Resource Center (www.pearsonhighered.com/irc):

• Solutions Manual contains solutions to most of the end-of-chapter exercises. We’ve
added many Making a Difference exercises, most with solutions. Please do not write
to us requesting access to the Pearson Instructor’s Resource Center. Access is re-
stricted to college instructors teaching from the book. Instructors may obtain ac-
cess only through their Pearson representatives. If you’re not a registered faculty
member, contact your Pearson representative or visit www.pearsonhighered.com/
educator/replocator/. Exercise Solutions are not provided for “project” exercis-
es. Check out our Programming Projects Resource Center for lots of additional ex-
ercise and project possibilities:

• Test Item File of multiple-choice questions (approximately two per book section)

• Customizable PowerPoint® slides containing all the code and figures in the text,
plus bulleted items that summarize the key points in the text.

Software Engineering Observation
The Software Engineering Observations highlight architectural and design issues that
affect the construction of software systems, especially large-scale systems.

Look-and-Feel Observation
These observations help you design attractive, user-friendly graphical user interfaces that
conform to industry norms.

www.microsoft.com/visualstudio/eng/products/
visual-studio-express-products

www.deitel.com/ProgrammingProjects

www.microsoft.com/visualstudio/eng/products/visual-studio-express-products
www.microsoft.com/visualstudio/eng/products/visual-studio-express-products
www.pearsonhighered.com/irc
www.pearsonhighered.com/educator/replocator/
www.pearsonhighered.com/educator/replocator/
www.deitel.com/ProgrammingProjects

xxxii Preface

Microsoft DreamSpark™
Professional Developer and Designer Tools for Students
Microsoft provides many of its professional developer tools to students for free via a pro-
gram called DreamSpark (www.dreamspark.com). See the website for details on verifying
your student status so you take advantage of this program.

Acknowledgments
We’d like to thank Abbey Deitel and Barbara Deitel of Deitel & Associates, Inc. for long
hours devoted to this project. Abbey co-authored this Preface and Chapter 1 and she and
Barbara painstakingly researched the new capabilities of Visual C# 2012, .NET 4.5, Win-
dows 8, Windows Phone 8, Windows Azure and other key topics.

We’re fortunate to have worked with the dedicated team of publishing professionals
at Pearson Higher Education. We appreciate the guidance, wisdom and energy of Tracy
Johnson, Executive Editor, Computer Science. Carole Snyder did an extraordinary job
recruiting the book’s reviewers and managing the review process. Bob Engelhardt did a
wonderful job bringing the book to publication.

Reviewers
We wish to acknowledge the efforts of our reviewers. The book was scrutinized by aca-
demics teaching C# courses and industry experts. They provided countless suggestions for
improving the presentation. Any remaining flaws in the book are our own.

Fifth Edition Reviewers: Shay Friedman (Microsoft Visual C# MVP), Octavio Her-
nandez (Microsoft Certified Solutions Developer), Stephen Hustedde (South Mountain
College), José Antonio González Seco (Parliament of Andalusia, Spain) and Shawn Weis-
feld (Microsoft MVP and President and Founder of UserGroup.tv).

Other recent edition reviewers: Huanhui Hu (Microsoft Corporation), Narges Kasiri
(Oklahoma State University), Charles Liu (University of Texas at San Antonio), Dr.
Hamid R. Nemati (The University of North Carolina at Greensboro), Jeffrey P. Scott
(Blackhawk Technical College), Douglas B. Bock (MCSD.NET, Southern Illinois Uni-
versity Edwardsville), Dan Crevier (Microsoft), Amit K. Ghosh (University of Texas at El
Paso), Marcelo Guerra Hahn (Microsoft), Kim Hamilton (Software Design Engineer at
Microsoft and co-author of Learning UML 2.0), James Edward Keysor (Florida Institute
of Technology), Helena Kotas (Microsoft), Chris Lovett (Software Architect at Micro-
soft), Bashar Lulu (INETA Country Leader, Arabian Gulf), John McIlhinney (Spatial
Intelligence; Microsoft MVP 2008 Visual Developer, Visual Basic), Ged Mead (Microsoft
Visual Basic MVP, DevCity.net), Anand Mukundan (Architect, Polaris Software Lab
Ltd.), Timothy Ng (Microsoft), Akira Onishi (Microsoft), Joe Stagner (Senior Program
Manager, Developer Tools & Platforms), Erick Thompson (Microsoft), Jesús Ubaldo
Quevedo-Torrero (University of Wisconsin–Parkside, Department of Computer Science)
and Zijiang Yang (Western Michigan University).

As you read the book, we’d sincerely appreciate your comments, criticisms and sug-
gestions for improving the text. Please address all correspondence to:

deitel@deitel.com

www.dreamspark.com

About the Authors xxxiii

We’ll respond promptly. We really enjoyed writing this book—we hope you enjoy reading
it!

Paul Deitel
Harvey Deitel

About the Authors
Paul Deitel, CEO and Chief Technical Officer of Deitel & Associates, Inc., is a graduate
of MIT, where he studied Information Technology. Through Deitel & Associates, Inc.,
he has delivered hundreds of programming courses to industry clients, including Cisco,
IBM, Siemens, Sun Microsystems, Dell, Fidelity, NASA at the Kennedy Space Center, the
National Severe Storm Laboratory, White Sands Missile Range, Rogue Wave Software,
Boeing, SunGard Higher Education, Nortel Networks, Puma, iRobot, Invensys and many
more. He and his co-author, Dr. Harvey M. Deitel, are the world’s best-selling program-
ming-language textbook/professional book/video authors.

Paul was named as a Microsoft® Most Valuable
Professional (MVP) for C# in 2012. According to
Microsoft, “the Microsoft MVP Award is an annual
award that recognizes exceptional technology commu-
nity leaders worldwide who actively share their high
quality, real world expertise with users and Micro-
soft.”

Dr. Harvey Deitel, Chairman and Chief Strategy Officer of Deitel & Associates, Inc.,
has 50 years of experience in the computer field. Dr. Deitel earned B.S. and M.S. degrees
in Electrical Engineering from MIT and a Ph.D. in Mathematics from Boston University.
He has extensive college teaching experience, including earning tenure and serving as the
Chairman of the Computer Science Department at Boston College before founding
Deitel & Associates, Inc., in 1991 with his son, Paul Deitel. The Deitels’ publications have
earned international recognition, with translations published in Chinese, Korean, Japa-
nese, German, Russian, Spanish, French, Polish, Italian, Portuguese, Greek, Urdu and
Turkish. Dr. Deitel has delivered hundreds of programming courses to corporate, aca-
demic, government and military clients.

Deitel® Dive-Into® Series Programming Languages Training
Deitel & Associates, Inc., founded by Paul Deitel and Harvey Deitel, is an internationally
recognized authoring and corporate training organization, specializing in computer pro-
gramming languages, object technology, mobile app development and Internet and web
software technology. The company’s training clients include many of the world’s largest
companies, government agencies, branches of the military, and academic institutions. The
company offers instructor-led training courses delivered at client sites worldwide on major
programming languages and platforms, including Visual C#®, Visual Basic®, Visual
C++®, C++, C, Java™, XML®, Python®, object technology, Internet and web program-
ming, Android app development, Objective-C and iPhone app development and a grow-
ing list of additional programming and software development courses.

2012 C# MVP

xxxiv Preface

Through its 37-year publishing partnership with Prentice Hall/Pearson, Deitel &
Associates, Inc., publishes leading-edge programming college textbooks, professional
books and LiveLessons video courses. Deitel & Associates, Inc. and the authors can be
reached at:

To learn more about Deitel’s Dive-Into® Series Corporate Training curriculum, visit:

To request a proposal for worldwide on-site, instructor-led training at your organization,
e-mail deitel@deitel.com.

Individuals wishing to purchase Deitel books and LiveLessons video training can do so
through www.deitel.com. Bulk orders by corporations, the government, the military and
academic institutions should be placed directly with Pearson. For more information, visit

deitel@deitel.com

www.deitel.com/training

www.informit.com/store/sales.aspx

www.deitel.com/training
www.deitel.com
www.informit.com/store/sales.aspx

This section contains information you should review before using this book and instruc-
tions to ensure that your computer is set up properly for use with this book.

Font and Naming Conventions
We use fonts to distinguish between features, such as menu names, menu items, and other
elements that appear in the program-development environment. Our convention is to em-
phasize IDE features in a sans-serif bold Helvetica font (for example, Properties window)
and to emphasize program text in a sans-serif Lucida font (for example, bool x = true).

Software
This textbook uses the following software:

• Microsoft Visual Studio Express 2012 for Windows Desktop

• Microsoft Visual Studio Express 2012 for Web (Chapters 23 and 29–31)

• Microsoft Visual Studio Express 2012 for Windows 8 (Chapters 25–26)

• Microsoft Visual Studio Express 2012 for Windows Phone (Chapter 27)

Each is available free for download at www.microsoft.com/express. The Express Editions
are fully functional, and there’s no time limit for using the software.

Hardware and Software Requirements for the Visual Studio 2012 Express Editions
To install and run the Visual Studio 2012 Express Editions, ensure that your system meets
the minimum requirements specified at:

Microsoft Visual Studio Express 2012 for Windows 8 works only on Windows 8.

Viewing File Extensions
Several screenshots in Visual C# 2012 How to Program, 5/e display file names with file-name
extensions (e.g., .txt, .cs or .png). Your system’s settings may need to be adjusted to display
file-name extensions. Follow these steps to configure your Windows 7 computer:

1. In the Start menu, select All Programs, then Accessories, then Windows Explorer.

2. Press Alt to display the menu bar, then select Folder Options… from Windows Ex-
plorer’s Tools menu.

3. In the dialog that appears, select the View tab.

4. In the Advanced settings: pane, uncheck the box to the left of the text Hide ex-
tensions for known file types. [Note: If this item is already unchecked, no action
needs to be taken.]

5. Click OK to apply the setting and close the dialog.

www.microsoft.com/visualstudio/eng/products/compatibility

Before You
Begin

www.microsoft.com/express
www.microsoft.com/visualstudio/eng/products/compatibility

xxxvi Before You Begin

Follow these steps to configure your Windows 8 computer:

1. On the Start screen, click the Desktop tile to switch to the desktop.

2. On the task bar, click the File Explorer icon to open the File Explorer.

3. Click the View tab, then ensure that the File name extensions checkbox is
checked.

Obtaining the Code Examples
The examples for Visual C# 2012 How to Program, 5/e are available for download at

If you’re not already registered at our website, go to www.deitel.com and click the Register
link below our logo in the upper-left corner of the page. Fill in your information. There’s
no charge to register, and we do not share your information with anyone. We send you only
account-management e-mails unless you register separately for our free e-mail newsletter at
www.deitel.com/newsletter/subscribe.html. You must enter a valid e-mail address. After
registering, you’ll receive a confirmation e-mail with your verification code. Click the link
in the confirmation email to go to www.deitel.com and sign in.

Next, go to www.deitel.com/books/vcsharp2012htp/. Click the Examples link to
download the ZIP archive file to your computer. Write down the location where you save
the file—most browsers will save the file into your Downloads folder.

Throughout the book, steps that require you to access our example code on your com-
puter assume that you’ve extracted the examples from the ZIP file and placed them at
C:\Examples. You can extract them anywhere you like, but if you choose a different loca-
tion, you’ll need to update our steps accordingly. You can extract the ZIP archive file’s
contents using tools such as WinZip (www.winzip.com), 7-zip (www.7-zip.org) or the
built-in capabilities of Windows Explorer on Window 7 or File Explorer on Windows 8.

Visual Studio Theme
Visual Studio 2012 has a Dark theme (the default) and a Light theme. The screen captures
shown in this book use the Light theme, which is more readable in print. If you’d like to
switch to the Light theme, in the TOOLS menu, select Options… to display the Options di-
alog. In the left column, select Environment, then select Light under Color theme. Keep the
Options dialog open for the next step.

Displaying Line Numbers and Configuring Tabs
Next, you’ll change the settings so that your code matches that of this book. To have the
IDE display line numbers, expand the Text Editor node in the left pane then select All Lan-
guages. On the right, check the Line numbers checkbox. Next, expand the C# node in the
left pane and select Tabs. Make sure that the option Insert spaces is selected. Enter 3 for
both the Tab size and Indent size fields. Any new code you add will now use three spaces
for each level of indentation. Click OK to save your settings.

Miscellaneous Notes
• Some people like to change the workspace layout in the development tools. You

can return the tools to their default layouts by selecting Window > Reset Window
Layout.

www.deitel.com/books/vcsharp2012htp/

www.deitel.com/books/vcsharp2012htp/
www.deitel.com
www.deitel.com/newsletter/subscribe.html
www.deitel.com
www.deitel.com/books/vcsharp2012htp/
www.winzip.com
www.7-zip.org

Before You Begin xxxvii

• Many of the menu items we use in the book have corresponding icons shown
with each menu item in the menus. Many of the icons also appear on one of the
toolbars at the top of the development environment. As you become familiar with
these icons, you can use the toolbars to help speed up your development time.
Similarly, many of the menu items have keyboard shortcuts (also shown with
each menu item in the menus) for accessing commands quickly.

You are now ready to begin your Visual C# studies with Visual C# 2012 How to Pro-
gram, 5/e. We hope you enjoy the book!

This page intentionally left blank

1Introduction to Computers,
the Internet and Visual C#

The chief merit of language is
clearness.
—Galen

Our life is frittered away with
detail. . . . Simplify, simplify.
—Henry David Thoreau

Man is still the most
extraordinary computer of all.
—John F. Kennedy

O b j e c t i v e s
In this chapter you’ll learn:

� Basic hardware, software and
data concepts.

� The different types of
programming languages.

� The history of the Visual C#
programming language and
the Windows operating
system.

� What cloud computing with
Windows Azure is.

� Basics of object technology.

� The history of the Internet
and the World Wide Web.

� The parts that Windows 8,
.NET 4.5, Visual Studio 2012
and Visual C# 2012 play in
the Visual C# ecosystem.

� To test-drive a Visual C#
2012 drawing app.

2 Chapter 1 Introduction to Computers, the Internet and Visual C#

1.1 Introduction
Welcome to Visual C# 2012 which, from this point forward, we’ll refer to simply as C#.1

C# is a powerful computer programming language that’s appropriate for building substan-
tial information systems.

You’re already familiar with the powerful tasks computers perform. Using this text-
book, you’ll write instructions commanding computers to perform those kinds of tasks
and you’ll prepare yourself to address new challenges.

Computers process data under the control of sequences of instructions called com-
puter programs. These programs guide the computer through actions specified by people
called computer programmers. The programs that run on a computer are referred to as
software. In this book, you’ll learn object-oriented programming—today’s key program-
ming methodology that’s enhancing programmer productivity, and reducing software
development costs. You’ll create many software objects that model both abstract and real-
world things. And you’ll build C# apps for a variety of environments including the
desktop—and new to this edition of the book—mobile devices like smartphones and tablets,
and even “the cloud.”

1.2 Hardware and Moore’s Law
A computer consists of various devices referred to as hardware, such as the keyboard,
screen, mouse, hard disks, memory, DVD drives and processing units. Every year or two,

1.1 Introduction
1.2 Hardware and Moore’s Law
1.3 Data Hierarchy
1.4 Computer Organization
1.5 Machine Languages, Assembly

Languages and High-Level Languages
1.6 Object Technology
1.7 Internet and World Wide Web
1.8 C#

1.8.1 Object-Oriented Programming
1.8.2 Event-Driven Programming
1.8.3 Visual Programming
1.8.4 An International Standard; Other C#

Implementations
1.8.5 Internet and Web Programming
1.8.6 Introducing async/await
1.8.7 Other Key Contemporary

Programming Languages
1.9 Microsoft’s .NET

1.9.1 .NET Framework
1.9.2 Common Language Runtime

1.9.3 Platform Independence
1.9.4 Language Interoperability

1.10 Microsoft’s Windows® Operating
System

1.11 Windows Phone 8 for Smartphones
1.11.1 Selling Your Apps in the Windows

Phone Marketplace
1.11.2 Free vs. Paid Apps
1.11.3 Testing Your Windows Phone Apps

1.12 Windows Azure™ and Cloud
Computing

1.13 Visual Studio Express 2012
Integrated Development
Environment

1.14 Painter Test-Drive in Visual Studio
Express 2012 for Windows Desktop

1.15 Painter Test-Drive in Visual Studio
Express 2012 for Windows 8

Self-Review Exercises | Answers to Self-Review Exercises | Exercises | Making a Difference Exercises

1. The name C#, pronounced “C-sharp,” is based on the musical # notation for “sharp” notes.

1.3 Data Hierarchy 3

the capacities of computer hardware have approximately doubled inexpensively. This re-
markable trend often is called Moore’s Law, named for the person who identified it, Gor-
don Moore, co-founder of Intel—the leading manufacturer of the processors in today’s
computers and embedded systems, such as smartphones, appliances, game controllers, ca-
ble set-top boxes and automobiles.

Moore’s Law and related observations apply especially to

• the amount of memory that computers have for running programs and processing
data

• the amount of secondary storage (such as hard disk storage) they have to hold
programs and data over longer periods of time

• their processor speeds—the speeds at which computers execute their programs (i.e.,
do their work)

Similar growth has occurred in the communications field, in which costs have plum-
meted as enormous demand for communications bandwidth (i.e., information-carrying
capacity) has attracted intense competition. We know of no other fields in which tech-
nology improves so quickly and costs fall so rapidly. Such phenomenal improvement is
truly fostering the Information Revolution and creating significant career opportunities.

As a result of this continuing stream of technological advances, computers already can
perform calculations and make logical decisions phenomenally faster than human beings
can. Many of today’s personal computers can perform billions of calculations in one
second—more than a human can perform in a lifetime. Supercomputers are already per-
forming thousands of trillions (quadrillions) of instructions per second! The world’s fastest
supercomputer—the Cray Titan—can perform over 17 quadrillion calculations per
second—(17.59 petaflops)2—that’s more than 2 million calculations per second for every
person on the planet! And—these “upper limits” are expanding quickly!

1.3 Data Hierarchy
Data items processed by computers form a data hierarchy that becomes larger and more
complex in structure as we progress from the simplest data items (called “bits”) to richer
data items, such as characters, fields, and so on. Figure 1.1 illustrates a portion of the data
hierarchy.

Bits
The smallest data item in a computer can assume the value 0 or the value 1. Such a data
item is called a bit (short for “binary digit”—a digit that can assume either of two values).
It’s remarkable that the impressive functions performed by computers involve only the
simplest manipulations of 0s and 1s—examining a bit’s value, setting a bit’s value and revers-
ing a bit’s value (from 1 to 0 or from 0 to 1). We discuss binary numbers (and closely re-
lated octal and hexadecimal numbers) in more detail in Appendix D, Number Systems.

Characters
It’s tedious for people to work with data in the low-level form of bits. Instead, we prefer
to work with decimal digits (0–9), letters (A–Z and a–z), and special symbols (e.g., $, @, %,

2. top500.org/lists/2012/11/.

4 Chapter 1 Introduction to Computers, the Internet and Visual C#

&, *, (,), –, +, ", :, ? and /). Digits, letters and special symbols are known as characters.
The computer’s character set is the set of all the characters used to write programs and rep-
resent data items on that device. Computers process only 1s and 0s, so every character is
represented as a pattern of 1s and 0s. The Unicode character set contains characters for
many of the world’s languages. C# supports several character sets, including 16-bit Uni-
code® characters that are composed of two bytes—each byte is composed of eight bits. See
Appendix B for more information on the ASCII (American Standard Code for Informa-
tion Interchange) character set—the popular subset of Unicode that represents uppercase
and lowercase letters in the English alphabet, digits and some common special characters.

Fields
Just as characters are composed of bits, fields are composed of characters or bytes. A field
is a group of characters or bytes that conveys meaning. For example, a field consisting of
uppercase and lowercase letters could be used to represent a person’s name, and a field con-
sisting of decimal digits could represent a person’s age.

Records
Several related fields can be used to compose a record. In a payroll system, for example,
the record for an employee might consist of the following fields (possible types for these
fields are shown in parentheses):

Fig. 1.1 | Data hierarchy.

Tom Blue

Sally Black

Judy Green File

J u d y Field

Byte (ASCII character J)

Record

Iris Orange

Randy Red

01001010

1 Bit

Judy Green

1.3 Data Hierarchy 5

• Employee identification number (a whole number)

• Name (a string of characters)

• Address (a string of characters)

• Hourly pay rate (a number with a decimal point)

• Year-to-date earnings (a number with a decimal point)

• Amount of taxes withheld (a number with a decimal point)

Thus, a record is a group of related fields. In the preceding example, all the fields belong to
the same employee. A company might have many employees and a payroll record for each.

Files
A file is a group of related records. [Note: More generally, a file contains arbitrary data in
arbitrary formats. In some operating systems, a file is viewed simply as a sequence of bytes—
any organization of the bytes in a file, such as organizing the data into records, is a view
created by the programmer.] It’s not unusual for an organization to have thousands or
even millions of files, some containing billions or even trillions of characters of informa-
tion. You’ll work with files in Chapter 17.

Database
A database is a collection of data that’s organized for easy access and manipulation. The
most popular database model is the relational database in which data is stored in simple
tables. A table includes records and fields. For example, a table of students might include
first name, last name, major, year, student ID number and grade point average fields. The
data for each student is a record, and the individual pieces of information in each record
are the fields. You can search, sort and otherwise manipulate the data based on its relation-
ship to multiple tables or databases. For example, a university might use data from the stu-
dent database in combination with data from databases of courses, on-campus housing,
meal plans, etc. We discuss databases in Chapter 22.

Big Data
The amount of data being produced worldwide is enormous and growing quickly. Accord-
ing to IBM, approximately 2.5 quintillion bytes (2.5 exabytes) of data are created daily and
90% of the world’s data was created in just the past two years!3 According to an IDC
study, approximately 1.8 zettabytes (equal to 1.8 trillion gigabytes) of data was used world-
wide in 2011.4 Figure 1.2 shows relationships between byte measurements.

3. www-01.ibm.com/software/data/bigdata/.

Unit Bytes Which is approximately

1 kilobyte (KB) 1024 bytes 103 (1024 bytes exactly)

1 megabyte (MB) 1024 kilobytes 106 (1,000,000 bytes)

1 gigabyte (GB) 1024 megabytes 109 (1,000,000,000 bytes)

Fig. 1.2 | Byte measurements. (Part 1 of 2.)

4. www.emc.com/collateral/about/news/idc-emc-digital-universe-2011-infographic.pdf.

www-01.ibm.com/software/data/bigdata/
www.emc.com/collateral/about/news/idc-emc-digital-universe-2011-infographic.pdf

6 Chapter 1 Introduction to Computers, the Internet and Visual C#

1.4 Computer Organization
Regardless of differences in physical appearance, computers can be envisioned as divided
into various logical units or sections.

Input Unit
This “receiving” section obtains information (data and computer programs) from input
devices and places it at the disposal of the other units for processing. Most information is
entered into computers through keyboards, touch screens and mouse devices. Other forms
of input include receiving voice commands, scanning images and barcodes, reading from
secondary storage devices (such as hard drives, DVD drives, Blu-ray Disc™ drives and
USB flash drives—also called “thumb drives” or “memory sticks”), receiving video from a
webcam or smartphone and having your computer receive information from the Internet
(such as when you download videos from YouTube or e-books from Amazon). Newer
forms of input include position data from GPS devices, and motion and orientation infor-
mation from accelerometers in smartphones or game controllers (such as Microsoft® Ki-
nect™, Nintendo’s Wii™ Remote and Sony’s PlayStation® Move).

Output Unit
This “shipping” section takes information that the computer has processed and places it
on various output devices to make it available for use outside the computer. Most infor-
mation that’s output from computers today is displayed on screens; printed on paper (“go-
ing green” discourages this); played as audio or video on PCs and media players (such as
Apple® iPod®) and giant screens in sports stadiums; transmitted over the Internet or used
to control other devices, such as robots, 3D printers and “intelligent” appliances.

Memory Unit
This rapid-access, relatively low-capacity “warehouse” section retains information that’s
entered through the input unit, making it immediately available for processing when need-
ed. The memory unit also retains processed information until it can be placed on output
devices by the output unit. Information in the memory unit is volatile—it’s typically lost
when the computer’s power is turned off. The memory unit is often called either memory
or primary memory—on desktop and notebook computers it commonly contains as
much as 16 GB (GB stands for gigabytes; a gigabyte is approximately one billion bytes).

Arithmetic and Logic Unit (ALU)
This “manufacturing” section performs calculations, such as addition, subtraction, multi-
plication and division. It also contains the decision mechanisms that allow the computer,

1 terabyte (TB) 1024 gigabytes 1012 (1,000,000,000,000 bytes)

1 petabyte (PB) 1024 terabytes 1015 (1,000,000,000,000,000 bytes)

1 exabyte (EB) 1024 petabytes 1018 (1,000,000,000,000,000,000 bytes)

1 zettabyte (ZB) 1024 exabytes 1021 (1,000,000,000,000,000,000,000 bytes)

Unit Bytes Which is approximately

Fig. 1.2 | Byte measurements. (Part 2 of 2.)

1.5 Machine Languages, Assembly Languages and High-Level Languages 7

for example, to compare two items from the memory unit to determine whether they’re
equal. In today’s systems, the ALU is usually implemented as part of the next logical unit,
the CPU.

Central Processing Unit (CPU)
This “administrative” section coordinates and supervises the operation of the other sec-
tions. The CPU tells the input unit when information should be read into the memory
unit, tells the ALU when information from the memory unit should be used in calculations
and tells the output unit when to send information from the memory unit to certain output
devices. Many of today’s computers have multiple CPUs and, hence, can perform many
operations simultaneously. A multi-core processor implements multiple processors on a
single “microchip”—a dual-core processor has two CPUs and a quad-core processor has four
CPUs. Many of today’s desktop computers have quad-core processors that can execute bil-
lions of instructions per second. In this book you’ll learn how to write programs that can
keep all these processors running in parallel to get your computing tasks done faster.

Secondary Storage Unit
This is the long-term, high-capacity “warehousing” section. Programs or data not actively
being used by the other units normally are placed on secondary storage devices (such as
your hard drive) until they’re again needed, possibly hours, days, months or even years lat-
er. Information on secondary storage devices is persistent—it’s preserved even when the
computer’s power is turned off. Secondary storage data takes much longer to access than
information in primary memory, but the cost per unit of secondary storage is much less
than that of primary memory. Examples of secondary storage devices include CD drives,
DVD drives and flash drives, some of which can hold up to 768 GB. Typical hard drives
on desktop and notebook computers can hold up to 2 TB (TB stands for terabytes; a tera-
byte is approximately one trillion bytes). New to this edition, you’ll see that storage in “the
cloud” can be viewed as additional secondary storage accessible by your C# apps.

1.5 Machine Languages, Assembly Languages and High-
Level Languages
Programmers write instructions in various programming languages (such as C#), some di-
rectly understandable by computers and others requiring intermediate translation steps.

Machine Languages
Any computer can directly understand only its own machine language, defined by its hard-
ware architecture. Machine languages generally consist of numbers, ultimately reduced to
1s and 0s. Such languages are cumbersome for humans, who prefer words like “add” and
“subtract” to indicate the operations to be performed, so the machine language numeric
versions of these instructions were referred to as code. The term “code” has become more
broadly used and now refers to the program instructions in all levels of language.

Assembly Languages and Assemblers
Machine language was simply too slow and tedious to work with. Instead, programmers
began using English-like abbreviations to represent elementary operations. These abbrevi-
ations form the basis of assembly languages. Translator programs called assemblers convert
assembly-language code to machine code quickly. Although assembly-language code is

8 Chapter 1 Introduction to Computers, the Internet and Visual C#

clearer to humans, it’s incomprehensible to computers until translated to machine lan-
guage code.

High-Level Languages, Compilers and Interpreters
To speed the programming process even further, high-level languages were developed in
which single statements could be written to accomplish substantial tasks. High-level lan-
guages, such as C#, Visual Basic, C++, C, Objective-C and Java, allow you to write instruc-
tions that look almost like everyday English and contain commonly used mathematical
expressions. Translator programs called compilers convert high-level language code into
machine language code.

The process of compiling a large high-level language program into machine language
can take a considerable amount of computer time. Interpreter programs were developed
to execute high-level language programs directly (without the need for compilation),
although more slowly than compiled programs.

1.6 Object Technology
C# is an object-oriented programming language. In this section we’ll introduce the basics
of object technology.

Building software quickly, correctly and economically remains an elusive goal at a
time when demands for new and more powerful software are soaring. Objects, or more
precisely the classes objects come from, are essentially reusable software components. There
are date objects, time objects, audio objects, video objects, automobile objects, people
objects, etc. Almost any noun can be reasonably represented as a software object in terms
of attributes (e.g., name, color and size) and behaviors (e.g., calculating, moving and com-
municating). Software developers have discovered that using a modular, object-oriented
design and implementation approach can make software-development groups much more
productive than was possible with earlier techniques—object-oriented programs are often
easier to understand, correct and modify.

The Automobile as an Object
Let’s begin with a simple analogy. Suppose you want to drive a car and make it go faster by
pressing its accelerator pedal. What must happen before you can do this? Well, before you
can drive a car, someone has to design it. A car typically begins as engineering drawings,
similar to the blueprints that describe the design of a house. These drawings include the
design for an accelerator pedal. The pedal hides from the driver the complex mechanisms
that actually make the car go faster, just as the brake pedal hides the mechanisms that slow
the car, and the steering wheel hides the mechanisms that turn the car. This enables people
with little or no knowledge of how engines, braking and steering mechanisms work to
drive a car easily.

Before you can drive a car, it must be built from the engineering drawings that
describe it. A completed car has an actual accelerator pedal to make the car go faster, but
even that’s not enough—the car won’t accelerate on its own (we hope), so the driver must
press the pedal to accelerate the car.

Methods and Classes
Let’s use our car example to introduce some key object-oriented programming concepts.
Performing a task in a program requires a method. The method houses the program state-

1.6 Object Technology 9

ments that actually perform the task. It hides these statements from its user, just as a car’s
accelerator pedal hides from the driver the mechanisms of making the car go faster. In ob-
ject-oriented programming languages, we create a program unit called a class to house the
set of methods that perform the class’s tasks. For example, a class that represents a bank
account might contain one method to deposit money to an account, another to withdraw
money from an account and a third to inquire what the account’s current balance is. A class
that represents a car might contain methods for accelerating, braking and turning. A class
is similar in concept to a car’s engineering drawings, which house the design of an accel-
erator pedal, steering wheel, and so on.

Making Objects from Classes
Just as someone has to build a car from its engineering drawings before you can actually
drive a car, you must build an object from a class before a program can perform the tasks
that the class’s methods define. The process of doing this is called instantiation. An object
is then referred to as an instance of its class.

Reuse
Just as a car’s engineering drawings can be reused many times to build many cars, you can
reuse a class many times to build many objects. Reuse of existing classes when building new
classes and programs saves time and effort. Reuse also helps you build more reliable and ef-
fective systems, because existing classes and components often have gone through extensive
testing (to locate problems), debugging (to correct those problems) and performance tuning.
Just as the notion of interchangeable parts was crucial to the Industrial Revolution, reusable
classes are crucial to the software revolution that’s been spurred by object technology.

Messages and Method Calls
When you drive a car, pressing its gas pedal sends a message to the car to perform a task—
that is, to go faster. Similarly, you send messages to an object. Each message is implemented
as a method call that tells a method of the object to perform its task. For example, a pro-
gram might call a particular bank-account object’s deposit method to increase the account’s
balance.

Attributes and Instance Variables
A car, besides having capabilities to accomplish tasks, also has attributes, such as its color,
its number of doors, the amount of gas in its tank, its current speed and its record of total
miles driven (i.e., its odometer reading). Like its capabilities, the car’s attributes are repre-
sented as part of its design in its engineering diagrams (which, for example, include an
odometer and a fuel gauge). As you drive an actual car, these attributes are carried along
with the car. Every car maintains its own attributes. For example, each car knows how
much gas is in its own gas tank, but not how much is in the tanks of other cars.

An object, similarly, has attributes that it carries along as it’s used in a program. These
attributes are specified as part of the object’s class. For example, a bank-account object has
a balance attribute that represents the amount of money in the account. Each bank-

Software Engineering Observation 1.1
Use a building-block approach to creating your programs. Avoid reinventing the wheel—
use existing pieces wherever possible. This software reuse is a key benefit of object-oriented
programming.

10 Chapter 1 Introduction to Computers, the Internet and Visual C#

account object knows the balance in the account it represents, but not the balances of the
other accounts in the bank. Attributes are specified by the class’s instance variables.

Encapsulation
Classes encapsulate (i.e., wrap) attributes and methods into objects—an object’s attributes
and operations are intimately related. Objects may communicate with one another, but
they’re normally not allowed to know how other objects are implemented—implementa-
tion details are hidden within the objects themselves. This information hiding, as we’ll see,
is crucial to good software engineering.

Inheritance
A new class of objects can be created quickly and conveniently by inheritance—the new
class absorbs the characteristics of an existing class, possibly customizing them and adding
unique characteristics of its own. In our car analogy, an object of class “convertible” cer-
tainly is an object of the more general class “automobile,” but more specifically, the roof can
be raised or lowered.

Object-Oriented Analysis and Design (OOAD)
Soon you’ll be writing programs in C#. Perhaps, like many programmers, you’ll simply
turn on your computer and start typing. This approach may work for small programs (like
the ones we present in the early chapters of this book), but what if you were asked to create
a software system to control thousands of automated teller machines for a major bank? Or
suppose you were assigned to work on a team of thousands of software developers building
the next U.S. air traffic control system? For projects so large and complex, you should not
simply sit down and start writing programs.

To create the best solutions, you should follow a detailed analysis process for deter-
mining your project’s requirements (i.e., defining what the system is supposed to do) and
developing a design that satisfies them (i.e., deciding how the system should do it). Ideally,
you’d go through this process and carefully review the design (and have your design
reviewed by other software professionals) before writing any code. If this process involves
analyzing and designing your system from an object-oriented point of view, it’s called an
object-oriented analysis and design (OOAD) process. Languages like C# are object ori-
ented. Programming in such a language, called object-oriented programming (OOP),
allows you to implement an object-oriented design as a working system.

The UML (Unified Modeling Language)
Though many different OOAD processes exist, a single graphical language for communi-
cating the results of any OOAD process—known as the Unified Modeling Language
(UML)—is now the most widely used graphical scheme for modeling object-oriented sys-
tems. We present our first simple UML diagrams in Chapters 4 and 5, then use them in
our deeper treatment of object-oriented programming through Chapter 12. In our option-
al ATM Software Engineering Case Study in Chapters 34–35 we present a simple subset
of the UML’s features as we guide you through a simple object-oriented design experience.

1.7 Internet and World Wide Web
In the late 1960s, ARPA—the Advanced Research Projects Agency of the United States De-
partment of Defense—rolled out plans to network the main computer systems of approxi-

1.7 Internet and World Wide Web 11

mately a dozen ARPA-funded universities and research institutions. The computers were to
be connected with communications lines operating at a then-stunning 56 Kbps (1 Kbps is
equal to 1,024 bits per second), at a time when most people (of the few who even had net-
working access) were connecting over telephone lines to computers at a rate of 110 bits per
second. Academic research was about to take a giant leap forward. ARPA proceeded to im-
plement what quickly became known as the ARPAnet, the precursor to today’s Internet.

Things worked out differently from the original plan. Although the ARPAnet enabled
researchers to network their computers, its main benefit proved to be the capability for
quick and easy communication via what came to be known as electronic mail (e-mail).
This is true even on today’s Internet, with e-mail, instant messaging, file transfer and social
media such as Facebook and Twitter, enabling billions of people worldwide to communi-
cate quickly and easily.

The protocol (set of rules) for communicating over the ARPAnet became known as
the Transmission Control Protocol (TCP). TCP ensured that messages, consisting of
sequentially numbered pieces called packets, were properly routed from sender to receiver,
arrived intact and were assembled in the correct order.

The Internet: A Network of Networks
In parallel with the early evolution of the Internet, organizations worldwide were imple-
menting their own networks for both intraorganization (that is, within an organization)
and interorganization (that is, between organizations) communication. A huge variety of
networking hardware and software appeared. One challenge was to enable these different
networks to communicate with each other. ARPA accomplished this by developing the In-
ternet Protocol (IP), which created a true “network of networks,” the current architecture
of the Internet. The combined set of protocols is now called TCP/IP.

Businesses rapidly realized that by using the Internet, they could improve their oper-
ations and offer new and better services to their clients. Companies started spending large
amounts of money to develop and enhance their Internet presence. This generated fierce
competition among communications carriers and hardware and software suppliers to meet
the increased infrastructure demand. As a result, bandwidth—the information-carrying
capacity of communications lines—on the Internet has increased tremendously, while
hardware costs have plummeted.

The World Wide Web: Making the Internet User-Friendly
The World Wide Web (simply called “the web”) is a collection of hardware and software
associated with the Internet that allows computer users to locate and view multimedia-
based documents (documents with various combinations of text, graphics, animations, au-
dios and videos) on almost any subject. The introduction of the web was a relatively recent
event. In 1989, Tim Berners-Lee of CERN (the European Organization for Nuclear Re-
search) began to develop a technology for sharing information via “hyperlinked” text doc-
uments. Berners-Lee called his invention the HyperText Markup Language (HTML). He
also wrote communication protocols such as HyperText Transfer Protocol (HTTP) to
form the backbone of his new hypertext information system, which he referred to as the
World Wide Web.

In 1994, Berners-Lee founded an organization, called the World Wide Web Consor-
tium (W3C, www.w3.org), devoted to developing web technologies. One of the W3C’s

www.w3.org

12 Chapter 1 Introduction to Computers, the Internet and Visual C#

primary goals is to make the web universally accessible to everyone regardless of disabili-
ties, language or culture. In this book, you’ll use C# and other Microsoft technologies to
build web-based apps.

1.8 C#
In 2000, Microsoft announced the C# programming language. C# has roots in the C, C++
and Java programming languages. It has similar capabilities to Java and is appropriate for
the most demanding app-development tasks, especially for building today’s large-scale en-
terprise apps, and web-based, mobile and “cloud”-based apps.

1.8.1 Object-Oriented Programming
C# is object oriented—we’ve discussed the basics of object technology and will present a
rich treatment of object-oriented programming throughout the book. C# has access to the
powerful .NET Framework Class Library—a vast collection of prebuilt classes that enable
you to develop apps quickly (Fig. 1.3). We’ll say more about .NET in Section 1.9.

1.8.2 Event-Driven Programming
C# is event driven. You’ll write programs that respond to user-initiated events such as
mouse clicks, keystrokes, timer expirations and—new in Visual C# 2012—touches and fin-
ger swipes—gestures that are widely used on smartphones and tablets.

1.8.3 Visual Programming
Microsoft’s Visual C# is a visual programming language—in addition to writing program
statements to build portions of your apps, you’ll also use Visual Studio’s graphical user in-
terface (GUI) to conveniently drag and drop predefined objects like buttons and textboxes
into place on your screen, and label and resize them. Visual Studio will write much of the
GUI code for you.

1.8.4 An International Standard; Other C# Implementations
C# has been standardized internationally. This enables other implementations of the lan-
guage besides Microsoft’s Visual C#, such as Mono (www.mono-project.com) that runs on

Some key capabilities in the .NET Framework Class Library

Database Debugging

Building web apps Multithreading

Graphics File processing

Input/output Security

Computer networking Web communication

Permissions Graphical user interface

Mobile Data structures

String processing

Fig. 1.3 | Some key capabilities in the .NET Framework Class Library.

www.mono-project.com

1.8 C# 13

Linux systems, iOS (for Apple’s iPhone, iPad and iPod touch), Google’s Android and
Windows. You can find the C# standard document at:

1.8.5 Internet and Web Programming
Today’s apps can be written with the aim of communicating among the world’s comput-
ers. As you’ll see, this is the focus of Microsoft’s .NET strategy. In Chapters 23, 29 and
30, you’ll build web-based apps with C# and Microsoft’s ASP.NET technology.

1.8.6 Introducing async/await
In most programming today, each task in a program must finish executing before the next
task can begin. This is called synchronous programming and is the style we use for most of
this book. C# also allows asynchronous programming in which multiple tasks can be per-
formed at the same time. Asynchronous programming can help you make your apps more
responsive to user interactions, such as mouse clicks and keystrokes, among many other
uses.

Asynchronous programming in previous versions of Visual C# was difficult and error
prone. Visual C# 2012’s new async and await capabilities simplify asynchronous program-
ming, because the compiler hides much of the associated complexity from the developer. In
Chapter 28, we’ll provide a brief introduction to asynchronous programming with async

and await.

1.8.7 Other Key Contemporary Programming Languages
Figure 1.4 summarizes some popular programming languages with features comparable to
those of C#.

www.ecma-international.org/publications/standards/Ecma-334.htm

Programming
language Description

C C was implemented in 1972 by Dennis Ritchie at Bell Laborato-
ries. It initially became widely known as the UNIX operating sys-
tem’s development language. Today, most of the code for general-
purpose operating systems is written in C or C++.

C++ C++, an extension of C, was developed by Bjarne Stroustrup in the
early 1980s at Bell Laboratories. C++ provides several features that
“spruce up” the C language, but more important, it provides capa-
bilities for object-oriented programming. It’s often used in apps with
stringent performance requirements such as operating systems, real-
time systems, embedded systems and communications systems.
Visual C++ is Microsoft’s version of the language.

Fig. 1.4 | Other programming languages. (Part 1 of 2.)

www.ecma-international.org/publications/standards/Ecma-334.htm

14 Chapter 1 Introduction to Computers, the Internet and Visual C#

1.9 Microsoft’s .NET
In 2000, Microsoft announced its .NET initiative (www.microsoft.com/net), a broad vi-
sion for using the Internet and the web in the development, engineering, distribution and
use of software. Rather than forcing you to use a single programming language, .NET per-
mits you to create apps in any .NET-compatible language (such as C#, Visual Basic, Visual
C++ and many others). Part of the initiative includes Microsoft’s ASP.NET technology.

1.9.1 .NET Framework
The .NET Framework executes apps and contains the .NET Framework Class Library,
which provides many capabilities that you’ll use to build substantial C# apps quickly and
easily. The .NET Framework Class Library has thousands of valuable prebuilt classes that
have been tested and tuned to maximize performance. You’ll learn how to create your own

Java In the 1990s, Sun Microsystems (now part of Oracle) developed
the C++-based object-oriented programming language called Java.
A key goal of Java is to be able to write programs that will run on a
great variety of computer systems and computer-control devices—
this is sometimes called write once, run anywhere. Java is used to
develop large-scale enterprise apps, to enhance the functionality of
web servers (the computers that provide the content we see in our
web browsers), to provide apps for consumer devices (e.g., smart-
phones, tablets, television set-top boxes, appliances, automobiles
and more) and for many other purposes. Microsoft developed C#
as a competitive language to Java.

Visual Basic Visual Basic evolved from BASIC, developed in the 1960s at Dart-
mouth College for introducing novices to fundamental program-
ming techniques. When Bill Gates founded Microsoft in the
1970s, he implemented BASIC on several early personal comput-
ers. In the late 1980s and the early 1990s, Microsoft developed the
Microsoft Windows graphical user interface (GUI)—the visual
part of the operating system with which users interact. With the
creation of the Windows GUI, the natural evolution of BASIC was
to Visual Basic, introduced by Microsoft in 1991 to make pro-
gramming Windows apps easier. The latest versions of Visual Basic
have capabilities comparable to those of C#.

Objective-C Objective-C is another object-oriented language based on C. It was
developed at Stepstone in the early 1980s and later acquired by
NeXT, which in turn was acquired by Apple. It has become the key
programming language for the Mac OS X desktop operating sys-
tem and all iOS-based devices, such as iPods, iPhones and iPads.

Programming
language Description

Fig. 1.4 | Other programming languages. (Part 2 of 2.)

www.microsoft.com/net

1.9 Microsoft’s .NET 15

classes, but you should re-use the .NET Framework classes whenever possible to speed up
the software development process, while enhancing the quality and performance of the
software you develop.

1.9.2 Common Language Runtime
The Common Language Runtime (CLR), another key part of the .NET Framework, ex-
ecutes .NET programs and provides functionality to make them easier to develop and de-
bug. The CLR is a virtual machine (VM)—software that manages the execution of
programs and hides from them the underlying operating system and hardware. The source
code for programs that are executed and managed by the CLR is called managed code. The
CLR provides various services to managed code, such as integrating software components
written in different .NET languages, error handling between such components, enhanced
security, automatic memory management and more. Unmanaged-code programs do not
have access to the CLR’s services, which makes unmanaged code more difficult to write.5

Managed code is compiled into machine-specific instructions in the following steps:

1. First, the code is compiled into Microsoft Intermediate Language (MSIL). Code
converted into MSIL from other languages and sources can be woven together by
the CLR—this allows programmers to work in their preferred .NET program-
ming language. The MSIL for an app’s components is placed into the app’s exe-
cutable file—the file that causes the computer to perform the app’s tasks.

2. When the app executes, another compiler (known as the just-in-time compiler
or JIT compiler) in the CLR translates the MSIL in the executable file into ma-
chine-language code (for a particular platform).

3. The machine-language code executes on that platform.

1.9.3 Platform Independence
If the .NET Framework exists and is installed for a platform, that platform can run any
.NET program. The ability of a program to run without modification across multiple plat-
forms is known as platform independence. Code written once can be used on another type
of computer without modification, saving time and money. In addition, software can tar-
get a wider audience. Previously, companies had to decide whether converting their pro-
grams to different platformsq—a process called porting—was worth the cost. With .NET,
porting programs is no longer an issue, at least once .NET itself has been made available
on the platforms.

1.9.4 Language Interoperability
The .NET Framework provides a high level of language interoperability. Because soft-
ware components written in different .NET languages (such as C# and Visual Basic) are
all compiled into MSIL, the components can be combined to create a single unified pro-
gram. Thus, MSIL allows the .NET Framework to be language independent.

5. msdn.microsoft.com/en-us/library/8bs2ecf4.aspx.

16 Chapter 1 Introduction to Computers, the Internet and Visual C#

The .NET Framework Class Library can be used by any .NET language. .NET 4.5,
which was released in 2012, includes several improvements and new features to make your
apps faster and more responsive. It also features .NET for Windows Store Apps—a subset
of .NET that’s used to create Windows 8 UI (user interface) style apps.

1.10 Microsoft’s Windows® Operating System
Microsoft’s Windows is the most widely used desktop operating system worldwide. Op-
erating systems are software systems that make using computers more convenient for us-
ers, developers and system administrators. They provide services that allow each app to
execute safely, efficiently and concurrently (i.e., in parallel) with other apps. Other popular
desktop operating systems include Linux and Mac OS X. Popular mobile operating systems
used in smartphones and tablets include Microsoft’s Windows Phone, Google’s Android,
Apple’s iOS (for iPhone, iPad and iPod Touch devices) and BlackBerry OS. Figure 1.5
presents the evolution of the Windows operating system.

Version Description

Windows in the 1990s In the mid-1980s, Microsoft developed the Windows operating
system based on a graphical user interface with buttons, textboxes,
menus and other graphical elements. The various versions released
throughout the 1990s were intended for personal computing.
Microsoft entered the corporate operating systems market with the
1993 release of Windows NT.

Windows XP and
Windows Vista

Windows XP was released in 2001 and combined Microsoft’s cor-
porate and consumer operating system lines. It remains popular
today—according to a 2012 Netmarketshare study, it’s used on
more than 40% of Windows computers (netmarketshare.com/
operating-system-market-share.aspx?qprid=10&qpcustomd=0).
Windows Vista, released in 2007, offered the attractive new Aero
user interface, many powerful enhancements and new apps and
enhanced security. But Vista never caught on—today, it has “only”
six percent of the total desktop operating systems market share
(that’s still a pretty significant number; netmarketshare.com/
operating-system-market-share.aspx?qprid=10&qpcustomd=0).

Windows 7 Windows 7, now the most widely used version of Windows,
includes enhancements to the Aero user interface, faster startup
times, further refinement of Vista’s security features, touch-screen
with multi-touch support, and more. Windows 7 had a 44% mar-
ket share, and overall, Windows (including Windows 7, Windows
XP and Windows Vista) had over 90% of the desktop operating
system market share worldwide (netmarketshare.com/operating-
system-market-share.aspx?qprid=10&qpcustomd=0). The core
chapters of this book use Windows 7, Visual Studio 2012 and
Visual C# 2012.

Fig. 1.5 | The evolution of the Windows operating system. (Part 1 of 2.)

1.11 Windows Phone 8 for Smartphones 17

Windows Store
You can sell Windows 8 UI desktop and tablet apps or offer them for free in the Windows
Store. The fee to become a registered Windows Store developer is $49 for individuals and
$99 for companies, however the fee is waived for Microsoft DreamSpark program students
(see the Preface). For Windows 8 UI apps, Microsoft retains 30% of the purchase price
and distributes 70% to you, up to $25,000. If revenues for your app exceed that amount,
Microsoft will retain 20% of the purchase price and distribute 80% to you.

The Windows Store offers several business models for monetizing your app. You can
charge the full price for your app before download, with prices starting at $1.49. You can
also offer a time-limited trial or feature-limited trial that allows users to try the app before
purchasing the full version, sell virtual goods (such as additional app features) using in-app
purchases and more. To learn more about the Windows Store and monetizing your apps,
visit msdn.microsoft.com/en-us/library/windows/apps/br229519.aspx.

1.11 Windows Phone 8 for Smartphones
Windows Phone 8 is a pared down version of Windows 8 designed for smartphones. These
are resource-constrained devices—they have less memory and processor power than desktop
computers, and limited battery life. Windows Phone 8 has the same core operating systems
services as Windows 8, including a common file system, security, networking, media and
Internet Explorer 10 (IE10) web browser technology. However, Windows Phone 8 has

Windows 8 for
Desktops and
Tablets

Windows 8, released in 2012 provides a similar platform (the
underlying system on which apps run) and user experience across a
wide range of devices including personal computers, smartphones,
tablets and the Xbox Live online game service. The new look-and-
feel features a Start screen with tiles that represent each app, similar
to that of Windows Phone—Microsoft’s operating system for
smartphones. Windows 8 features multi-touch support for touch-
pads and touchscreen devices, enhanced security features and more.

Windows 8 UI
(User Interface)

Visual C# 2012 supports the new Windows 8 UI (previously
called “Metro”) which has a clean look-and-feel with minimal dis-
tractions to the user. Windows 8 apps feature a chromeless win-
dow—there’s no longer a border around the window with the
typical interface elements such as title bars and menus. These ele-
ments are hidden, allowing apps to fill the entire screen, which is
particularly helpful on smaller screens such as tablets and smart-
phones. The interface elements are displayed in the app bar when
the user swipes the top or bottom of the screen by holding down
the mouse button, moving the mouse in the swipe direction and
releasing the mouse button; this can be done with a finger swipe on
a touchscreen device. We discuss Windows 8 and the Windows 8
UI in Chapter 25 and Windows Phone 8 in Chapter 27.

Version Description

Fig. 1.5 | The evolution of the Windows operating system. (Part 2 of 2.)

18 Chapter 1 Introduction to Computers, the Internet and Visual C#

only the features necessary for smartphones, allowing them to run efficiently, minimizing
the burden on the device’s resources.

New to this edition of the book, you’ll use Visual C# 2012 to develop your own Win-
dows Phone 8 apps. Just as the Objective-C programming language has increased in pop-
ularity due to iOS app development for iPhone, iPad and iPod touch, Visual C# 2012 is
sure to become even more popular as the demand for Windows Phones increases. Inter-
national Data Corporation (IDC) predicts that Windows Phone will have over 19% of the
smartphone market share by 2016, second only to Android and ahead of Apple’s iPhone.6

You’ll learn how to develop Windows Phone apps in Chapter 27.

1.11.1 Selling Your Apps in the Windows Phone Marketplace
You can sell your own Windows Phone apps in the Windows Phone Marketplace
(www.windowsphone.com/marketplace), similar to other app commerce platforms such as
Apple’s App Store, Google Play (formerly Android Market), Facebook’s App Center and
the Windows Store. You can also earn money by making your apps free for download and
selling virtual goods (e.g., additional content, game levels, e-gifts and add-on features) us-
ing in-app purchase.

1.11.2 Free vs. Paid Apps
A recent study by Gartner found that 89% of all mobile apps are free, and that number is
likely to increase to 93% by 2016, at which point in-app purchases will account for over
40% of mobile app revenues. 7 Paid Windows Phone 8 apps range in price from $1.49
(which is higher than the $0.99 starting price for apps in Google Play and Apple’s App
Store) to $999.99. The average price for mobile apps is approximately $1.50 to $3, de-
pending on the platform. For Windows Phone apps, Microsoft retains 30% of the pur-
chase price and distributes 70% to you. At the time of this writing, there were over
100,000 apps in the Windows Phone Marketplace.8

1.11.3 Testing Your Windows Phone Apps
You can test your phone apps on the Windows Phone Emulator that Microsoft provides
with the Windows Phone 8 SDK (software development kit). To test your apps on a
Windows phone and to sell your apps or distribute your free apps through the Windows
Phone Marketplace, you'll need to join the Windows Phone Dev Center. There’s an annual
fee of $99; the program is free to DreamSpark students (for more information about
DreamSpark, see the Preface) and to MSDN subscribers. The website includes develop-
ment tools, sample code, tips for selling your apps, design guidelines and more. To join
the Windows Phone Dev Center and submit apps, visit dev.windowsphone.com/en-us/
downloadsdk.

6. www.idc.com/getdoc.jsp?containerId=prUS23523812.
7. techcrunch.com/2012/09/11/free-apps/.
8. windowsteamblog.com/windows_phone/b/windowsphone/archive/2012/06/20/announcing-

windows-phone-8.aspx.

www.windowsphone.com/marketplace
www.idc.com/getdoc.jsp?containerId=prUS23523812

1.12 Windows Azure™ and Cloud Computing 19

1.12 Windows Azure™ and Cloud Computing
Cloud computing allows you to use software and data stored in the “cloud”—i.e., accessed
on remote computers (or servers) via the Internet and available on demand—rather than
having it stored on your desktop, notebook computer or mobile device. Cloud computing
gives you the flexibility to increase or decrease computing resources to meet your resource
needs at any given time, making it more cost effective than purchasing expensive hardware
to ensure that you have enough storage and processing power at their occasional peak levels.
Using cloud computing services also saves money by shifting the burden of managing these
apps to the service provider. New to this edition of the book, in Chapter 31 you’ll use Mi-
crosoft’s Windows Azure—a cloud computing platform that allows you to develop, man-
age and distribute your apps in the cloud. With Windows Azure, your apps can store their
data in the cloud so that the data is available at all times from any of your desktop computer
and mobile devices. Verified DreamSpark students can download Visual Studio 2012 Pro-
fessional which includes built-in support for Windows 8 and Windows Azure.9 You can
sign up for a free 90-day trial of Windows Azure at www.windowsazure.com/en-us/
pricing/free-trial/.

1.13 Visual Studio Express 2012 Integrated
Development Environment
C# programs are created using Microsoft’s Visual Studio—a collection of software tools
called an Integrated Development Environment (IDE). The Visual Studio 2012 Express
IDE enables you to write, run, test and debug C# programs quickly and conveniently. It
also supports Microsoft’s Visual Basic, Visual C++ and F# programming languages. Most
of this book’s examples were built using Visual Studio Express 2012 for Windows Desktop,
which runs on both Windows 7 and Windows 8. The Windows 8 UI and Windows 8
Graphics and Multimedia chapters require Visual Studio Express 2012 for Windows 8.

1.14 Painter Test-Drive in Visual Studio Express 2012
for Windows Desktop
[Note: This test-drive can be performed on a computer running either Windows 7 or Win-
dows 8. The steps shown here are for Windows 7. We discuss running an app on Windows
8 in Section 1.15.]

You’ll now use Visual Studio Express 2012 for Windows Desktop to “test-drive” an
existing app that enables you to draw on the screen using the mouse. The Painter app—
which you’ll build in a later chapter—allows you to choose among several brush sizes and
colors. The elements and functionality you see in this app are typical of what you’ll learn
to program in this text. The following steps walk you through test-driving the app.

Step 1: Checking Your Setup
Confirm that you’ve set up your computer and the software properly by reading the book’s
Before You Begin section that follows the Preface.

9. www.dreamspark.com/Product/Product.aspx?productid=44.

www.windowsazure.com/en-us/pricing/free-trial/
www.windowsazure.com/en-us/pricing/free-trial/
www.dreamspark.com/Product/Product.aspx?productid=44

20 Chapter 1 Introduction to Computers, the Internet and Visual C#

Step 2: Locating the Painter App’s Directory
Open a Windows Explorer window and navigate to C:\examples\ch01\win7testdrive.
(We assume you placed the examples in the C:\examples folder.) Double click the Paint-
er folder to view its contents (Fig. 1.6), then double click the Painter.sln file to open
the app’s solution in Visual Studio. An app’s solution contains all of the app’s code files,
supporting files (such as images, videos, data files, etc.) and configuration information. We’ll
discuss the contents of a solution in more detail in the next chapter.

Depending on your system configuration, Windows Explorer might not display file
name extensions. To display them (like .sln in Fig. 1.6):

1. In Windows Explorer, type Alt + t to display the Tools menu, then select Folder
options….

2. Select the View tab in the Folder Options dialog.

3. Locate the checkbox Hide extensions for known file types and ensure that it’s un-
checked.

4. Click OK to dismiss the Folder Options dialog.

Step 3: Running the Painter App
To see the running Painter app, click the Start () button (Fig. 1.7) or press the F5 key.
Figure 1.8 shows the executing app.

Figure 1.8 labels several of the app’s graphical elements—called controls. These
include GroupBoxes, RadioButtons, Buttons and a Panel. These controls and many others
are discussed throughout the text. The app allows you to draw with a Black, Red, Blue or
Green brush of Small, Medium or Large size. As you drag the mouse on the white Panel,
the app draws circles of the specified color and size at the mouse pointer’s current position.
The slower you drag the mouse, the closer the circles will be. Thus, dragging slowly draws
a continuous line (as in Fig. 1.9) and dragging quickly draws individual circles with space
in between. You can also Undo your previous operation or Clear the drawing to start from
scratch by pressing the Buttons below the RadioButtons in the GUI. By using existing con-
trols—which are objects—you can create powerful apps much faster than if you had to
write all the code yourself. This is a key benefit of software reuse.

Fig. 1.6 | Contents of C:\examples\ch01\win7testdrive\Painter.

Double click Painter.sln to
open the project in Visual Studio

1.14 Painter Test-Drive in Visual Studio Express 2012 for Windows Desktop 21

The brush’s properties, selected in the RadioButtons labeled Black and Medium, are
default settings—the initial settings you see when you first run the app. Programmers
include default settings to provide reasonable choices that the app will use if the user does
not change the settings. Default settings also provide visual cues for users to choose their
own settings. Now you’ll choose your own settings as a user of this app.

Step 4: Changing the Brush Color
Click the RadioButton labeled Red to change the brush color, then click the RadioButton
labeled Small to change the brush size. Position the mouse over the white Panel, then drag
the mouse to draw with the brush. Draw flower petals, as shown in Fig. 1.9.

Fig. 1.7 | Running the Painter app.

i

Fig. 1.8 | Painter app running in Windows 7.

Press the Start
button to begin
executing the
Painter app

GroupBoxes

RadioButtons

Panel

Buttons

22 Chapter 1 Introduction to Computers, the Internet and Visual C#

Step 5: Changing the Brush Color and Size
Click the Green RadioButton to change the brush color. Then, click the Large RadioBut-
ton to change the brush size. Draw grass and a flower stem, as shown in Fig. 1.10.

Step 6: Finishing the Drawing
Click the Blue and Medium RadioButtons. Draw raindrops, as shown in Fig. 1.11, to com-
plete the drawing.

Step 7: Stopping the App
When you run an app from Visual Studio, you can terminate it by clicking the stop button
() on the Visual Studio toolbar or by clicking the close box () on the running app’s
window.

Fig. 1.9 | Drawing flower petals with a small red brush.

Fig. 1.10 | Drawing the flower stem and grass with a large green brush.

1.15 Painter Test-Drive in Visual Studio Express 2012 for Windows 8 23

Now that you’ve completed the test-drive, you’re ready to begin developing C# apps.
In Chapter 2, Dive Into® Visual Studio, you’ll use Visual Studio to create your first C#
program using visual programming techniques. As you’ll see, Visual Studio will generate
for you the code that builds the app’s GUI. In Chapter 3, Introduction to C# Apps, you’ll
begin writing C# programs containing conventional program code that you write.

1.15 Painter Test-Drive in Visual Studio Express 2012
for Windows 8
[Note: This test-drive can be performed only on a computer running Windows 8.] You’ll
now use Visual Studio to “test-drive” an existing Windows 8 UI app that enables you to
draw on the screen using the mouse. The Painter app—which you’ll build in a later chap-
ter—allows you to choose among several brush sizes and colors. The elements and func-
tionality you see in this app are typical of what you’ll learn to program in this text. The
following steps walk you through test-driving the app.

Step 1: Checking Your Setup
Confirm that you’ve set up your computer and the software properly by reading the book’s
Before You Begin section that follows the Preface.

Step 2: Switching to the Windows 8 Desktop
Click the Desktop tile in the Windows 8 Start screen to switch to the desktop.

Step 3: Locating the Painter App’s Directory
Click the File Explorer () icon in the task bar to open a File Explorer window, then locate
the C:\examples\ch01\win8testdrive folder. (We assume you placed the examples in
the C:\examples folder.) Double click the Painter folder to view its contents (Fig. 1.12),
then double click the Painter.sln file to open the app’s solution in Visual Studio. An
app’s solution contains all of the app’s code files, supporting files (such as images, videos, data

Fig. 1.11 | Drawing rain drops with a medium blue brush.

24 Chapter 1 Introduction to Computers, the Internet and Visual C#

files, etc.) and configuration information. We’ll discuss the contents of a solution in more
detail in the next chapter. [Note: Depending on your system configuration, the File Explor-
er window might not display file name extensions. To display file name extensions (like
.sln in Fig. 1.12), click the View tab in the File Explorer window, then ensure that File
name extensions is selected.]

Step 4: Running the Painter App
Windows 8 UI apps normally occupy the full screen, though you can also snap apps to a
320-pixel-wide area at the left or right of the screen to see two apps side-by-side. To see
the running Painter app, you can install it on the Windows 8 Start screen and execute it
by selecting Local Machine (Fig. 1.13) then clicking the Start Debugging () button or
pressing the F5 key. Once you install the app on the Start screen, you can also run it by
clicking its Start screen tile. Figure 1.14 shows the executing app. Later chapters will dis-
cuss the Simulator and Remote Machine options shown in Fig. 1.13 for running apps.

Figure 1.14 labels several of the app’s graphical elements—called controls. These
include TextBlocks, RadioButtons, Buttons and a Canvas. These controls and many
others are discussed throughout the text. The app allows you to draw with a Black, Red,

Fig. 1.12 | Contents of C:\examples\ch01\win8testdrive\Painter.

Fig. 1.13 | Selecting the Local Machine for running the Painter app.

Double click Painter.sln to
open the project in Visual Studio

Select to display file name extensions

1.15 Painter Test-Drive in Visual Studio Express 2012 for Windows 8 25

Blue or Green brush of Small, Medium or Large size. As you drag the mouse on the white
Canvas (an object used for drawing), the app draws circles of the specified color and size
at the mouse pointer’s current position. The slower you drag the mouse, the closer the cir-
cles will be. Thus, dragging slowly draws a continuous line (as in Fig. 1.15) and dragging
quickly draws individual circles with space in between (as you can see with some of the
rain drops in Fig. 1.17). You can also Undo your previous operation or Clear the drawing
to start from scratch by pressing the Buttons below the RadioButtons in the GUI. By using
existing controls—which are objects—you can create powerful apps much faster than if you
had to write all the code yourself. This is a key benefit of software reuse.

The brush’s properties, selected in the RadioButtons labeled Black and Small, are
default settings—the initial settings you see when you first run the app. Programmers
include default settings to provide reasonable choices that the app will use if the user does
not change the settings. Default settings also provide visual cues for users to choose their
own settings. Now you’ll choose your own settings as a user of this app.

Step 5: Changing the Brush Color
Click the RadioButton labeled Red to change the brush color. Position the mouse over the
white Canvas, then drag the mouse to draw with the brush. Draw flower petals, as shown
in Fig. 1.15.

Step 6: Changing the Brush Color and Size
Click the RadioButton labeled Green to change the brush color again. Then, click the Ra-
dioButton labeled Large to change the brush size. Draw grass and a flower stem, as shown
in Fig. 1.16.

i

Fig. 1.14 | Painter app running in Windows 8.

RadioButtons

Canvas

Buttons

TextBlock

26 Chapter 1 Introduction to Computers, the Internet and Visual C#

Fig. 1.15 | Drawing flower petals with a small red brush.

Fig. 1.16 | Drawing the flower stem and grass with a large green brush.

Self-Review Exercises 27

Step 7: Finishing the Drawing
Click the Blue and Medium RadioButtons. Draw raindrops, as shown in Fig. 1.17, to com-
plete the drawing.

Step 8: Stopping the App
When you run an app from Visual Studio, you can terminate it by clicking the stop button
() on the Visual Studio toolbar. Typically, when you’re done using a Windows 8 UI app
like Painter, you don’t terminate the app. Instead you simply run another app. Windows
8 suspends the execution of the previous app you were running, but keeps it in memory in
case you decide to return to the app. Windows may decide to terminate a suspended app
to free up memory for executing other apps. To explicitly shut down a Windows 8 UI app,
simply drag from the top of the screen to the bottom or press Alt + F4.

Now that you’ve completed the test-drive, you’re ready to begin developing C# apps. In
Chapter 2, Dive Into® Visual Studio, you’ll use Visual Studio to create your first C# pro-
gram using visual programming techniques. As you’ll see, Visual Studio will generate for you
the code that builds the app’s GUI. In Chapter 3, Introduction to C# Apps, you’ll begin
writing C# programs containing conventional program code that you write.

Fig. 1.17 | Drawing rain drops with a medium blue brush.

Self-Review Exercises
1.1 Fill in the blanks in each of the following statements:

a) Computers process data under the control of sequences of instructions called
.

28 Chapter 1 Introduction to Computers, the Internet and Visual C#

b) A computer consists of various devices referred to as , such as the keyboard,
screen, mouse, hard disks, memory, DVD drives and processing units.

c) Data items processed by computers form a(n) that becomes larger and more
complex in structure as we progress from the simplest data items (called “bits”) to richer
data items, such as characters, fields, and so on.

d) Computers can directly understand only their language, which is composed
only of 1s and 0s.

e) The three types of computer programming languages discussed in the chapter are ma-
chine languages, and .

f) Programs that translate high-level-language programs into machine language are called
.

g) A(n) processor implements several processors on a single “microchip”—a
dual-core processor has two CPUs and a quad-core processor has four CPUs.

1.2 Fill in the blanks in each of the following statements:
a) Objects, or more precisely the that objects come from, are essentially reusable

software components.
b) You send messages to an object. Each message is implemented as a method

that tells a method of the object to perform its task.
c) A new class of objects can be created quickly and conveniently by ; the new

class absorbs the characteristics of an existing class, possibly customizing them and add-
ing unique characteristics of its own.

d) To create the best solutions, you should follow a detailed analysis process for determin-
ing your project’s (i.e., defining what the system is supposed to do) and de-
veloping a design that satisfies them (i.e., deciding how the system should do it).

e) Visual C# 2012 is driven. You’ll write programs that respond to mouse clicks,
keystrokes, timer expirations and—new in Visual C# 2012—touches and finger swipes.

f) Microsoft’s Visual C# is a(n) programming language—in addition to writing
program statements to build portions of your apps, you’ll also use Visual Studio’s
graphical user interface (GUI) to conveniently drag and drop predefined objects like
buttons and textboxes into place on your screen, and label and resize them.

g) C++ provides several features that “spruce up” the C language, but more important, it
provides capabilities for -oriented programming.

h) A key goal of Java is to be able to write programs that will run on a great variety of com-
puter systems and computer-control devices. This is sometimes called .

1.3 Fill in the blanks in each of the following statements:
a) The executes .NET programs.
b) The CLR provides various services to code, such as integrating software com-

ponents written in different .NET languages, error handling between such components,
enhanced security and more.

c) The ability of a program to run without modification across multiple platforms is
known as platform .

d) Visual Studio is a(n) in which C# programs are developed.
e) The new Windows 8 look-and-feel features a Start screen with that represent

each app, is similar to that of Windows Phone—a Microsoft operating system for smart-
phones.

f) Windows 8 apps feature a(n) window; there’s no longer a border around the
window with the typical interface elements such as title bars and menus.

g) You can sell your own Windows Phone apps in the .
h) You can test your phone apps on the Windows Phone that Microsoft provides

with the Windows Phone SDK (software development kit).

Answers to Self-Review Exercises 29

1.4 State whether each of the following is true or false. If false, explain why.
a) Software objects model both abstract and real-world things.
b) The most popular database model is the relational database in which data is stored in

simple tables. A table includes records and fields.
c) A database is a collection of data that’s organized for easy access and manipulation.
d) Secondary storage data takes much longer to access than data in primary memory, but

the cost per unit of secondary storage is much higher than that of primary memory.
e) High-level languages allow you to write instructions that look almost like everyday Eng-

lish and contain commonly used mathematical expressions.
f) An object has attributes that it carries along as it’s used in a program.
g) The Transmission Control Protocol (TCP) ensures that messages, consisting of sequen-

tially numbered pieces called bytes, were properly routed from sender to receiver, ar-
rived intact and were assembled in the correct order

h) The information-carrying capacity of communications lines on the Internet has in-
creased tremendously, while hardware costs have increased.

i) You can build web-based apps with C# and Microsoft’s ASP.NET technology.
j) Java has become the key programming language for the Mac OS X desktop operating

system and all iOS-based devices, such as iPods, iPhones and iPads.
k) Microsoft’s ASP.WEB technology is used to create web apps.
l) Microsoft’s Windows operating system is the most widely used desktop operating sys-

tem worldwide.
m) Windows 8 is designed for resource-constrained devices that have less memory and pro-

cessor power than desktop computers, and limited battery life.
n) Visual C# 2012 also can be used to develop Windows Phone 8 apps. Visual C# 2012 is

sure to become even more popular as the demand for Windows Phones increases.

1.5 Arrange these byte measurements in order from smallest to largest: terabyte, megabyte,
petabyte, gigabyte and kilobyte.

1.6 Describe the two-step translation process for preparing your C# code to execute on your
particular computer.

1.7 Why might Windows terminate a suspended app?

Answers to Self-Review Exercises
1.1 a) computer programs. b) hardware. c) data hierarchy. d) machine. e) assembly languages,
high-level languages. f) compilers. g) multi-core.

1.2 a) classes. b) call. c) inheritance. d) requirements. e) event. f) visual. g) object. h) write once,
run anywhere.

1.3 a) Common Language Runtime (CLR) of the .NET Framework. b) managed. c) indepen-
dence. d) IDE. e) tiles. f) chromeless. g) Windows Phone Marketplace. h) Emulator.

1.4 a) True. b) True. c) True. d) False: The cost per unit of secondary storage is much lower than
that of primary memory. e) True. f) True. g) False. Packets—not bytes. h) False. Hardware costs have
decreased. i) True. j) False. The language is Objective-C, not Java. k) False. It’s ASP.NET technology.
l) True. m) False. Windows Phone 8 is designed for resource-constrained devices. n) True.

1.5 kilobyte, megabyte, gigabyte, terabyte, petabyte.

1.6 C# code is first compiled into MSIL and placed in an executable file. When the app exe-
cutes, another compiler called the JIT(just-in-time) compiler in the CLR translates the MSIL in the
executable file into machine-language code (for a particular platform).

1.7 To free up memory for executing other apps.

30 Chapter 1 Introduction to Computers, the Internet and Visual C#

Exercises
1.8 Fill in the blanks in each of the following statements:

a) The programs that run on a computer are referred to as .
b) Systems such as smartphones, appliances, game controllers, cable set-top boxes and au-

tomobiles that contain small computers are called .
c) Just as characters are composed of bits, are composed of characters or bytes.
d) Information on secondary storage devices is ; it’s preserved even when the

computer’s power is turned off.
e) Translator programs called convert high-level language code into machine

language code.
f) In object-oriented programming languages, we create a program unit called a(n)

to house the set of methods that perform its tasks.
g) Use a building-block approach to creating your programs. Avoid reinventing the

wheel—use existing pieces wherever possible. Such software is a key benefit
of object-oriented programming.

1.9 Fill in the blanks in each of the following statements:
a) Although many different OOAD processes exist, a single graphical language for com-

municating the results of any OOAD process has come into wide use. This language,
known as the , is now the most widely used graphical scheme for modeling ob-
ject-oriented systems.

b) Tim Berners-Lee developed the for sharing information via “hyperlinked”
text documents on the web.

c) The CLR is a(n) machine. It is software that manages the execution of pro-
grams and hides from them the underlying operating system and hardware.

d) Converting a program to run on a different platform from which it was originally in-
tended is called .

e) Microsoft’s Windows is a cloud computing platform that allows you to devel-
op, manage and distribute your apps in the cloud.

f) By using existing controls—which are objects—you can create powerful apps much
faster than if you had to write all the code yourself. This is a key benefit of software

.

1.10 State whether each of the following is true or false. If false, explain why.
a) The smallest data item in a computer can assume the value 1 or the value 2. Such a data

item is called a bit (short for “binary digit”—a digit that can assume either of two val-
ues).

b) The Unicode character set is a popular subset of ASCII that represents uppercase and
lowercase letters, digits and some common special characters.

c) Each of the following is a form of computer output: data displayed on screens, printed
on paper, played as audio or video on PCs and media players, used to control other de-
vices, such as robots, 3D printers and “intelligent” appliances.

d) Reuse helps you build more reliable and effective systems, because existing classes and
components often have gone through extensive testing, debugging and performance
tuning.

e) One of the W3C’s primary goals is to make the web universally accessible to everyone
regardless of disabilities, language or culture.

f) C# is available only on Microsoft Windows.
g) The .NET Framework Class Library has millions of valuable prebuilt classes that have

been tested and tuned to maximize performance.
h) .NET programs can run on any platform.

Exercises 31

i) Windows 8, released in 2012, is designed to provide a similar platform (the underlying
system on which apps run) and user experience across all of your devices including per-
sonal computers, smartphones, tablets and Xbox Live.

j) Most mobile apps are sold for a small fee.

1.11 What is a key advantage of interpreters over compilers? What is a key disadvantage?

1.12 What is the key advantage of using the new Async feature in preference to using old-style
multithreading?

1.13 What are operating systems?

1.14 Why is using cloud computing resources sometimes preferable to purchasing all the hard-
ware you need for your own computer?

1.15 Categorize each of the following items as either hardware or software:
a) CPU
b) Compiler
c) Input unit
d) A word-processor program
e) A C# program

1.16 Translator programs, such as assemblers and compilers, convert programs from one lan-
guage (referred to as the source language) to another language (referred to as the target language).
Determine which of the following statements are true and which are false:

a) An assembler translates source-language programs into machine-language programs.
b) High-level languages are generally machine dependent.
c) A machine-language program requires translation before it can be run on a computer.
d) The C# compiler translates high-level-language programs into SMIL.

1.17 Expand each of the following acronyms:
a) W3C
b) OOP
c) CLR
d) MSIL
e) UML
f) IDE

1.18 What are the key benefits of the .NET Framework and the CLR? What are the drawbacks?

1.19 What are the advantages to using object-oriented techniques?

1.20 You are probably wearing on your wrist one of the world’s most common types of objects—
a watch. Discuss how each of the following terms and concepts applies to the notion of a watch:
object, attributes and behaviors.

1.21 What was the key reason that Visual Basic was developed as a special version of the BASIC
programming language?

1.22 What is the key accomplishment of the UML?

1.23 What did the chief benefit of the early Internet prove to be?

1.24 What is the key capability of the web?

1.25 What is the key vision of Microsoft’s .NET initiative?

1.26 How does the .NET Framework Class Library facilitate the development of .NET apps?

1.27 Besides the obvious benefits of reuse made possible by OOP, what do many organizations
report as another key benefit of OOP?

32 Chapter 1 Introduction to Computers, the Internet and Visual C#

Making a Difference Exercises
1.28 (Test Drive: Carbon Footprint Calculator) Some scientists believe that carbon emissions,
especially from the burning of fossil fuels, contribute significantly to global warming and that this
can be combatted if individuals take steps to limit their use of carbon-based fuels. Organizations and
individuals are increasingly concerned about their “carbon footprints.” Websites such as TerraPass

www.terrapass.com/carbon-footprint-calculator/

and Carbon Footprint

www.carbonfootprint.com/calculator.aspx

provide carbon footprint calculators. Test drive these calculators to determine your carbon foot-
print. Exercises in later chapters will ask you to program your own carbon footprint calculator. To
prepare for this, use the web to research the formulas for calculating carbon footprints.

1.29 (Test Drive: Body Mass Index Calculator) Obesity causes significant increases in illnesses
such as diabetes and heart disease. To determine whether a person is overweight or obese, you can
use a measure called the body mass index (BMI). The United States Department of Health and Hu-
man Services provides a BMI calculator at www.nhlbisupport.com/bmi/. Use it to calculate your
own BMI. A forthcoming exercise will ask you to program your own BMI calculator. To prepare
for this, use the web to research the formulas for calculating BMI.

1.30 (Attributes of Hybrid Vehicles) In this chapter you learned some basics of classes. Now you’ll
“flesh out” aspects of a class called “Hybrid Vehicle.” Hybrid vehicles are becoming increasingly
popular, because they often get much better mileage than purely gasoline-powered vehicles. Browse
the web and study the features of four or five of today’s popular hybrid cars, then list as many of
their hybrid-related attributes as you can. Some common attributes include city-miles-per-gallon
and highway-miles-per-gallon. Also list the attributes of the batteries (type, weight, etc.).

1.31 (Gender Neutrality) Many people want to eliminate sexism in all forms of communication.
You’ve been asked to create a program that can process a paragraph of text and replace gender-spe-
cific words with gender-neutral ones. Assuming that you’ve been given a list of gender-specific
words and their gender-neutral replacements (e.g., replace both “wife” and “husband” with
“spouse,” “man” and “woman” with “person,” “daughter” and “son” with “child” and so on), ex-
plain the procedure you’d use to read through a paragraph of text and manually perform these re-
placements. How might your procedure generate a strange term like “woperchild?” You’ll soon learn
that a more formal term for “procedure” is “algorithm,” and that an algorithm specifies the steps to
be performed and the order in which to perform them.

www.terrapass.com/carbon-footprint-calculator/
www.carbonfootprint.com/calculator.aspx
www.nhlbisupport.com/bmi/

2Dive Into® Visual Studio
Express 2012 for Windows
Desktop

Seeing is believing.
—Proverb

Form ever follows function.
—Louis Henri Sullivan

O b j e c t i v e s
In this chapter you’ll:

� Learn the basics of the Visual
Studio Express 2012 for
Windows Desktop Integrated
Development Environment
(IDE) for writing, running and
debugging your apps.

� Use Visual Studio’s help
features.

� Learn key commands
contained in the IDE’s menus
and toolbars.

� Understand the purpose of
the various kinds of windows
in the Visual Studio Express
2012 for Windows Desktop
IDE.

� Understand what visual app
development is and how it
simplifies and speeds app
development.

� Use visual app development
to create, compile and
execute a simple Visual C#
app that displays text and an
image.

34 Chapter 2 Dive Into® Visual Studio Express 2012 for Windows Desktop

2.1 Introduction
Visual Studio 2012 is Microsoft’s Integrated Development Environment (IDE) for creat-
ing, running and debugging apps (also called applications) written in various .NET pro-
gramming languages. This chapter provides an overview of the Visual Studio 2012 IDE
and shows how to create a simple Visual C# app by dragging and dropping predefined
building blocks into place—a technique known as visual app development.

2.2 Overview of the Visual Studio Express 2012 IDE
There are several versions of Visual Studio available. Most of this book’s examples are
based on the Visual Studio Express 2012 for Windows Desktop. See the Before You Be-
gin section that follows the Preface for information on installing the software. Our screen
captures and discussions focus on Visual Studio Express 2012 for Windows Desktop. The
examples will work on full versions of Visual Studio as well—though some options, menus
and instructions might differ. From this point forward, we’ll refer to the Visual Studio Ex-
press 2012 for Windows Desktop IDE simply as “Visual Studio” or “the IDE.” We assume
that you have some familiarity with Windows.

Introduction to Microsoft Visual Studio Express 2012 for Windows Desktop
We use the > character to indicate the selection of a menu item from a menu. For example,
we use the notation FILE > Open File… to indicate that you should select the Open File…
menu item from the FILE menu.

To start the IDE, select Start > All Programs > Microsoft Visual Studio 2012 Express >
VS Express for Desktop (on Windows 8, click the VS for Desktop tile on the Start screen.
Once the Express Edition begins execution, the Start Page displays (Fig. 2.1). Depending
on your version of Visual Studio, your Start Page may look different. The Start Page con-
tains a list of links to Visual Studio resources and web-based resources. At any time, you
can return to the Start Page by selecting VIEW > Start Page. [Note: Visual Studio supports
both a dark theme (with dark window backgrounds and light text) and a light theme (with
light window backgrounds and dark text). We use the light theme throughout this book.
The Before You Begin section after the Preface explains how to set this option.]

Links on the Start Page
The Start Page links are organized into two columns. The left column’s Start section con-
tains options that enable you to start building new apps or to continue working on existing

2.1 Introduction
2.2 Overview of the Visual Studio

Express 2012 IDE
2.3 Menu Bar and Toolbar
2.4 Navigating the Visual Studio IDE

2.4.1 Solution Explorer
2.4.2 Toolbox
2.4.3 Properties Window

2.5 Using Help
2.6 Using Visual App Development to

Create a Simple App that Displays
Text and an Image

2.7 Wrap-Up
2.8 Web Resources

Summary | Terminology | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

2.2 Overview of the Visual Studio Express 2012 IDE 35

ones. The Recent section contains links to projects you’ve recently created or modified. You
can also create new projects or open existing ones by clicking the links in the Start section.

The right column contains two tabs—GET STARTED (selected by default) and
LATEST NEWS. The links in the GET STARTED tab provide information about the pro-
gramming languages supported by Visual Studio and various learning resources. An
Internet connection is required for the IDE to access most of this information.

The LATEST NEWS tab includes an Enable RSS Feed button. Once you click this
button, the IDE will display links to the latest Visual Studio developments (such as
updates and bug fixes) and to information on advanced app-development topics. To access
more extensive information on Visual Studio, you can browse the MSDN (Microsoft
Developer Network) Library at

The MSDN site contains articles, downloads and tutorials on technologies of interest to
Visual Studio developers. You can also browse the web from the IDE by selecting VIEW >
Other Windows > Web Browser. To request a web page, type its URL into the location bar
(Fig. 2.2) and press the Enter key—your computer, of course, must be connected to the
Internet. The web page that you wish to view appears as another tab in the IDE (Fig. 2.2).

Fig. 2.1 | Start Page in Visual Studio Express 2012 for Windows Desktop.

msdn.microsoft.com/en-us/library/default.aspx

Start Page linksCollapsed Toolbox window

Solution Explorer (no projects open)New Project button Start Page tab

Recent projects will be listed here

Latest News tab

36 Chapter 2 Dive Into® Visual Studio Express 2012 for Windows Desktop

Creating a New Project
To begin app development in Visual C#, you must create a new project or open an existing
one. You select FILE > New Project… to create a new project or FILE > Open Project… to
open an existing one. From the Start Page’s Start section, you can also click the links New
Project… or Open Project…. A project is a group of related files, such as the Visual C# code
and any images that might make up an app. Visual Studio organizes apps into projects and
solutions, which contain one or more projects. Multiple-project solutions are used to cre-
ate large-scale apps. Most apps we create in this book consist of a solution containing a
single project.

New Project Dialog and Project Templates
When you select FILE > New Project… or click the New Project… link on the Start Page,
the New Project dialog (Fig. 2.3) displays. Dialogs are windows that facilitate user–com-
puter communication.

Visual Studio provides several templates (Fig. 2.3)—the project types users can create in
Visual C# and other languages. The templates include Windows Forms apps, WPF apps
and others—full versions of Visual Studio provide many additional templates. In this
chapter, you’ll build a Windows Forms Application. A Windows Forms app is an app that
executes within a Windows operating system (such as Windows 7 or Windows 8) and typ-
ically has a graphical user interface (GUI)—users interact with this visual part of the app.
Windows apps include Microsoft software products like Microsoft Word, Internet Explorer
and Visual Studio, software products created by other vendors, and customized software
that you and other app developers create. You’ll create many Windows apps in this text.

By default, Visual Studio assigns the name WindowsFormsApplication1 to a new Win-
dows Forms Application project and solution (Fig. 2.3). Select Windows Forms Application,
then click OK to display the IDE in Design view (Fig. 2.4), which contains the features
that enable you to create an app’s GUI.

Fig. 2.2 | MSDN Library web page in Visual Studio.

Location barWeb browser window tab

2.2 Overview of the Visual Studio Express 2012 IDE 37

Fig. 2.3 | New Project dialog.

Fig. 2.4 | Design view of the IDE.

Visual C# Windows Forms
Application (selected)

Default project name
(provided by Visual Studio)

Description of selected project
(provided by Visual Studio)

Menu in the
menu bar Form

Properties
window

Solution
Explorer window

Active tab
(highlighted in blue)

38 Chapter 2 Dive Into® Visual Studio Express 2012 for Windows Desktop

Forms and Controls
The rectangle in the Design area titled Form1 (called a Form) represents the main window
of the Windows Forms app that you’re creating. Visual C# apps can have multiple Forms
(windows)—however, most apps you’ll create in this text will use only one Form. You’ll
learn how to customize the Form by adding GUI controls—in this example, you’ll add a
Label and a PictureBox (as you’ll see in Fig. 2.20). A Label typically contains descriptive
text (for example, "Welcome to Visual C#!"), and a PictureBox displays an image. Visual
Studio has many preexisting controls and other components you can use to build and cus-
tomize your apps. Many of these controls are discussed and used throughout the book.
Other controls are available from third parties.

In this chapter, you’ll work with preexisting controls from the .NET Framework Class
Library. As you place controls on the Form, you’ll be able to modify their properties (dis-
cussed in Section 2.4). For example, Fig. 2.5 shows where the Form’s title can be modified
and Fig. 2.6 shows a dialog in which a control’s font properties can be modified.

Collectively, the Form and controls make up the app’s GUI. Users enter data into the
app by typing at the keyboard, by clicking the mouse buttons and in a variety of other
ways. Apps use the GUI to display instructions and other information for users to view.
For example, the New Project dialog in Fig. 2.3 presents a GUI where the user clicks the
mouse button to select a template type, then inputs a project name from the keyboard (the
figure is still showing the default project name WindowsFormsApplication1 supplied by
Visual Studio).

Each open document’s name is listed on a tab. To view a document when multiple
documents are open, click its tab. The active tab (the tab of the currently displayed doc-
ument) is highlighted in blue (for example, Form1.cs [Design] in Fig. 2.4).

Fig. 2.5 | Textbox control for modifying a property in the Visual Studio IDE.

Textbox
(displaying the
text Form1)
which can be
modified

2.3 Menu Bar and Toolbar 39

2.3 Menu Bar and Toolbar
Commands for managing the IDE and for developing, maintaining and executing apps
are contained in menus, which are located on the menu bar of the IDE (Fig. 2.7). The set
of menus displayed depends on what you’re currently doing in the IDE.

Menus contain groups of related commands (also called menu items) that, when
selected, cause the IDE to perform specific actions—for example, open a window, save a
file, print a file and execute an app. For example, new projects are created by selecting
FILE > New Project…. The menus depicted in Fig. 2.7 are summarized in Fig. 2.8.

Fig. 2.6 | Dialog for modifying a control’s font properties.

Fig. 2.7 | Visual Studio menu bar.

Menu Description

FILE Contains commands for opening, closing, adding and saving projects, as well as
printing project data and exiting Visual Studio.

EDIT Contains commands for editing apps, such as cut, copy, paste, undo, redo, delete,
find and select.

VIEW Contains commands for displaying IDE windows (for example, Solution Explorer,
Toolbox, Properties window) and for adding toolbars to the IDE.

PROJECT Contains commands for managing projects and their files.
BUILD Contains options for turning your app into an executable program.

Fig. 2.8 | Summary of Visual Studio menus that are displayed when a Form is in Design

view. (Part 1 of 2.)

40 Chapter 2 Dive Into® Visual Studio Express 2012 for Windows Desktop

You can access many common menu commands from the toolbar (Fig. 2.9), which
contains icons that graphically represent commands. By default, the standard toolbar is
displayed when you run Visual Studio for the first time—it contains icons for the most
commonly used commands, such as opening a file, adding an item to a project, saving files
and running apps (Fig. 2.9). The icons that appear on the standard toolbar may vary,
depending on the version of Visual Studio you’re using. Some commands are initially dis-
abled (grayed out or unavailable to use). These commands are enabled by Visual Studio
only when they’re necessary. For example, Visual Studio enables the command for saving
a file once you begin editing a file.

DEBUG Contains commands for compiling, debugging (that is, identifying and correcting
problems in apps) and running apps.

TEAM Allows you to connect to a Team Foundation Server—used by development teams
that typically have multiple people working on the same app.

FORMAT Contains commands for arranging and modifying a Form’s controls. The Format
menu appears only when a GUI component is selected in Design view.

TOOLS Contains commands for accessing additional IDE tools and options for customiz-
ing the IDE.

TEST Contains options for performing various types of automated testing on your app.

WINDOW Contains commands for hiding, opening, closing and displaying IDE windows.

HELP Contains commands for accessing the IDE’s help features.

Fig. 2.9 | Standard Visual Studio toolbar.

Menu Description

Fig. 2.8 | Summary of Visual Studio menus that are displayed when a Form is in Design

view. (Part 2 of 2.)

New
Project

Navigate
Forward

Navigate
Backward UndoSave

Open
File

Save
All

Solution
Platforms

Redo

Start Solution
Configurations

Find In Files

2.4 Navigating the Visual Studio IDE 41

You can customize which toolbars are displayed by selecting VIEW > Toolbars then
selecting a toolbar from the list in Fig. 2.10. Each toolbar you select is displayed with the
other toolbars at the top of the Visual Studio window. You move a toolbar by dragging its
handle () at the left side of the toolbar. To execute a command via the toolbar, click its
icon.

It can be difficult to remember what each toolbar icon represents. Hovering the mouse
pointer over an icon highlights it and, after a brief pause, displays a description of the icon
called a tool tip (Fig. 2.11). Tool tips help you become familiar with the IDE’s features
and serve as useful reminders for each toolbar icon’s functionality.

2.4 Navigating the Visual Studio IDE
The IDE provides windows for accessing project files and customizing controls. This sec-
tion introduces several windows that you’ll use frequently when developing Visual C#
apps. Each of the IDE’s windows can be accessed by selecting its name in the VIEW menu.

Fig. 2.10 | List of toolbars that can be added to the top of the IDE.

Fig. 2.11 | Tool tip demonstration.

Tool tip appears when you place the
mouse pointer on an icon

42 Chapter 2 Dive Into® Visual Studio Express 2012 for Windows Desktop

Auto-Hide
Visual Studio provides a space-saving feature called auto-hide. When auto-hide is enabled
for a window, a tab containing the window’s name appears along either the left, right or
bottom edge of the IDE window (Fig. 2.12). Clicking the name of an auto-hidden win-
dow displays that window (Fig. 2.13). Clicking the name again (or clicking outside) hides
the window. To “pin down” a window (that is, to disable auto-hide and keep the window
open), click the pin icon. When auto-hide is enabled, the pin icon is horizontal (,
Fig. 2.13)—when a window is “pinned down,” the pin icon is vertical (, Fig. 2.14).

Fig. 2.12 | Auto-hide feature demonstration.

Fig. 2.13 | Displaying the hidden Toolbox window when auto-hide is enabled.

Auto-hidden
Toolbox and

Data Sources
windows

Auto-hidden
Solution
Explorer and
Properties
windows

Expanded Toolbox window Horizontal orientation for pin icon when auto-hide is enabled

2.4 Navigating the Visual Studio IDE 43

The next few sections cover three of Visual Studio’s main windows—the Solution
Explorer, the Properties window and the Toolbox. These windows display project informa-
tion and include tools that help you build your apps.

2.4.1 Solution Explorer

The Solution Explorer window (Fig. 2.15) provides access to all of a solution’s files. If it’s
not shown in the IDE, select VIEW > Solution Explorer. When you open a new or existing
solution, the Solution Explorer displays the solution’s contents.

The solution’s startup project is the one that runs when you select DEBUG > Start
Debugging (or press the F5 key). For a single-project solution like the examples in this book,
the startup project is the only project (in this case, WindowsFormsApplication1). The startup
project’s name appears in bold text in the Solution Explorer window. When you create an app
for the first time, the Solution Explorer window appears as shown in Fig. 2.15. The Visual
C# file that corresponds to the Form shown in Fig. 2.4 is named Form1.cs (selected in
Fig. 2.15). Visual C# files use the .cs file-name extension, which is short for “C#.”

By default, the IDE displays only files that you may need to edit—other files that the
IDE generates are hidden. The Solution Explorer window includes a toolbar that contains
several icons. Clicking the Show All Files icon (Fig. 2.15) displays all the solution’s files,
including those generated by the IDE. Clicking the arrows to the left of an node expands
or collapses that nodes. Try clicking the arrow to the left of References to display items

Fig. 2.14 | Disabling auto-hide—“pinning down” a window.

Fig. 2.15 | Solution Explorer window with an open project.

Toolbox “pinned down” Vertical orientation for pin icon when window is “pinned down”

Show All Files icon
Toolbar

Startup project

44 Chapter 2 Dive Into® Visual Studio Express 2012 for Windows Desktop

grouped under that heading (Fig. 2.16). Click the arrow again to collapse the tree. Other
Visual Studio windows also use this convention.

2.4.2 Toolbox

To display the Toolbox window, select VIEW > Toolbox. The Toolbox contains the controls
used to customize Forms (Fig. 2.17). With visual app development, you can “drag and
drop” controls onto the Form and the IDE will write the code that creates the controls for
you. This is faster and simpler than writing this code yourself. Just as you do not need to
know how to build an engine to drive a car, you do not need to know how to build controls
to use them. Reusing preexisting controls saves time and money when you develop apps.
You’ll use the Toolbox when you create your first app later in the chapter.

The Toolbox groups the prebuilt controls into categories—All Windows Forms,
Common Controls, Containers, Menus & Toolbars, Data, Components, Printing, Dialogs,
WPF Interoperability, Visual Basic PowerPacks and General are listed in Fig. 2.17. Again,
note the use of arrows, which can expand or collapse a group of controls. We discuss many
of the Toolbox’s controls and their functionality throughout the book.

2.4.3 Properties Window
If the Properties window is not displayed below the Solution Explorer, select VIEW > Prop-
erties Window to display it. The Properties window contains the properties for the cur-
rently selected Form, control or file in the IDE. Properties specify information about the
Form or control, such as its size, color and position. Each Form or control has its own set
of properties—a property’s description is displayed at the bottom of the Properties win-
dow whenever that property is selected.

Figure 2.18 shows Form1’s Properties window. The left column lists the Form’s prop-
erties—the right column displays the current value of each property. You can sort the

Fig. 2.16 | Solution Explorer with the References node expanded.

Click to collapse node

Click to expand node

2.4 Navigating the Visual Studio IDE 45

properties either alphabetically (by clicking the Alphabetical icon) or categorically (by
clicking the Categorized icon). Depending on the size of the Properties window, some of
the properties may be hidden from view on the screen. You can scroll through the list of
properties by dragging the scrollbox up or down inside the scrollbar, or by clicking the
arrows at the top and bottom of the scrollbar. We show how to set individual properties
later in this chapter.

The Properties window is crucial to visual app development—it allows you to modify
a control’s properties visually, without writing code. You can see which properties are
available for modification and, in many cases, can learn the range of acceptable values for
a given property. The Properties window displays a brief description of the selected prop-
erty, helping you understand its purpose. A property can be set quickly using this window,
and no code needs to be written.

At the top of the Properties window is the component selection drop-down list, which
allows you to select the Form or control whose properties you wish to display in the Proper-

Fig. 2.17 | Toolbox window displaying controls for the Common Controls group.

Group names

Controls

46 Chapter 2 Dive Into® Visual Studio Express 2012 for Windows Desktop

ties window. Using the component selection drop-down list is an alternative way to display
a Form’s or control’s properties without clicking the actual Form or control in the GUI.

2.5 Using Help
Microsoft provides extensive help documentation via the HELP menu. Using HELP is an
excellent way to get information quickly about Visual Studio, Visual C# and more.

Context-Sensitive Help
Visual Studio provides context-sensitive help pertaining to the “current content” (that is,
the items around the location of the mouse cursor). To use context-sensitive help, click an
item, then press the F1 key. The help documentation is displayed in a web browser win-
dow. To return to the IDE, either close the browser window or select the IDE’s icon in
your Windows task bar. Figure 2.19 shows the help page for a Form’s Text property. You
can view this help by selecting the Form, clicking its Text property in the Properties win-
dow and pressing the F1 key.

Fig. 2.18 | Properties window.

Selected property’s
description

Categorized icon

Alphabetical icon

Component selection
drop-down list

Scrollbox

Scrollbar

Toolbar

Properties

Property values

2.6 Create a Simple App that Displays Text and an Image 47

2.6 Using Visual App Development to Create a Simple
App that Displays Text and an Image
Next, we create an app that displays the text "Welcome to Visual C#!" and an image of the
Deitel & Associates bug mascot. The app consists of a Form that uses a Label and a Picture-
Box. Figure 2.20 shows the final app executing. The app and the bug image are available with
this chapter’s examples. See the Before You Begin section following the Preface for download
instructions. We assume the examples are located at C:\examples on your computer.

You won’t write a single line of code. Instead, you’ll use visual app development tech-
niques. Visual Studio processes your actions (such as mouse clicking, dragging and drop-
ping) to generate app code. Chapter 3 begins our discussion of writing app code.
Throughout the book, you produce increasingly substantial and powerful apps that usually

Fig. 2.19 | Using context-sensitive help.

Fig. 2.20 | Simple app executing.

PictureBox
control

Label control

48 Chapter 2 Dive Into® Visual Studio Express 2012 for Windows Desktop

include a combination of code written by you and code generated by Visual Studio. The gen-
erated code can be difficult for novices to understand—but you’ll rarely need to look at it.

Visual app development is useful for building GUI-intensive apps that require a sig-
nificant amount of user interaction. To create, save, run and terminate this first app, per-
form the following steps:

1. Closing the open project. If the project you were working with earlier in this chap-
ter is still open, close it by selecting FILE > Close Solution.

2. Creating the new project. To create a new Windows Forms app, select FILE > New
Project… to display the New Project dialog (Fig. 2.21). Select Windows Forms Ap-
plication. Name the project ASimpleApp, specify the Location where you want to
save it (we used the default location) and click OK. As you saw earlier in this chap-
ter, when you first create a new Windows Forms app, the IDE opens in Design
view (that is, the app is being designed and is not executing).

3. Setting the text in the Form’s title bar. The text in the Form’s title bar is deter-
mined by the Form’s Text property (Fig. 2.22). If the Properties window is not
open, select VIEW > Properties Window. Click anywhere in the Form to display the
Form’s properties in the Properties window. In the textbox to the right of the Text
property, type "A Simple App", as in Fig. 2.22. Press the Enter key—the Form’s
title bar is updated immediately (Fig. 2.23).

4. Resizing the Form. Click and drag one of the Form’s enabled sizing handles (the
small white squares that appear around the Form, as shown in Fig. 2.23). Using
the mouse, select the bottom-right sizing handle and drag it down and to the
right to make the Form larger (Fig. 2.24).

Fig. 2.21 | New Project dialog.

Type the project
name here

Select the Windows Forms
Application template

2.6 Create a Simple App that Displays Text and an Image 49

5. Changing the Form’s background color. The BackColor property specifies a
Form’s or control’s background color. Clicking BackColor in the Properties win-

Fig. 2.22 | Setting the Form’s Text property in the Properties window.

Fig. 2.23 | Form with enabled sizing handles.

Fig. 2.24 | Resized Form.

Selected
property Property value

Name and type of object

Property
description

Enabled sizing
handles

Title bar

50 Chapter 2 Dive Into® Visual Studio Express 2012 for Windows Desktop

dow causes a down-arrow button to appear next to the value of the property
(Fig. 2.25). When clicked, the down-arrow button displays other options, which
vary depending on the property. In this case, the arrow displays tabs for Custom,
Web and System (the default). Click the Custom tab to display the palette (a grid
of colors). Select the box that represents light blue. Once you select the color, the
palette closes and the Form’s background color changes to light blue (Fig. 2.26).

6. Adding a Label control to the Form. If the Toolbox is not already open, select
VIEW > Toolbox to display the set of controls you’ll use for creating your apps. For
the type of app we’re creating in this chapter, the typical controls we use are lo-
cated in either the All Windows Forms group of the Toolbox or the Common Con-
trols group. If either group name is collapsed, expand it by clicking the arrow to
the left of the group name (the All Windows Forms and Common Controls groups
are shown in Fig. 2.17). Next, double click the Label control in the Toolbox.

Fig. 2.25 | Changing the Form’s BackColor property.

Fig. 2.26 | Form with new BackColor property applied.

Down-arrow button

Current color

Custom palette
Light blue

New light blue
background color

2.6 Create a Simple App that Displays Text and an Image 51

This action causes a Label to appear in the upper-left corner of the Form

(Fig. 2.27). [Note: If the Form is behind the Toolbox, you may need to hide the
Toolbox to see the Label.] Although double clicking any Toolbox control places
the control on the Form, you also can “drag” controls from the Toolbox to the
Form—you may prefer dragging the control because you can position it wherever
you want. The Label displays the text label1 by default. When you add a Label
to the Form, the IDE sets the Label’s BackColor property to the Form’s BackCol-
or. You can change the Label’s background color by changing its BackColor
property.

7. Customizing the Label’s appearance. Select the Label by clicking it. Its properties
now appear in the Properties window. The Label’s Text property determines the
text (if any) that the Label displays. The Form and Label each have their own Text
property—Forms and controls can have the same property names (such as BackCol-
or, Text, etc.) without conflict. Set the Label’s Text property to Welcome to Vi-
sual C#!. The Label resizes to fit all the typed text on one line. By default, the
AutoSize property of the Label is set to True, which allows the Label to update
its size to fit all of the text if necessary. Set the AutoSize property to False so that
you can resize the Label on your own. Resize the Label (using the sizing handles)
so that the text fits. Move the Label to the top center of the Form by dragging it or
by using the keyboard’s left and right arrow keys to adjust its position (Fig. 2.28).
Alternatively, when the Label is selected, you can center the Label control hori-
zontally by selecting FORMAT > Center In Form > Horizontally.

8. Setting the Label’s font size. To change the font type and appearance of the La-
bel’s text, select the value of the Font property, which causes an ellipsis button
to appear next to the value (Fig. 2.29). When the ellipsis button is clicked, a di-
alog that provides additional values—in this case, the Font dialog (Fig. 2.30)—
is displayed. You can select the font name (the font options may be different, de-
pending on your system), font style (Regular, Italic, Bold, etc.) and font size (16,
18, 20, etc.) in this dialog. The Sample text shows the selected font settings.

Fig. 2.27 | Adding a Label to the Form.

Label control

52 Chapter 2 Dive Into® Visual Studio Express 2012 for Windows Desktop

Under Font, select Segoe UI, Microsoft’s recommended font for user interfaces.
Under Size, select 24 points and click OK. If the Label’s text does not fit on a sin-
gle line, it wraps to the next line. Resize the Label so that the words "Welcome to"
appear on the Label’s first line and the words "Visual C#!" appear on the second
line. Re-center the Label horizontally.

Fig. 2.28 | GUI after the Form and Label have been customized.

Fig. 2.29 | Properties window displaying the Label’s Font property.

Fig. 2.30 | Font dialog for selecting fonts, styles and sizes.

Label centered with
updated Text
property

Sizing
handles

Ellipsis button

Selected font

Font sample

2.6 Create a Simple App that Displays Text and an Image 53

9. Aligning the Label’s text. Select the Label’s TextAlign property, which deter-
mines how the text is aligned within the Label. A three-by-three grid of buttons
representing alignment choices is displayed (Fig. 2.31). The position of each but-
ton corresponds to where the text appears in the Label. For this app, set the
TextAlign property to MiddleCenter in the three-by-three grid—this selection
centers the text horizontally and vertically within the Label. The other Text-
Align values, such as TopLeft, TopRight, and BottomCenter, can be used to po-
sition the text anywhere within a Label. Certain alignment values may require
that you resize the Label to fit the text better.

10. Adding a PictureBox to the Form. The PictureBox control displays images. The
process involved in this step is similar to that of Step 6, in which we added a Label
to the Form. Locate the PictureBox in the Toolbox (Fig. 2.17) and double click
it to add it to the Form. When the PictureBox appears, move it underneath the
Label, either by dragging it or by using the arrow keys (Fig. 2.32).

11. Inserting an image. Click the PictureBox to display its properties in the Proper-
ties window (Fig. 2.33). Locate and select the Image property, which displays a

Fig. 2.31 | Centering the Label’s text.

Fig. 2.32 | Inserting and aligning a PictureBox.

Text alignment
options

Middle-center
alignment option

Updated
Label

PictureBox

54 Chapter 2 Dive Into® Visual Studio Express 2012 for Windows Desktop

preview of the selected image or (none) if no image is selected. Click the ellipsis
button (or the Choose Image… link above the property description) to display the
Select Resource dialog (Fig. 2.34), which is used to import files, such as images,
for use in an app. Click the Import… button to browse for an image to insert, se-
lect the image file and click OK. We used bug.png from this chapter’s examples
folder. The image is previewed in the Select Resource dialog (Fig. 2.35). Click
OK to use the image. Supported image formats include PNG (Portable Network
Graphics), GIF (Graphic Interchange Format), JPEG (Joint Photographic Ex-
perts Group) and BMP (Windows bitmap). To scale the image to the Picture-
Box’s size, change the SizeMode property to StretchImage (Fig. 2.36). Resize the
PictureBox, making it larger (Fig. 2.37).

12. Saving the project. Select FILE > Save All to save the entire solution. The solution
file (which has the filename extension .sln) contains the name and location of
its project, and the project file (which has the filename extension .csproj) con-
tains the names and locations of all the files in the project. If you want to reopen
your project at a later time, simply open its .sln file.

Fig. 2.33 | Image property of the PictureBox.

Fig. 2.34 | Select Resource dialog to select an image for the PictureBox.

Image property value
(no image selected)

2.6 Create a Simple App that Displays Text and an Image 55

Fig. 2.35 | Select Resource dialog displaying a preview of selected image.

Fig. 2.36 | Scaling an image to the size of the PictureBox.

Fig. 2.37 | PictureBox displaying an image.

Image file name

SizeMode
property

SizeMode
property set to
StretchImage

Newly
inserted
image

56 Chapter 2 Dive Into® Visual Studio Express 2012 for Windows Desktop

13. Running the project. Recall that up to this point we have been working in the
IDE design mode (that is, the app being created is not executing). In run mode,
the app is executing, and you can interact with only a few IDE features—features
that are not available are disabled (grayed out). The text Form1.cs [Design] in the
project tab (Fig. 2.38) means that we’re designing the Form visually rather than
programmatically. If we had been writing code, the tab would have contained only
the text Form1.cs. If there is an asterisk (*) at the end of the text in the tab, the
file has been changed and should be saved. Select DEBUG > Start Debugging to ex-
ecute the app (or you can press the F5 key). Figure 2.39 shows the IDE in run
mode (indicated by the title-bar text ASimpleApp (Running) – Microsoft Visual Stu-
dio Express 2012 for Windows Desktop). Many toolbar icons and menus are dis-
abled, since they cannot be used while the app is running. The running app
appears in a separate window outside the IDE as shown in the lower-right portion
of Fig. 2.39.

14. Terminating execution. Click the running app’s close box (the in the top-
right corner of the running app’s window). This action stops the app’s execution
and returns the IDE to design mode. You can also select DEBUG > Stop Debug-
ging to terminate the app.

Fig. 2.38 | Debugging a solution.

DEBUG menu

2.7 Wrap-Up 57

2.7 Wrap-Up
In this chapter, we introduced key features of the Visual Studio IDE. You visually designed
a working Visual C# app without writing a single line of code. Visual C# app development
is a mixture of the two styles: Visual app development allows you to develop GUIs easily
and avoid tedious GUI programming. “Conventional” programming (which we introduce
in Chapter 3) allows you to specify the behavior of your apps.

You created a Visual C# Windows Forms app with one Form. You worked with the
IDE’s Solution Explorer, Toolbox and Properties windows, which are essential to devel-
oping Visual C# apps. We also demonstrated context-sensitive help, which displays help
topics related to selected controls or text.

You used visual app development to design an app’s GUI quickly and easily, by drag-
ging and dropping controls (a Label and a PictureBox) onto a Form or by double clicking
controls in the Toolbox.

You used the Properties window to set a Form’s Text and BackColor properties. You
learned that Label controls display text and that PictureBoxes display images. You dis-
played text in a Label and added an image to a PictureBox. You also worked with the
Label’s AutoSize, TextAlign and Font properties and the PictureBox’s Image and Size-
Mode properties.

In the next chapter, we discuss “nonvisual,” or “conventional,” programming—you’ll
create your first apps with Visual C# code that you write, instead of having Visual Studio
write the code. You’ll also learn memory concepts, arithmetic and decision making.

Fig. 2.39 | IDE in run mode, with the running app in the foreground.

Running app

Close box

IDE displays text Running, which
signifies that the app is executing

58 Chapter 2 Dive Into® Visual Studio Express 2012 for Windows Desktop

2.8 Web Resources
Please take a moment to visit each of these sites.
msdn.microsoft.com/vstudio

This site is the home page for Microsoft Visual Studio. The site includes news, documentation,
downloads and other resources.
msdn.microsoft.com/en-us/vstudio/hh341490.aspx

This site provides information on the newest release of Visual C#, including downloads, community
information and resources.
social.msdn.microsoft.com/Forums/en-US/csharpgeneral/threads

This site provides access to the Microsoft Visual C# forums, which you can use to get your Visual
C# language and IDE questions answered.
msdn.microsoft.com/en-us/magazine/default.aspx

This is the Microsoft Developer Network Magazine site. This site provides articles and code on
many Visual C# and .NET app development topics. There is also an archive of past issues.

Summary

Section 2.1 Introduction
• Visual Studio is Microsoft’s Integrated Development Environment (IDE) for creating, running

and debugging apps written in a variety of .NET programming languages.

• Creating simple apps by dragging and dropping predefined building blocks into place is called
visual app development.

Section 2.2 Overview of the Visual Studio Express 2012 IDE
• The Start Page contains links to Visual Studio 2012 IDE resources and web-based resources.

• A project is a group of related files that compose a app.

• Visual Studio organizes apps into projects and solutions—a solution may contain one or more
projects.

• Dialogs are windows that facilitate user–computer communication.

• Visual Studio provides templates for the project types you can create, including Windows Forms
apps.

• A Form represents the main window of the Windows Forms app that you’re creating.

• Collectively, the Form and controls constitute the app’s graphical user interface (GUI), which is
the visual part of the app with which the user interacts.

Section 2.3 Menu Bar and Toolbar
• Commands for managing the IDE and for developing, maintaining and executing apps are con-

tained in the menus, which are located on the menu bar.

• Menus contain groups of commands (menu items) that, when selected, cause the IDE to perform
actions (for example, open a window, save a file, print a file and execute an app).

• Tool tips help you become familiar with the IDE’s features.

Section 2.4 Navigating the Visual Studio IDE
• The Solution Explorer window lists all the files in the solution.

• The Toolbox contains controls for customizing Forms.

Terminology 59

• By using visual app development, you can place predefined controls onto the Form instead of
writing the code yourself.

• Clicking an auto-hidden window’s name opens that window. Clicking the name again hides it.
To “pin down” a window (that is, to disable auto-hide), click its pin icon.

• The Properties window displays the properties for a Form, control or file (in Design view). Prop-
erties are information about a Form or control, such as size, color and position. The Properties
window allows you to modify Forms and controls visually, without writing code.

• Each control has its own set of properties. The left column of the Properties window shows the
property names and the right column displays the property values. This window’s toolbar con-
tains options for organizing properties alphabetically when the Alphabetical icon is selected or cat-
egorically (for example, Appearance, Behavior, Design) when the Categorized icon is selected.

Section 2.5 Using Help
• Extensive help documentation is available via Help menu.

• Context-sensitive help brings up a list of relevant help articles. To use context-sensitive help, se-
lect an item and press the F1 key.

Section 2.6 Using Visual App Development to Create a Simple App that Displays Text
and an Image
• Visual C# app development usually involves a combination of writing a portion of the app code

and having Visual Studio generate the remaining code.

• The text that appears at the top of the Form (the title bar) is specified in the Form’s Text property.

• To resize the Form, click and drag one of the Form’s enabled sizing handles (the small squares
around the Form). Enabled sizing handles appear as white boxes.

• The BackColor property specifies the background color of a Form. The Form’s background color
is the default background color for any controls added to the Form.

• Double clicking any Toolbox control icon places a control of that type on the Form. Alternatively,
you can drag and drop controls from the Toolbox to the Form.

• The Label’s Text property determines the text (if any) that the Label displays. The Form and La-
bel each have their own Text property.

• A property’s ellipsis button, when clicked, displays a dialog containing additional options.

• In the Font dialog, you can select the font for text in the user interface.

• The TextAlign property determines how the text is aligned within a Label’s boundaries.

• The PictureBox control displays images. The Image property specifies the image to displayed.

• An app that is in design mode is not executing.

• In run mode, the app is executing—you can interact with only a few IDE features.

• When designing an app visually, the name of the Visual C# file appears in the project tab, fol-
lowed by [Design].

• Terminate execution by clicking the close box.

Terminology
active tab
Alphabetical icon
auto-hide
AutoSize property of Label
BackColor property of Form

Categorized icon
component selection drop-down list
context-sensitive help
control
Custom tab

60 Chapter 2 Dive Into® Visual Studio Express 2012 for Windows Desktop

Design view
dialog
dragging
ellipsis button
Font dialog
Font property of Label
Form

graphical user interface (GUI)
Help menu
icon
Image property of PictureBox
Label

New Project dialog
palette
PictureBox

project
Properties window
property of a Form or control
run mode

scrollbar
scrollbox
Select Resource dialog
Show All Files icon
SizeMode property of PictureBox
sizing handle
solution
Solution Explorer in Visual Studio
Start Page
startup project
StretchImage value
templates for projects
Text property
TextAlign property of Label
tool tip
toolbar
visual app development
Visual Studio 2012
Windows Forms app

Self-Review Exercises
2.1 Fill in the blanks in each of the following statements:

a) The technique of allows you to create GUIs without writing any code.
b) A(n) is a group of one or more projects that collectively form a Visual C# app.
c) The feature hides a window in the IDE.
d) A(n) appears when the mouse pointer hovers over an icon.
e) The window allows you to browse solution files.
f) The properties in the Properties window can be sorted or .
g) A Form’s property specifies the text displayed in the Form’s title bar.
h) The contains the controls that you can add to a Form.
i) displays relevant help articles, based on the current context.
j) The property specifies how text is aligned within a Label’s boundaries.

2.2 State whether each of the following is true or false. If false, explain why.
a) toggles auto-hide for a window.
b) The toolbar icons represent various menu commands.
c) The toolbar contains icons that represent controls you can drag onto a Form.
d) Both Forms and Labels have a title bar.
e) Control properties can be modified only by writing code.
f) PictureBoxes typically display images.
g) Visual C# files use the file extension .csharp.
h) A Form’s background color is set using the BackColor property.

Answers to Self-Review Exercises
2.1 a) visual app development. b) solution. c) auto-hide. d) tool tip. e) Solution Explorer. f) al-
phabetically, categorically. g) Text. h) Toolbox. i) context-sensitive help. j) TextAlign.

2.2 a) False. The pin icon () toggles auto-hide. closes a window. b) True. c) False.
The Toolbox contains icons that represent such controls. d) False. Forms have a title bar but Labels
do not (although they do have Label text). e) False. Control properties can be modified using the
Properties window. f) True. g) False. Visual C# files use the file extension .cs. h) True.

Exercises 61

Exercises
2.3 Fill in the blanks in each of the following statements:

a) When an ellipsis button is clicked, a(n) is displayed.
b) Using help immediately displays a relevant help article.
c) GUI is an acronym for .
d) The property specifies which image a PictureBox displays.
e) The menu contains commands for arranging and displaying windows.

2.4 State whether each of the following is true or false. If false, explain why.
a) You can add a control to a Form by double clicking its control icon in the Toolbox.
b) The Form, Label and PictureBox have identical properties.
c) If your machine is connected to the Internet, you can browse websites from the Visual

Studio IDE.
d) Visual C# app developers usually create complex apps without writing any code.
e) Sizing handles are visible during execution.

2.5 Some features that appear throughout Visual Studio perform similar actions in different
contexts. Explain and give examples of how the ellipsis buttons, down-arrow buttons and tool tips
act in this manner. Why do you think the Visual Studio IDE was designed this way?

2.6 Briefly describe each of the following terms:
a) toolbar
b) menu bar
c) Toolbox

d) control
e) Form

f) solution

Note Regarding Exercises 2.7–2.11
In the following exercises, you’re asked to create GUIs using controls that we have not yet discussed
in this book. These exercises give you practice with visual app development only—the apps do not
perform any actions. You place controls from the Toolbox on a Form to familiarize yourself with
what each control looks like. We have provided step-by-step instructions for you. If you follow
these, you should be able to replicate the screen images we provide.

2.7 (Notepad GUI) Create the GUI for the notepad as shown in Fig. 2.40.

Fig. 2.40 | Notepad GUI.

MenuStrip

RichTextBox

62 Chapter 2 Dive Into® Visual Studio Express 2012 for Windows Desktop

a) Manipulating the Form’s properties. Change the Text property of the Form to My Note-

pad. Change the Font property to 9pt Segoe UI.
b) Adding a MenuStrip control to the Form. Add a MenuStrip to the Form. After inserting

the MenuStrip, add items by clicking the Type Here section, typing a menu name (for
example, File, Edit, View and About) and then pressing Enter.

c) Adding a RichTextBox to the Form. Drag this control onto the Form. Use the sizing han-
dles to resize and position the RichTextBox as shown in Fig. 2.40. Change the Text
property to Enter text here.

2.8 (Calendar and Appointments GUI) Create the GUI for the calendar as shown in Fig. 2.41.

a) Manipulating the Form’s properties. Change the Text property of the Form to My Schedul-
er. Change the Font property to 9pt Segoe UI. Set the Form’s Size property to 275, 400.

b) Adding Labels to the Form. Add two Labels to the Form. Both should be of equal size
(231, 23; remember to set the AutoSize property to False) and should be centered in
the Form horizontally, as shown. Set the Label’s Text properties to match Fig. 2.41. Use
12-point font size. Also, set the BackColor property to Yellow.

c) Adding a MonthCalendar control to the Form. Add this control to the Form and center it
horizontally in the appropriate place between the two Labels.

d) Adding a RichTextBox control to the Form. Add a RichTextBox control to the Form and
center it below the second Label. Resize the RichTextBox accordingly.

2.9 (Calculator GUI) Create the GUI for the calculator as shown in Fig. 2.42.
a) Manipulating the Form’s properties. Change the Text property of the Form to Calcula-

tor. Change the Font property to 9pt Segoe UI. Change the Size property of the Form
to 258, 210.

b) Adding a TextBox to the Form. Set the TextBox’s Text property in the Properties window
to 0. Stretch the TextBox and position it as shown in Fig. 2.42. Set the TextAlign prop-
erty to Right—this right aligns text displayed in the TextBox.

c) Adding the first Panel to the Form. Panel controls are used to group other controls. Add
a Panel to the Form. Change the Panel’s BorderStyle property to Fixed3D to make the
inside of the Panel appear recessed. Change the Size property to 90, 120. This Panel
will contain the calculator’s numeric keys.

Fig. 2.41 | Calendar and appointments GUI.

Label

MonthCalendar

Label

RichTextBox

Exercises 63

d) Adding the second Panel to the Form. Change the Panel’s BorderStyle property to
Fixed3D. Change the Size property to 62, 120. This Panel will contain the calculator’s
operator keys.

e) Adding the third (and last) Panel to the Form. Change the Panel’s BorderStyle property
to Fixed3D. Change the Size property to 54, 62. This Panel contains the calculator’s C
(clear) and C/A (clear all) keys.

f) Adding Buttons to the Form. There are 20 Buttons on the calculator. Add a Button to
the Panel by dragging and dropping it on the Panel. Change the Text property of each
Button to the calculator key it represents. The value you enter in the Text property will
appear on the face of the Button. Finally, resize the Buttons, using their Size properties.
Each Button labeled 0–9, *, /, -, = and . should have a size of 23, 23. The 00 Button has
size 52, 23. The OFF Button has size 54, 23. The + Button is sized 23, 81. The C (clear)
and C/A (clear all) Buttons are sized 44, 23.

2.10 (Alarm Clock GUI) Create the GUI for the alarm clock as shown in Fig. 2.43.

a) Manipulating the Form’s properties. Change the Text property of the Form to Alarm

Clock. Change the Font property to 9pt Segoe UI. Change the Size property of the Form
to 438, 170.

b) Adding Buttons to the Form. Add seven Buttons to the Form. Change the Text property
of each Button to the appropriate text. Align the Buttons as shown.

c) Adding a GroupBox to the Form. GroupBoxes are like Panels, except that GroupBoxes dis-
play a title. Change the Text property to AM/PM, and set the Size property to 100, 50.
Center the GroupBox horizontally on the Form.

d) Adding AM/PM RadioButtons to the GroupBox. Place two RadioButtons in the GroupBox.
Change the Text property of one RadioButton to AM and the other to PM. Align the Ra-
dioButtons as shown.

Fig. 2.42 | Calculator GUI.

Fig. 2.43 | Alarm clock GUI.

Panels

TextBox

Buttons

GroupBox

RadioButtons

64 Chapter 2 Dive Into® Visual Studio Express 2012 for Windows Desktop

e) Adding the time Label to the Form. Add a Label to the Form and change its Text property
to 00:00:00. Change the BorderStyle property to Fixed3D and the BackColor to Black.
Use the Font property to make the time bold and 12pt. Change the ForeColor to Sil-
ver (located in the Web tab) to make the time stand out against the black background.
Position the Label as shown.

2.11 (Radio GUI) Create the GUI for the radio as shown in Fig. 2.44. [Note: The image used in
this exercise is located in the examples folder for Chapter 2.]

a) Manipulating the Form’s properties. Change the Font property to 9pt Segoe UI. Change
the Form’s Text property to Radio and the Size to 427, 194.

b) Adding the Pre-set Stations GroupBox and Buttons. Set the GroupBox’s Size to 180, 55
and its Text to Pre-set Stations. Add six Buttons to the GroupBox. Set each one’s Size
to 23, 23. Change the Buttons’ Text properties to 1, 2, 3, 4, 5, 6, respectively.

c) Adding the Speakers GroupBox and CheckBoxes. Set the GroupBox’s Size to 120, 55 and
its Text to Speakers. Add two CheckBoxes to the GroupBox. Set the Text properties for
the CheckBoxes to Rear and Front.

d) Adding the Power On/Off Button. Add a Button to the Form. Set its Text to Power On/
Off and its Size to 75, 55.

e) Adding the Volume Control GroupBox, the Mute CheckBox and the Volume TrackBar.
Add a GroupBox to the Form. Set its Text to Volume Control and its Size to 180, 70. Add
a CheckBox to the GroupBox. Set its Text to Mute. Add a TrackBar to the GroupBox.

f) Adding the Tuning GroupBox, the radio station Label and the AM/FM RadioButtons.
Add a GroupBox to the Form. Set its Text to Tuning and its Size to 120, 70. Add a Label
to the GroupBox. Set its AutoSize to False, its Size to 50, 44, its BackColor to Black,
its ForeColor to Silver, its font to 12pt bold and its TextAlign to MiddleCenter. Set
its Text to 92.9. Place the Label as shown in the figure. Add two RadioButtons to the
GroupBox. Set the Text of one to AM and of the other to FM.

g) Adding the image. Add a PictureBox to the Form. Set its SizeMode to StretchImage and
its Size to 55, 70. Set the Image property to MusicNote.gif (located in the examples
folder for Chapter 2).

Fig. 2.44 | Radio GUI.

PictureBox

CheckBoxes

RadioButtonTrackBar

GroupBox

GroupBoxes

3Introduction to C# Apps

What’s in a name?
That which we call a rose
by any other name
would smell as sweet.
—William Shakespeare

O b j e c t i v e s
In this chapter you’ll:

� Write simple C# apps using
code rather than visual
programming.

� Input data from the keyboard
and output data to the
screen.

� Declare and use data of
various types.

� Store data in memory and
retrieve it.

� Use arithmetic operators.

� Determine the order in which
operators are applied.

� Write decision-making
statements.

� Use relational and equality
operators.

66 Chapter 3 Introduction to C# Apps

3.1 Introduction
We now introduce C# app programming. Most of the C# apps you’ll study in this book pro-
cess information and display results. In this chapter, we introduce console apps—these input
and output text in a console window, which in Windows is known as the Command Prompt.

We begin with several examples that simply display messages on the screen. We then
demonstrate an app that obtains two numbers from a user, calculates their sum and dis-
plays the result. You’ll perform various arithmetic calculations and save the results for later
use. Many apps contain logic that makes decisions—the last example in this chapter dem-
onstrates decision-making fundamentals by showing you how to compare numbers and
display messages based on the comparison results. For example, the app displays a message
indicating that two numbers are equal only if they have the same value. We analyze each
code example one line at a time.

3.2 A Simple C# App: Displaying a Line of Text
Let’s consider a simple app that displays a line of text. The app and its output are shown in
Fig. 3.1, which illustrates several important C# language features. Each program we present
in this book includes line numbers, which are not part of actual C# code. In the Before You
Begin section that follows the Preface, we show how to display line numbers for your C#
code. We’ll soon see that line 10 does the real work of the app—namely, displaying the
phrase Welcome to C# Programming! on the screen. We now discuss each line of the app—
this process is called a code walkthrough.

Comments
Line 1

begins with //, indicating that the remainder of the line is a comment. You’ll insert com-
ments to document your apps and improve their readability. The C# compiler ignores
comments, so they do not cause the computer to perform any action when the app is run.
We begin every app with a comment indicating the figure number and the name of the
file in which the app is stored.

A comment that begins with // is called a single-line comment, because it terminates
at the end of the line on which it appears. A // comment also can begin in the middle of
a line and continue until the end of that line (as in lines 7, 11 and 12).

3.1 Introduction
3.2 A Simple C# App: Displaying a Line of

Text
3.3 Creating a Simple App in Visual Studio
3.4 Modifying Your Simple C# App
3.5 Formatting Text with Console.Write

and Console.WriteLine

3.6 Another C# App: Adding Integers
3.7 Memory Concepts
3.8 Arithmetic
3.9 Decision Making: Equality and

Relational Operators
3.10 Wrap-Up

Summary | Terminology | Self-Review Exercises | Answers to Self-Review Exercises | Exercises |
Making a Difference Exercises

// Fig. 3.1: Welcome1.cs

3.2 A Simple C# App: Displaying a Line of Text 67

Delimited comments such as

can be split over several lines. This type of comment begins with the delimiter /* and ends
with the delimiter */. All text between the delimiters is ignored by the compiler.

Line 2

is a single-line comment that describes the purpose of the app.

using Directive
Line 3

is a using directive that tells the compiler where to look for a class that’s used in this app. A
great strength of Visual C# is its rich set of predefined classes that you can reuse rather than
“reinventing the wheel.” These classes are organized under namespaces—named collections
of related classes. Collectively, .NET’s namespaces are referred to as the .NET Framework
Class Library. Each using directive identifies a namespace containing predefined classes that
a C# app should be able to use. The using directive in line 3 indicates that this example in-

1 // Fig. 3.1: Welcome1.cs
2 // Text-displaying app.
3 using System;
4
5 public class Welcome1
6 {
7 // Main method begins execution of C# app
8 public static void Main(string[] args)
9 {

10 Console.WriteLine("Welcome to C# Programming!");
11 } // end Main
12 } // end class Welcome1

Welcome to C# Programming!

Fig. 3.1 | Text-displaying app.

/* This is a delimited comment.
It can be split over many lines */

Common Programming Error 3.1
Forgetting one of the delimiters of a delimited comment is a syntax error. The syntax of a
programming language specifies the rules for creating a proper app in that language. A
syntax error occurs when the compiler encounters code that violates C#’s language rules.
In this case, the compiler does not produce an executable file. Instead, it issues one or more
error messages to help you identify and fix the incorrect code. Syntax errors are also called
compiler errors, compile-time errors or compilation errors, because the compiler detects
them during the compilation phase. You’ll be unable to execute your app until you correct
all the syntax errors in it.

// Text-displaying app.

using System;

68 Chapter 3 Introduction to C# Apps

tends to use classes from the System namespace, which contains the predefined Console class
(discussed shortly) used in line 10, and many other useful classes.

For each new .NET class we use, we indicate the namespace in which it’s located. This
information is important, because it helps you locate descriptions of each class in the .NET
documentation. A web-based version of this documentation can be found at

This can also be accessed via the Help menu. You can click the name of any .NET class or
method, then press the F1 key to get more information. Finally, you can learn about the
contents of a given namespace by going to

So, msdn.microsoft.com/System takes you to namespace System’s documentation.

Blank Lines and Whitespace
Line 4 is simply a blank line. Blank lines and space characters make code easier to read, and
together with tab characters are known as whitespace. Space characters and tabs are known
specifically as whitespace characters. Whitespace is ignored by the compiler.

Class Declaration
Line 5

begins a class declaration for the class Welcome1. Every app consists of at least one class
declaration that’s defined by you—the programmer. These are known as user-defined
classes. The class keyword introduces a class declaration and is immediately followed by
the class name (Welcome1). Keywords (sometimes called reserved words) are reserved for
use by C# and are always spelled with all lowercase letters. The complete list of C# key-
words is shown in Fig. 3.2.

Error-Prevention Tip 3.1
Forgetting to include a using directive for a namespace that contains a class used in your
app typically results in a compilation error, containing a message such as “The name 'Con-
sole' does not exist in the current context.” When this occurs, check that you pro-
vided the proper using directives and that the names in the using directives are spelled
correctly, including proper use of uppercase and lowercase letters.

msdn.microsoft.com/en-us/library/ms229335.aspx

msdn.microsoft.com/namespace

public class Welcome1

C# Keywords and contextual keywords

abstract as base bool break

byte case catch char checked

class const continue decimal default

delegate do double else enum

event explicit extern false finally

fixed float for foreach goto

Fig. 3.2 | C# keywords and contextual keywords. (Part 1 of 2.)

3.2 A Simple C# App: Displaying a Line of Text 69

Class Name Convention
By convention, all class names begin with a capital letter and capitalize the first letter of
each word they include (e.g., SampleClassName). This convention is known as upper cam-
el casing. A class name is an identifier—a series of characters consisting of letters, digits
and underscores (_) that does not begin with a digit and does not contain spaces. Some
valid identifiers are Welcome1, identifier, _value and m_inputField1. The name
7button is not a valid identifier because it begins with a digit, and the name input field

is not a valid identifier because it contains a space. Normally, an identifier that does not
begin with a capital letter is not the name of a class. C# is case sensitive—that is, uppercase
and lowercase letters are distinct, so a1 and A1 are different (but both valid) identifiers.1

if implicit in int interface

internal is lock long namespace

new null object operator out

override params private protected public

readonly ref return sbyte sealed

short sizeof stackalloc static string

struct switch this throw true

try typeof uint ulong unchecked

unsafe ushort using virtual void

volatile while

Contextual Keywords
add alias ascending async await

by descending dynamic equals from

get global group into join

let on orderby partial remove

select set value var where

yield

Good Programming Practice 3.1
By convention, always begin a class name’s identifier with a capital letter and start each
subsequent word in the identifier with a capital letter.

Common Programming Error 3.2
C# is case sensitive. Not using the proper uppercase and lowercase letters for an identifier
normally causes a compilation error.

1. Identifiers may also be preceded by the @ character. This indicates that a word should be interpreted
as an identifier, even if it’s a keyword (e.g., @int). This allows C# code to use code written in other
.NET languages where an identifier might have the same name as a C# keyword. The contextual key-
words in Fig. 3.2 can be used as identifiers outside the contexts in which they’re keywords, but for
clarity this is not recommended.

C# Keywords and contextual keywords

Fig. 3.2 | C# keywords and contextual keywords. (Part 2 of 2.)

70 Chapter 3 Introduction to C# Apps

public Class
In Chapters 3–9, every class we define begins with the keyword public. For now, we’ll
simply require this keyword. You’ll learn more about classes in Chapter 10. When you
save your public class declaration in a file, the file name is usually the class name followed
by the .cs file-name extension. For our app, the file name is Welcome1.cs.

Body of a Class Declaration
A left brace (in line 6 in Fig. 3.1), {, begins the body of every class declaration. A corre-
sponding right brace (in line 12), }, must end each class declaration. Lines 7–11 are in-
dented. This indentation is a spacing convention. We define each spacing convention as a
Good Programming Practice.

Main Method
Line 7

is a comment indicating the purpose of lines 8–11 of the app. Line 8

is the starting point of every app. The parentheses after the identifier Main indicate that
it’s an app building block called a method. Class declarations normally contain one or
more methods. Method names usually follow the same capitalization conventions used for

Good Programming Practice 3.2
By convention, a file that contains a single public class should have a name that’s iden-
tical to the class name (plus the .cs extension) in both spelling and capitalization.

Error-Prevention Tip 3.2
Whenever you type an opening left brace, {, in your app, immediately type the closing
right brace, }, then reposition the cursor between the braces and indent to begin typing
the body. This practice helps prevent errors due to missing braces.

Good Programming Practice 3.3
Indent the entire body of each class declaration one “level” of indentation between the left
and right braces that delimit the body of the class. This format emphasizes the class decla-
ration’s structure and makes it easier to read. You can let the IDE format your code by
selecting Edit > Advanced > Format Document.

Good Programming Practice 3.4
Set a convention for the indent size you prefer, then uniformly apply that convention. The
Tab key may be used to create indents, but tab stops vary among text editors. We recom-
mend using three spaces to form each level of indentation. We show how to do this in the
Before You Begin section that follows the Preface.

Common Programming Error 3.3
It’s a syntax error if braces do not occur in matching pairs.

// Main method begins execution of C# app

public static void Main(string[] args)

3.2 A Simple C# App: Displaying a Line of Text 71

class names. For each app, one of the methods in a class must be called Main (which is typ-
ically defined as shown in line 8); otherwise, the app will not execute. Methods are able to
perform tasks and return information when they complete their tasks. Keyword void (line
8) indicates that this method will not return any information after it completes its task.
Later, we’ll see that many methods do return information. You’ll learn more about meth-
ods in Chapters 4 and 7. We discuss the contents of Main’s parentheses in Chapter 8. For
now, simply mimic Main’s first line in your apps.

Body of a Method Declaration
The left brace in line 9 begins the body of the method declaration. A corresponding right
brace must end the method’s body (line 11). Line 10 in the body of the method is indented
between the braces.

Displaying a Line of Text
Line 10

instructs the computer to perform an action—namely, to display the string of characters
between the double quotation marks, which delimit the string. A string is sometimes called
a character string, a message or a string literal. We refer to them simply as strings.
Whitespace characters in strings are not ignored by the compiler.

Class Console provides standard input/output capabilities that enable apps to read
and display text in the console window from which the app executes. The Console.Write-
Line method displays a line of text in the console window. The string in the parentheses
in line 10 is the argument to the method. Method Console.WriteLine performs its task
by displaying its argument in the console window. When Console.WriteLine completes
its task, it positions the screen cursor (the blinking symbol indicating where the next char-
acter will be displayed) at the beginning of the next line in the console window. This
movement of the cursor is similar to what happens when a user presses the Enter key while
typing in a text editor—the cursor moves to the beginning of the next line in the file.

Statements
The entire line 10, including Console.WriteLine, the parentheses, the argument "Wel-
come to C# Programming!" in the parentheses and the semicolon (;), is called a statement.
Most statements end with a semicolon. When the statement in line 10 executes, it displays
the message Welcome to C# Programming! in the console window. A method is typically
composed of one or more statements that perform the method’s task.

Good Programming Practice 3.5
As with class declarations, indent the entire body of each method declaration one “level”
of indentation between the left and right braces that define the method body.

Console.WriteLine("Welcome to C# Programming!");

Error-Prevention Tip 3.3
When the compiler reports a syntax error, the error may not be in the line indicated by
the error message. First, check the line for which the error was reported. If that line does
not contain syntax errors, check several preceding lines.

72 Chapter 3 Introduction to C# Apps

Matching Left ({) and Right (}) Braces
You may find it difficult when reading or writing an app to match the left and right braces
({ and }) that delimit the body of a class declaration or a method declaration. To help, you
can include a comment after each closing right brace (}) that ends a method declaration
and after each closing right brace that ends a class declaration. For example, line 11

specifies the closing right brace of method Main, and line 12

specifies the closing right brace of class Welcome1. Each of these comments indicates the
method or class that the right brace terminates. Visual Studio can help you locate match-
ing braces in your code. Simply place the cursor immediately in front of the left brace or
immediately after the right brace, and Visual Studio will highlight both.

3.3 Creating a Simple App in Visual Studio
Now that we’ve presented our first console app (Fig. 3.1), we provide a step-by-step expla-
nation of how to create, compile and execute it using Visual Studio 2012 Express for Win-
dows Desktop, which we’ll refer to simply as Visual Studio from this point forward.

Creating the Console App
After opening Visual Studio, select FILE > New Project… to display the New Project dialog
(Fig. 3.3). At the left side of the dialog, under Installed > Templates > Visual C# select the
Windows category, then in the middle of the dialog select the Console Application tem-
plate. In the dialog’s Name field, type Welcome1, then click OK to create the project. By
default, the project’s folder will be placed in your account’s Documents folder under
Visual Studio 2012\Projects. The IDE now contains the open console app, as shown
in Fig. 3.4. The editor window already contains some code provided by the IDE. Some of

} // end Main

} // end class Welcome1

Fig. 3.3 | Creating a Console Application with the New Project dialog.

Project
name

3.3 Creating a Simple App in Visual Studio 73

this code is similar to that of Fig. 3.1. Some is not, and uses features that we have not yet
discussed. The IDE inserts this extra code to help organize the app and to provide access
to some common classes in the .NET Framework Class Library—at this point in the book,
this code is neither required nor relevant to the discussion of this app; delete all of it.

The code coloring scheme used by the IDE is called syntax-color highlighting and
helps you visually differentiate app elements. For example, keywords appear in blue and
comments appear in green. We syntax-shade our code similarly—bold for keywords, gray
for comments, bold gray for literals and constants, and black for other text. One example
of a literal is the string passed to Console.WriteLine in line 10 of Fig. 3.1. You can cus-
tomize the colors shown in the code editor by selecting Tools > Options…. This displays
the Options dialog. Then expand the Environment node and select Fonts and Colors. Here
you can change the colors for various code elements.

Configuring the Editor Window
Visual Studio provides many ways to personalize your coding experience. In the Before You
Begin section that follows the Preface, we show how to configure the IDE to display line
numbers at the left side of the editor window and how to specify indent sizes that match
our code examples.

Changing the Name of the App File
For the apps we create in this book, we change the default name of the source-code file
(i.e., Program.cs) to a more descriptive name. To rename the file, click Program.cs in the
Solution Explorer window. This displays the app file’s properties in the Properties window
(Fig. 3.5). Change the File Name property to Welcome1.cs and press Enter.

Fig. 3.4 | IDE with an open console app.

Editor window

74 Chapter 3 Introduction to C# Apps

Writing Code and Using IntelliSense
In the editor window (Fig. 3.4), replace the IDE-generated code with the code from Fig. 3.1.
As you begin typing the class name Console (line 10), an IntelliSense window is displayed
(Fig. 3.6(a)). As you type, IntelliSense lists various items that start with or contain the letters
you’ve typed so far. IntelliSense also displays a tool tip containing a description of the first

Fig. 3.5 | Renaming the program file in the Properties window.

Fig. 3.6 | IntelliSense. (Part 1 of 2.)

File Name property

Solution Explorer

Click Program.cs to
display its propertiesProperties window

Type Welcome1.cs here
to rename the file

Tool tip describes highlighted itemClosest match is highlighted

IntelliSense window

Partially typed name

a) IntelliSense window displayed as you type

3.3 Creating a Simple App in Visual Studio 75

matching item. You can either type the complete item name (e.g., Console), double click the
item name in the member list or press the Tab key to complete the name. Once the complete
name is provided, the IntelliSense window closes. While the IntelliSense window is displayed,
pressing the Ctrl key makes the window transparent so you can see the code behind the win-
dow.

When you type the dot (.) after Console, the IntelliSense window reappears and shows
only the members of class Console that can be used on the right of the dot (Fig. 3.6(b)).
When you type the open parenthesis character, (, after Console.WriteLine, the Param-
eter Info window is displayed (Fig. 3.7). This window contains information about the
method’s parameters. As you’ll learn in Chapter 7, there can be several versions of a
method. That is, a class can define several methods that have the same name, as long as
they have different numbers and/or types of parameters—a concept known as overloaded
methods. These methods normally all perform similar tasks. The Parameter Info window
indicates how many versions of the selected method are available and provides up and
down arrows for scrolling through the different versions. For example, there are 19 ver-
sions of the WriteLine method—we use one of these 19 versions in our app. The Param-
eter Info window is one of many features provided by the IDE to facilitate app
development. In the next several chapters, you’ll learn more about the information dis-
played in these windows. The Parameter Info window is especially helpful when you want
to see the different ways in which a method can be used. From the code in Fig. 3.1, we
already know that we intend to display one string with WriteLine, so, because you know
exactly which version of WriteLine you want to use, you can simply close the Parameter
Info window by pressing the Esc key.

Saving the App
After you type the app’s code, select FILE > Save All to save the project.

Fig. 3.6 | IntelliSense. (Part 2 of 2.)

Tool tip describes highlighted memberHighlighted memberPartially typed member

b) IntelliSense window showing method names that start with Write

76 Chapter 3 Introduction to C# Apps

Compiling and Running the App
You’re now ready to compile and execute your app. Depending on the project’s type, the
compiler may compile the code into files with the .exe (executable) extension, the .dll

(dynamically linked library) extension or one of several other extensions. Such files are
called assemblies and are the packaging units for compiled C# code. These assemblies con-
tain the Microsoft Intermediate Language (MSIL) code for the app.

To compile the app, select BUILD > Build Solution. If the app contains no syntax errors,
this will compile your app and build it into an executable file (named Welcome1.exe, in
one of the project’s subdirectories). To execute it, type Ctrl + F5, which invokes the Main
method (Fig. 3.1). If you attempt to run the app before building it, the IDE will build the
app first, then run it only if there are no compilation errors. The statement in line 10 of
Main displays Welcome to C# Programming!. Figure 3.8 shows the results of executing this
app, displayed in a console (Command Prompt) window. Leave the app’s project open in
Visual Studio; we’ll go back to it later in this section. [Note: The console window normally
has a black background and white text. We reconfigured it to have a white background
and black text for readability. If you’d like to do this, click the icon in the upper-left
corner of the console window, then select Properties. You can change the colors in the
Colors tab of the dialog that appears.]

Syntax Errors, Error Messages and the Error List Window
Go back to the app in Visual Studio. As you type code, the IDE responds either by apply-
ing syntax-color highlighting or by generating a syntax error, which indicates a violation
of Visual C#’s rules for creating correct apps (i.e., one or more statements are not written

Fig. 3.7 | Parameter Info window.

Fig. 3.8 | Executing the app shown in Fig. 3.1.

Parameter Info window

Down arrow

Up arrow

3.4 Modifying Your Simple C# App 77

correctly). Syntax errors occur for various reasons, such as missing parentheses and mis-
spelled keywords.

When a syntax error occurs, the IDE underlines the location of the error with a red
squiggly line and provides a description of it in the Error List window (Fig. 3.9). If the
Error List window is not visible in the IDE, select VIEW > Error List to display it. In
Figure 3.9, we intentionally omitted the semicolon at the end of the statement in line 10.
The error message indicates that the semicolon is missing. You can double click an error
message in the Error List to jump to the error’s location in the code.

3.4 Modifying Your Simple C# App
This section continues our introduction to C# programming with two examples that mod-
ify the example of Fig. 3.1.

Error-Prevention Tip 3.4
One syntax error can lead to multiple entries in the Error List window. Each error that
you address could eliminate several subsequent error messages when you recompile your
app. So when you see an error you know how to fix, correct it and recompile—this may
make several other errors disappear.

Fig. 3.9 | Syntax error indicated by the IDE.

Intentionally omitted semicolon (syntax error)

Squiggly underline indicates a syntax errorError description(s)Error List window

78 Chapter 3 Introduction to C# Apps

Displaying a Single Line of Text with Multiple Statements
Class Welcome2, shown in Fig. 3.10, uses two statements to produce the same output as
that shown in Fig. 3.1. From this point forward, we highlight the new and key features in
each code listing, as shown in lines 10–11 of Fig. 3.10.

The app is almost identical to Fig. 3.1. We discuss the changes here. Line 2

states the purpose of this app. Line 5 begins the Welcome2 class declaration.
Lines 10–11 of method Main

display one line of text in the console window. The first statement uses Console’s method
Write to display a string. Unlike WriteLine, after displaying its argument, Write does not
position the screen cursor at the beginning of the next line in the console window—the
next character the app displays will appear immediately after the last character that Write
displays. Thus, line 11 positions the first character in its argument (the letter “C”) imme-
diately after the last character that line 10 displays (the space character before the string’s
closing double-quote character). Each Write statement resumes displaying characters from
where the last Write statement displayed its last character.

Displaying Multiple Lines of Text with a Single Statement
A single statement can display multiple lines by using newline characters, which indicate
to Console methods Write and WriteLine when they should position the screen cursor to
the beginning of the next line in the console window. Like space characters and tab char-
acters, newline characters are whitespace characters. The app of Fig. 3.11 outputs four
lines of text, using newline characters to indicate when to begin each new line.

1 // Fig. 3.10: Welcome2.cs
2 // Displaying one line of text with multiple statements.
3 using System;
4
5 public class Welcome2
6 {
7 // Main method begins execution of C# app
8 public static void Main(string[] args)
9 {

10
11
12 } // end Main
13 } // end class Welcome2

Welcome to C# Programming!

Fig. 3.10 | Displaying one line of text with multiple statements.

// Displaying one line of text with multiple statements.

Console.Write("Welcome to ");
Console.WriteLine("C# Programming!");

Console.Write("Welcome to ");
Console.WriteLine("C# Programming!");

3.4 Modifying Your Simple C# App 79

Most of the app is identical to the apps of Fig. 3.1 and Fig. 3.10, so we discuss only
the changes here. Line 2

states the purpose of this app. Line 5 begins the Welcome3 class declaration.
Line 10

displays four separate lines of text in the console window. Normally, the characters in a
string are displayed exactly as they appear in the double quotes. Note, however, that the
two characters \ and n (repeated three times in the statement) do not appear on the screen.
The backslash (\) is called an escape character. It indicates to C# that a “special character”
is in the string. When a backslash appears in a string of characters, C# combines the next
character with the backslash to form an escape sequence. The escape sequence \n repre-
sents the newline character. When a newline character appears in a string being output
with Console methods, the newline character causes the screen cursor to move to the
beginning of the next line in the console window. Figure 3.12 lists several common escape
sequences and describes how they affect the display of characters in the console window.

1 // Fig. 3.11: Welcome3.cs
2 // Displaying multiple lines with a single statement.
3 using System;
4
5 public class Welcome3
6 {
7 // Main method begins execution of C# app
8 public static void Main(string[] args)
9 {

10 Console.WriteLine("Welcome to C# Programming!");
11 } // end Main
12 } // end class Welcome3

Welcome
to
C#
Programming!

Fig. 3.11 | Displaying multiple lines with a single statement.

// Displaying multiple lines with a single statement.

Console.WriteLine("Welcome\nto\nC#\nProgramming!");

Escape
sequence Description

\n Newline. Positions the screen cursor at the beginning of the next line.

\t Horizontal tab. Moves the screen cursor to the next tab stop.

\" Double quote. Used to place a double-quote character (") in a string—e,g.,
Console.Write("\"in quotes\""); displays "in quotes".

Fig. 3.12 | Some common escape sequences. (Part 1 of 2.)

\n \n \n

80 Chapter 3 Introduction to C# Apps

3.5 Formatting Text with Console.Write and
Console.WriteLine
Console methods Write and WriteLine also have the capability to display formatted data.
Figure 3.13 outputs the strings "Welcome to" and "C# Programming!" with WriteLine.

Line 10

calls method Console.WriteLine to display the app’s output. The method call specifies
three arguments. When a method requires multiple arguments, the arguments are separat-
ed with commas (,)—this is known as a comma-separated list.

Most statements end with a semicolon (;). Therefore, line 10 represents only one
statement. Large statements can be split over many lines, but there are some restrictions.

\r Carriage return. Positions the screen cursor at the beginning of the current
line—does not advance the cursor to the next line. Any characters output after
the carriage return overwrite the characters previously output on that line.

\\ Backslash. Used to place a backslash character in a string.

1 // Fig. 3.13: Welcome4.cs
2 // Displaying multiple lines of text with string formatting.
3 using System;
4
5 public class Welcome4
6 {
7 // Main method begins execution of C# app
8 public static void Main(string[] args)
9 {

10
11 } // end Main
12 } // end class Welcome4

Welcome to
C# Programming!

Fig. 3.13 | Displaying multiple lines of text with string formatting.

Console.WriteLine("{0}\n{1}", "Welcome to", "C# Programming!");

Good Programming Practice 3.6
Place a space after each comma (,) in an argument list to make apps more readable.

Escape
sequence Description

Fig. 3.12 | Some common escape sequences. (Part 2 of 2.)

Console.WriteLine("{0}\n{1}", "Welcome to", "C# Programming!");

3.6 Another C# App: Adding Integers 81

Format Strings and Format Items
Method WriteLine’s first argument is a format string that may consist of fixed text and
format items. Fixed text is output by WriteLine, as in Fig. 3.1. Each format item is a
placeholder for a value. Format items also may include optional formatting information.

Format items are enclosed in curly braces and contain characters that tell the method
which argument to use and how to format it. For example, the format item {0} is a place-
holder for the first additional argument (because C# starts counting from 0), {1} is a place-
holder for the second, and so on. The format string in line 10 specifies that WriteLine
should output two arguments and that the first one should be followed by a newline char-
acter. So this example substitutes "Welcome to" for the {0} and "C# Programming!" for
the {1}. The output shows that two lines of text are displayed. Because braces in a for-
matted string normally indicate a placeholder for text substitution, you must type two left
braces ({{) or two right braces (}}) to insert a single left or right brace into a formatted
string, respectively. We introduce additional formatting features as they’re needed in our
examples.

3.6 Another C# App: Adding Integers
Our next app reads (or inputs) two integers (whole numbers, like –22, 7, 0 and 1024)
typed by a user at the keyboard, computes the sum of the values and displays the result.
This app must keep track of the numbers supplied by the user for the calculation later in
the app. Apps remember numbers and other data in the computer’s memory and access
that data through app elements called variables. The app of Fig. 3.14 demonstrates these
concepts. In the sample output, we highlight data the user enters at the keyboard in bold.

Common Programming Error 3.4
Splitting a statement in the middle of an identifier or a string is a syntax error.

1 // Fig. 3.14: Addition.cs
2 // Displaying the sum of two numbers input from the keyboard.
3 using System;
4
5 public class Addition
6 {
7 // Main method begins execution of C# app
8 public static void Main(string[] args)
9 {

10
11
12
13
14 Console.Write("Enter first integer: "); // prompt user
15 // read first number from user
16
17
18 Console.Write("Enter second integer: "); // prompt user

Fig. 3.14 | Displaying the sum of two numbers input from the keyboard. (Part 1 of 2.)

int number1; // declare first number to add
int number2; // declare second number to add
int sum; // declare sum of number1 and number2

number1 = Convert.ToInt32(Console.ReadLine());

82 Chapter 3 Introduction to C# Apps

Comments
Lines 1–2

state the figure number, file name and purpose of the app.

Class Addition
Line 5

begins the declaration of class Addition. Remember that the body of each class declaration
starts with an opening left brace (line 6) and ends with a closing right brace (line 26).

Function Main

The app begins execution with Main (lines 8–25). The left brace (line 9) marks the begin-
ning of Main’s body, and the corresponding right brace (line 25) marks the end of Main’s
body. Method Main is indented one level within the body of class Addition and the code
in the body of Main is indented another level for readability.

Declaring Variable number1
Line 10

is a variable declaration statement (also called a declaration) that specifies the name
(number1) and type of a variable (int) used in this app. A variable is a location in the com-
puter’s memory where a value can be stored for use later in an app. Variables are typically
declared with a name and a type before they’re used. A variable’s name enables the app to
access the value of the variable in memory—the name can be any valid identifier. (See
Section 3.2 for identifier naming requirements.) A variable’s type specifies what kind of
information is stored at that location in memory and how much space should be set aside
to store that value. Like other statements, declaration statements end with a semicolon (;).

19 // read second number from user
20
21
22
23
24
25 } // end Main
26 } // end class Addition

Enter first integer: 45
Enter second integer: 72
Sum is 117

// Fig. 3.14: Addition.cs
// Displaying the sum of two numbers input from the keyboard.

public class Addition

int number1; // declare first number to add

Fig. 3.14 | Displaying the sum of two numbers input from the keyboard. (Part 2 of 2.)

number2 = Convert.ToInt32(Console.ReadLine());

sum = number1 + number2; // add numbers

Console.WriteLine("Sum is {0}", sum); // display sum

3.6 Another C# App: Adding Integers 83

Type int
The declaration in line 10 specifies that the variable named number1 is of type int—it will
hold integer values (whole numbers such as 7, –11, 0 and 31914). The range of values for
an int is –2,147,483,648 (int.MinValue) to +2,147,483,647 (int.MaxValue). We’ll
soon discuss types float, double and decimal, for specifying real numbers, and type char,
for specifying characters. Real numbers contain decimal points, as in 3.4, 0.0 and –11.19.
Variables of type float and double store approximations of real numbers in memory.
Variables of type decimal store real numbers precisely (to 28–29 significant digits), so
decimal variables are often used with monetary calculations. Variables of type char repre-
sent individual characters, such as an uppercase letter (e.g., A), a digit (e.g., 7), a special
character (e.g., * or %) or an escape sequence (e.g., the newline character, \n). Types such
as int, float, double, decimal and char are often called simple types. Simple-type names
are keywords and must appear in all lowercase letters. Appendix B summarizes the charac-
teristics of the simple types (bool, byte, sbyte, char, short, ushort, int, uint, long,
ulong, float, double and decimal).

Declaring Variables number2 and sum

The variable declaration statements at lines 11–12

similarly declare variables number2 and sum to be of type int.
Variable declaration statements can be split over several lines, with the variable names

separated by commas (i.e., a comma-separated list of variable names). Several variables of
the same type may be declared in one declaration or in multiple declarations. For example,
lines 10–12 can also be written as follows:

Prompting the User for Input
Line 14

int number2; // declare second number to add
int sum; // declare sum of number1 and number2

int number1, // declare first number to add
number2, // declare second number to add
sum; // declare sum of number1 and number2

Good Programming Practice 3.7
Declare each variable on a separate line. This format allows a comment to be easily in-
serted next to each declaration.

Good Programming Practice 3.8
Choosing meaningful variable names helps code to be self-documenting (i.e., one can un-
derstand the code simply by reading it rather than by reading documentation manuals or
viewing an excessive number of comments).

Good Programming Practice 3.9
By convention, variable-name identifiers begin with a lowercase letter, and every word in
the name after the first word begins with a capital letter. This naming convention is
known as lower camel casing.

Console.Write("Enter first integer: "); // prompt user

84 Chapter 3 Introduction to C# Apps

uses Console.Write to display the message "Enter first integer: ". This message is
called a prompt because it directs the user to take a specific action.

Reading a Value into Variable number1
Line 16

works in two steps. First, it calls the Console’s ReadLine method, which waits for the user
to type a string of characters at the keyboard and press the Enter key. As we mentioned,
some methods perform a task then return the result of that task. In this case, ReadLine re-
turns the text the user entered. Then, the string is used as an argument to class Convert’s
ToInt32 method, which converts this sequence of characters into data of type int. In this
case, method ToInt32 returns the int representation of the user’s input.

Possible Erroneous User Input
Technically, the user can type anything as the input value. ReadLine will accept it and pass
it off to the ToInt32 method. This method assumes that the string contains a valid integer
value. In this app, if the user types a noninteger value, a runtime logic error called an ex-
ception will occur and the app will terminate. C# offers a technology called exception han-
dling that will help you make your apps more robust by enabling them to handle
exceptions and continue executing. This is also known as making your app fault tolerant.
We introduce exception handling in Section 8.4, then use it again in Chapter 10. We take
a deeper look at exception handling in Chapter 13.

Assigning a Value to a Variable
In line 16, the result of the call to method ToInt32 (an int value) is placed in variable
number1 by using the assignment operator, =. The statement is read as “number1 gets the
value returned by Convert.ToInt32.” Operator = is a binary operator, because it works
on two pieces of information. These are known as its operands—in this case, the operands
are number1 and the result of the method call Convert.ToInt32. This statement is called
an assignment statement, because it assigns a value to a variable. Everything to the right
of the assignment operator, =, is always evaluated before the assignment is performed.

Prompting the User for Input and Reading a Value into Variable number2
Line 18

prompts the user to enter the second integer. Line 20

reads a second integer and assigns it to the variable number2.

Summing the number1 and number2

Line 22

number1 = Convert.ToInt32(Console.ReadLine());

Good Programming Practice 3.10
Place spaces on either side of a binary operator to make the code more readable.

Console.Write("Enter second integer: "); // prompt user

number2 = Convert.ToInt32(Console.ReadLine());

sum = number1 + number2; // add numbers

3.7 Memory Concepts 85

calculates the sum of number1 and number2 and assigns the result to variable sum by using
the assignment operator, =. The statement is read as “sum gets the value of number1 +
number2.” Most calculations are performed in assignment statements. When number1 +

number2 is encountered, the values stored in the variables are used in the calculation. The
addition operator is a binary operator—its two operands are number1 and number2. Por-
tions of statements that contain calculations are called expressions. In fact, an expression
is any portion of a statement that has a value associated with it. For example, the value of
the expression number1 + number2 is the sum of the numbers. Similarly, the value of the
expression Console.ReadLine() is the string of characters typed by the user.

Displaying the sum
After the calculation has been performed, line 24

uses method Console.WriteLine to display the sum. The format item {0} is a placeholder
for the first argument after the format string. Other than the {0} format item, the remain-
ing characters in the format string are all fixed text. So method WriteLine displays "Sum
is ", followed by the value of sum (in the position of the {0} format item) and a newline.

Performing Calculations in Output Statements
Calculations can also be performed inside output statements. We could have combined
the statements in lines 22 and 24 into the statement

The parentheses around the expression number1 + number2 are not required—they’re in-
cluded for clarity to emphasize that the value of the expression number1 + number2 is out-
put in the position of the {0} format item.

3.7 Memory Concepts
Variable names such as number1, number2 and sum actually correspond to locations in the
computer’s memory. Every variable has a name, a type, a size (determined by the type)
and a value.

In the addition app of Fig. 3.14, when the statement (line 16)

executes, the number typed by the user is placed into a memory location to which the
name number1 has been assigned by the compiler. Suppose that the user enters 45. The
computer places that integer value into location number1, as shown in Fig. 3.15. Whenev-
er a value is placed in a memory location, the value replaces the previous value in that lo-
cation—the previous value is lost.

Console.WriteLine("Sum is {0}", sum); // display sum

Console.WriteLine("Sum is {0}", (number1 + number2));

number1 = Convert.ToInt32(Console.ReadLine());

Fig. 3.15 | Memory location showing the name and value of variable number1.

45number1

86 Chapter 3 Introduction to C# Apps

When the statement (line 20)

executes, suppose that the user enters 72. The computer places that integer value into lo-
cation number2. The memory now appears as shown in Fig. 3.16.

After the app of Fig. 3.14 obtains values for number1 and number2, it adds the values
and places the sum into variable sum. The statement (line 22)

performs the addition, then replaces sum’s previous value. After sum has been calculated,
memory appears as shown in Fig. 3.17. The values of number1 and number2 appear exactly
as they did before they were used in the calculation of sum. These values were used, but not
destroyed, as the computer performed the calculation—when a value is read from a mem-
ory location, the process is nondestructive.

3.8 Arithmetic
Most apps perform arithmetic calculations. The arithmetic operators are summarized in
Fig. 3.18. Note the various special symbols not used in algebra. The asterisk (*) indicates
multiplication, and the percent sign (%) is the remainder operator (called modulus in some
languages), which we’ll discuss shortly. The arithmetic operators in Fig. 3.18 are binary
operators—for example, the expression f + 7 contains the binary operator + and the two
operands f and 7.

If both operands of the division operator (/) are integers, integer division is per-
formed and the result is an integer—for example, the expression 7 / 4 evaluates to 1, and
the expression 17 / 5 evaluates to 3. Any fractional part in integer division is simply trun-
cated (i.e., discarded)—no rounding occurs. C# provides the remainder operator, %, which
yields the remainder after division. The expression x % y yields the remainder after x is

number2 = Convert.ToInt32(Console.ReadLine());

Fig. 3.16 | Memory locations after storing values for number1 and number2.

sum = number1 + number2; // add numbers

Fig. 3.17 | Memory locations after calculating and storing the sum of number1 and
number2.

45

72

number1

number2

45

72

117

number1

number2

sum

3.8 Arithmetic 87

divided by y. Thus, 7 % 4 yields 3, and 17 % 5 yields 2. This operator is most commonly
used with integer operands but can also be used with floats, doubles, and decimals. In
this chapter’s exercises and in later chapters, we consider several interesting applications of
the remainder operator, such as determining whether one number is a multiple of another.

Arithmetic Expressions in Straight-Line Form
Arithmetic expressions must be written in straight-line form to facilitate entering apps
into the computer. Thus, expressions such as “a divided by b” must be written as a / b, so
that all constants, variables and operators appear in a straight line. The following algebraic
notation is not acceptable to compilers:

Parentheses for Grouping Subexpressions
Parentheses are used to group terms in C# expressions in the same manner as in algebraic
expressions. For example, to multiply a times the quantity b + c, we write

If an expression contains nested parentheses, such as

the expression in the innermost set of parentheses (a + b in this case) is evaluated first.

Rules of Operator Precedence
C# applies the operators in arithmetic expressions in a precise sequence determined by the
following rules of operator precedence, which are generally the same as those followed in
algebra (Fig. 3.19). These rules enable C# to apply operators in the correct order.2

C# operation
Arithmetic
operator

Algebraic
expression

C#
expression

Addition + f + 7 f + 7

Subtraction – p – c p - c

Multiplication * b ⋅ m b * m

Division / x / y or or x ÷ y x / y

Remainder % r mod s r % s

Fig. 3.18 | Arithmetic operators.

a * (b + c)

((a + b) * c)

2. We discuss simple examples here to explain the order of evaluation of expressions. More subtle order of
evaluation issues occur in the increasingly complex expressions you’ll encounter later. For more infor-
mation, see the following blog posts from Eric Lippert: blogs.msdn.com/ericlippert/archive/
2008/05/23/precedence-vs-associativity-vs-order.aspx and blogs.msdn.com/oldnewthing/
archive/2007/08/14/4374222.aspx.

x
y
--

a
b
--

88 Chapter 3 Introduction to C# Apps

When we say that operators are applied from left to right, we’re referring to their asso-
ciativity. You’ll see that some operators associate from right to left. Figure 3.19 summa-
rizes these rules of operator precedence. The table will be expanded as additional operators
are introduced. Appendix A provides the complete precedence chart.

Sample Algebraic and C# Expressions
Now let’s consider several expressions in light of the rules of operator precedence. Each
example lists an algebraic expression and its C# equivalent. The following is an example
of an arithmetic mean (average) of five terms:

The parentheses are required because division has higher precedence than addition. The
entire quantity (a + b + c + d + e) is to be divided by 5. If the parentheses are erroneously
omitted, we obtain a + b + c + d + e / 5, which evaluates as

The following is an example of the equation of a straight line:

No parentheses are required. The multiplication operator is applied first, because multi-
plication has a higher precedence than addition. The assignment occurs last, because it has
a lower precedence than multiplication or addition.

The following example contains remainder (%), multiplication, division, addition and
subtraction operations:

Operators Operations Order of evaluation (associativity)

Evaluated first

*

/

%

Multiplication
Division
Remainder

If there are several operators of this type,
they’re evaluated from left to right.

Evaluated next

+

-

Addition
Subtraction

If there are several operators of this type,
they’re evaluated from left to right.

Fig. 3.19 | Precedence of arithmetic operators.

Algebra:

C#: m = (a + b + c + d + e) / 5;

Algebra:

C#: y = m * x + b;

m
a b c d e+ + + +

5
---------------------------------------=

a b c d
e
5
---+ + + +

y mx b+=

z = p * r % q + w / x - y;

z = pr%q + w/x – yAlgebra:

C++:

6 1 2 4 3 5

3.8 Arithmetic 89

The circled numbers under the statement indicate the order in which C# applies the op-
erators. The multiplication, remainder and division operations are evaluated first in left-
to-right order (i.e., they associate from left to right), because they have higher precedence
than addition and subtraction. The addition and subtraction operations are evaluated
next. These operations are also applied from left to right.

Evaluation of a Second-Degree Polynomial
To develop a better understanding of the rules of operator precedence, consider the eval-
uation of a second-degree polynomial (y = ax2 + bx + c):

The circled numbers indicate the order in which C# applies the operators. The multipli-
cation operations are evaluated first in left-to-right order (i.e., they associate from left to
right), because they have higher precedence than addition. The addition operations are
evaluated next and are applied from left to right. There’s no arithmetic operator for expo-
nentiation in C#, so x2 is represented as x * x. Section 6.4 shows an alternative for per-
forming exponentiation in C#.

Suppose that a, b, c and x in the preceding second-degree polynomial are initialized
(given values) as follows: a = 2, b = 3, c = 7 and x = 5. Figure 3.20 illustrates the order in
which the operators are applied.

Fig. 3.20 | Order in which a second-degree polynomial is evaluated.

1 2 4 3 5

y = a * x * x + b * x + c;

6 1 2 4 3 5

(Leftmost multiplication)

(Leftmost multiplication)

(Multiplication before addition)

(Leftmost addition)

(Last addition)

(Last operation—place 72 in y)

Step 1. y = 2 * 5 * 5 + 3 * 5 + 7;

2 * 5 is 10

Step 2. y = 10 * 5 + 3 * 5 + 7;

10 * 5 is 50

Step 3. y = 50 + 3 * 5 + 7;

3 * 5 is 15

Step 4. y = 50 + 15 + 7;

50 + 15 is 65

Step 5. y = 65 + 7;

65 + 7 is 72

Step 6. y = 72

90 Chapter 3 Introduction to C# Apps

Redundant Parentheses
As in algebra, it’s acceptable to place unnecessary parentheses in an expression to make the
expression clearer. These are called redundant parentheses. For example, the preceding as-
signment statement might be parenthesized to highlight its terms as follows:

3.9 Decision Making: Equality and Relational Operators
A condition is an expression that can be either true or false. This section introduces a sim-
ple version of C#’s if statement that allows an app to make a decision based on the value
of a condition. For example, the condition “grade is greater than or equal to 60” deter-
mines whether a student passed a test. If the condition in an if statement is true, the body
of the if statement executes. If the condition is false, the body does not execute. We’ll see
an example shortly.

Conditions in if statements can be formed by using the equality operators (== and
!=) and relational operators (>, <, >= and <=) summarized in Fig. 3.21. The two equality
operators (== and !=) each have the same level of precedence, the relational operators (>,
<, >= and <=) each have the same level of precedence, and the equality operators have lower
precedence than the relational operators. They all associate from left to right.

Using the if Statement
Figure 3.22 uses six if statements to compare two integers entered by the user. If the con-
dition in any of these if statements is true, the assignment statement associated with that
if statement executes. The app uses class Console to prompt for and read two lines of text

y = (a * x * x) + (b * x) + c;

Common Programming Error 3.5
Confusing the equality operator, ==, with the assignment operator, =, can cause a logic er-
ror or a syntax error. The equality operator should be read as “is equal to,” and the assign-
ment operator should be read as “gets” or “gets the value of.” To avoid confusion, some
programmers read the equality operator as “double equals” or “equals equals.”

Standard algebraic
equality and
relational operators

C# equality or
relational
operator

Sample C#
condition

Meaning of
C# condition

Relational operators

> > x > y x is greater than y

< < x < y x is less than y

≥ >= x >= y x is greater than or equal to y

≤ <= x <= y x is less than or equal to y

Equality operators

= == x == y x is equal to y

≠ != x != y x is not equal to y

Fig. 3.21 | Relational and equality operators.

3.9 Decision Making: Equality and Relational Operators 91

from the user, extracts the integers from that text with the ToInt32 method of class Con-
vert, and stores them in variables number1 and number2. Then the app compares the num-
bers and displays the results of the comparisons that are true.

1 // Fig. 3.22: Comparison.cs
2 // Comparing integers using if statements, equality operators
3 // and relational operators.
4 using System;
5
6 public class Comparison
7 {
8 // Main method begins execution of C# app
9 public static void Main(string[] args)

10 {
11 int number1; // declare first number to compare
12 int number2; // declare second number to compare
13
14 // prompt user and read first number
15 Console.Write("Enter first integer: ");
16 number1 = Convert.ToInt32(Console.ReadLine());
17
18 // prompt user and read second number
19 Console.Write("Enter second integer: ");
20 number2 = Convert.ToInt32(Console.ReadLine());
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39 } // end Main
40 } // end class Comparison

Enter first integer: 42
Enter second integer: 42
42 == 42
42 <= 42
42 >= 42

Fig. 3.22 | Comparing integers using if statements, equality operators and relational operators.
(Part 1 of 2.)

if (number1 == number2)
Console.WriteLine("{0} == {1}", number1, number2);

if (number1 != number2)
Console.WriteLine("{0} != {1}", number1, number2);

if (number1 < number2)
Console.WriteLine("{0} < {1}", number1, number2);

if (number1 > number2)
Console.WriteLine("{0} > {1}", number1, number2);

if (number1 <= number2)
Console.WriteLine("{0} <= {1}", number1, number2);

if (number1 >= number2)
Console.WriteLine("{0} >= {1}", number1, number2);

92 Chapter 3 Introduction to C# Apps

Class Comparison
The declaration of class Comparison begins at line 6

The class’s Main method (lines 9–39) begins the execution of the app.

Variable Declarations
Lines 11–12

declare the int variables used to store the values entered by the user.

Reading the Inputs from the User
Lines 14–16

prompt the user to enter the first integer and input the value. The input value is stored in
variable number1. Lines 18–20

perform the same task, except that the input value is stored in variable number2.

Comparing Numbers
Lines 22–23

compare the values of the variables number1 and number2 to determine whether they’re
equal. An if statement always begins with keyword if, followed by a condition in paren-

Enter first integer: 1000
Enter second integer: 2000
1000 != 2000
1000 < 2000
1000 <= 2000

Enter first integer: 2000
Enter second integer: 1000
2000 != 1000
2000 > 1000
2000 >= 1000

public class Comparison

int number1; // declare first number to compare
int number2; // declare second number to compare

// prompt user and read first number
Console.Write("Enter first integer: ");
number1 = Convert.ToInt32(Console.ReadLine());

// prompt user and read second number
Console.Write("Enter second integer: ");
number2 = Convert.ToInt32(Console.ReadLine());

if (number1 == number2)
Console.WriteLine("{0} == {1}", number1, number2);

Fig. 3.22 | Comparing integers using if statements, equality operators and relational operators.
(Part 2 of 2.)

3.9 Decision Making: Equality and Relational Operators 93

theses. An if statement expects one statement in its body. The indentation of the body
statement shown here is not required, but it improves the code’s readability by emphasiz-
ing that the statement in line 23 is part of the if statement that begins in line 22. Line 23
executes only if the numbers stored in variables number1 and number2 are equal (i.e., the
condition is true). The if statements in lines 25–26, 28–29, 31–32, 34–35 and 37–38
compare number1 and number2 with the operators !=, <, >, <= and >=, respectively. If the
condition in any of the if statements is true, the corresponding body statement executes.

No Semicolon at the End of the First Line of an if Statement
There’s no semicolon (;) at the end of the first line of each if statement. Such a semicolon
would result in a logic error at execution time. For example,

would actually be interpreted by C# as

where the semicolon in the line by itself—called the empty statement—is the statement
to execute if the condition in the if statement is true. When the empty statement executes,
no task is performed in the app. The app then continues with the output statement, which
always executes, regardless of whether the condition is true or false, because the output
statement is not part of the if statement.

Whitespace
Note the use of whitespace in Fig. 3.22. Recall that whitespace characters, such as tabs,
newlines and spaces, are normally ignored by the compiler. So statements may be split over

Common Programming Error 3.6
Omitting the left and/or right parentheses for the condition in an if statement is a syntax
error—the parentheses are required.

Common Programming Error 3.7
Reversing the operators !=, >= and <=, as in =!, => and =<, can result in syntax or logic errors.

Common Programming Error 3.8
It’s a syntax error if the operators ==, !=, >= and <= contain spaces between their symbols,
as in = =, ! =, > = and < =, respectively.

Good Programming Practice 3.11
Indent an if statement’s body to make it stand out and to enhance app readability.

if (number1 == number2); // logic error
Console.WriteLine("{0} == {1}", number1, number2);

if (number1 == number2)
; // empty statement

Console.WriteLine("{0} == {1}", number1, number2);

Common Programming Error 3.9
Placing a semicolon immediately after the right parenthesis of the condition in an if state-
ment is normally a logic error.

94 Chapter 3 Introduction to C# Apps

several lines and may be spaced according to your preferences without affecting the mean-
ing of an app. It’s incorrect to split identifiers, strings, and multicharacter operators (like
>=). Ideally, statements should be kept small, but this is not always possible.

Precedence and Associativity of the Operators We’ve Discussed So Far
Figure 3.23 shows the precedence of the operators introduced in this chapter. The operators
are shown from top to bottom in decreasing order of precedence. All these operators, with
the exception of the assignment operator, =, associate from left to right. Addition is left as-
sociative, so an expression like x + y + z is evaluated as if it had been written as (x + y) + z.
The assignment operator, =, associates from right to left, so an expression like x = y = 0 is
evaluated as if it had been written as x = (y = 0), which, as you’ll soon see, first assigns the
value 0 to variable y then assigns the result of that assignment, 0, to x.

3.10 Wrap-Up
You learned many important features of C# in this chapter. First you learned how to dis-
play data on the screen in a Command Prompt using the Console class’s Write and Write-
Line methods. Next, we showed how to use format strings and format items to create

Good Programming Practice 3.12
Place no more than one statement per line in an app. This format enhances readability.

Good Programming Practice 3.13
A lengthy statement can be spread over several lines. If a single statement must be split
across lines, choose breaking points that make sense, such as after a comma in a comma-
separated list, or after an operator in a lengthy expression. If a statement is split across two
or more lines, indent all subsequent lines until the end of the statement.

Good Programming Practice 3.14
Refer to the operator precedence chart (the complete chart is in Appendix A) when writing
expressions containing many operators. Confirm that the operations in the expression are
performed in the order you expect. If you’re uncertain about the order of evaluation in a
complex expression, use parentheses to force the order, as you would do in algebraic expres-
sions. Observe that some operators, such as assignment, =, associate from right to left rather
than left to right.

Operators Associativity Type

* / % left to right multiplicative

+ - left to right additive

< <= > >= left to right relational

== != left to right equality

= right to left assignment

Fig. 3.23 | Precedence and associativity of operations discussed so far.

3.10 Wrap-Up 95

formatted output strings. You learned how to input data from the keyboard using the Con-
sole class’s ReadLinemethod. We discussed how to perform calculations using C#’s arith-
metic operators. Finally, you learned to make decisions using the if statement and the
relational and equality operators. The apps presented here introduced you to basic pro-
gramming concepts. As you’ll see in Chapter 4, C# apps typically contain just a few lines
of code in method Main—these statements normally create the objects that perform the
work of the app. You’ll learn how to implement your own classes and use objects of those
classes in apps.

Summary
Section 3.2 A Simple C# App: Displaying a Line of Text
• You may insert comments to document apps and improve their readability. The C# compiler

ignores comments.

• A comment that begins with // is called a single-line comment, because it terminates at the end
of the line on which it appears.

• Comments delimited by /* and */ can be spread over several lines.

• A programming language’s syntax specifies rules for creating a proper app in that language.

• A using directive helps the compiler locate a class that’s used in an app.

• C# provides a rich set of predefined classes that you can reuse rather than “reinventing the
wheel.” These classes are grouped into namespaces—named collections of classes.

• Collectively, C#’s predefined namespaces are referred to as the .NET Framework Class Library.

• You may use blank lines and space characters to make apps easier to read. Together, blank lines,
space characters and tab characters are known as whitespace. Space characters and tabs are known
specifically as whitespace characters. Whitespace is ignored by the compiler.

• Every app in C# consists of at least one class declaration that’s defined by the programmer (also
known as a user-defined class).

• Keywords are reserved for use by C# and are always spelled with all lowercase letters.

• Keyword class introduces a class declaration and is immediately followed by the class name.

• By convention, all class names in C# begin with a capital letter and capitalize the first letter of
each word they include (e.g., SampleClassName). This known as upper camel casing.

• A C# class name is an identifier—a series of characters consisting of letters, digits, and under-
scores (_) that does not begin with a digit and does not contain spaces.

• C# is case sensitive—that is, uppercase and lowercase letters are distinct.

• The body of every class declaration is delimited by braces, { and }.

• Method Main is the starting point of every C# app and is typically defined as:

public static void Main(string[] args)

• Methods are able to perform tasks and can return information when they complete their tasks.
Keyword void indicates that a method will perform a task but will not return any information.

• Statements instruct the computer to perform actions.

• A sequence of characters in double quotation marks is called a string, a character string, a message
or a string literal.

• The Console class allows C# apps to read and display characters in the console window.

96 Chapter 3 Introduction to C# Apps

• Method Console.WriteLine displays its argument in the console window, followed by a newline
character to position the screen cursor to the beginning of the next line.

• Most statements end with a semicolon.

Section 3.3 Creating a Simple App in Visual Studio
• Visual Studio provides many ways to personalize your coding experience. You can modify the

editor settings to display line numbers or set code indentation.

• As you type characters, in some contexts Visual Studio highlights the first member that matches
all the characters typed, then displays a tool tip containing a description of that member. This
IDE feature is called IntelliSense.

• When you type a line of code and press Enter, the IDE either applies syntax-color highlighting
or generates a syntax error.

Section 3.4 Modifying Your Simple C# App
• Console.Write displays its argument and positions the screen cursor immediately after the last

character displayed.

• C# combines a backslash (\) in a string with the next character in the string to form an escape
sequence. The escape sequence \n (newline) positions the cursor on the next line.

Section 3.5 Formatting Text with Console.Write and Console.WriteLine

• The Console.Write and Console.WriteLine methods can also display formatted data.

• When a method requires multiple arguments, the arguments are separated with commas (,)—
this is known as a comma-separated list.

• Method Console.Write’s first argument can be a format string that may consist of fixed text and
format items. Fixed text is displayed normally. Each format item is a placeholder for a value.

• Format items are enclosed in curly braces and begin with a number that specifies an argument.
The format item {0} is a placeholder for the first additional argument after the format string (be-
cause we start counting from 0), {1} is a placeholder for the second, and so on.

Section 3.6 Another C# App: Adding Integers
• Integers are whole numbers, like –22, 7, 0 and 1024.

• A variable declaration statement specifies the name and type of a variable.

• A variable is a location in the computer’s memory where a value can be stored for use later in an
app. Variables are typically declared with a name and a type before they’re used.

• A variable’s name enables the app to access the value of the variable in memory. A variable name
can be any valid identifier.

• Like other statements, variable declaration statements end with a semicolon (;).

• Type int is used to declare variables that will hold integer values. The range of values for an int
is –2,147,483,648 to +2,147,483,647.

• Types float, double, and decimal specify real numbers, and type char specifies character data.
Real numbers are numbers that may contain decimal points, such as 3.4, 0.0 and –11.19. Vari-
ables of type char data represent individual characters, such as an uppercase letter (e.g., A), a digit
(e.g., 7), a special character (e.g., * or %) or an escape sequence (e.g., the newline character, \n).

• Types such as int, float, double, decimal, and char are often called simple types. Simple-type
names are keywords; thus, they must appear in all lowercase letters.

• A prompt directs the user to take a specific action.

Terminology 97

• Console method ReadLine obtains a line of text from the keyboard for use in an app.

• Convert method ToInt32 extracts an integer from a string of characters.

• The assignment operator, =, enables the app to give a value to a variable. Operator = is called a
binary operator because it has two operands. An assignment statement uses an assignment oper-
ator to assign a value to a variable.

• Portions of statements that have values are called expressions.

Section 3.7 Memory Concepts
• Variable names correspond to locations in the computer’s memory. Every variable has a name, a

type, a size and a value.

• Whenever a value is placed in a memory location, the value replaces the previous value in that
location. The previous value is lost.

Section 3.8 Arithmetic
• Most apps perform arithmetic calculations. The arithmetic operators are + (addition), - (subtrac-

tion), * (multiplication), / (division) and % (remainder).

• If both operands of the division operator (/) are integers, the result is an integer

• The remainder operator, %, yields the remainder after division.

• Arithmetic expressions in C# must be written in straight-line form.

• If an expression contains nested parentheses, the innermost set of parentheses is evaluated first.

• C# applies the operators in arithmetic expressions in a precise sequence determined by the rules
of operator precedence.

• Associativity determines whether operators are applied from left to right or right to left.

• Redundant parentheses in an expression can make an expression clearer.

Section 3.9 Decision Making: Equality and Relational Operators
• A condition is an expression that can be either true or false. C#’s if statement allows an app to

make a decision based on the value of a condition.

• Conditions in if statements can be formed by using the equality (== and !=) and relational (>,
<, >= and <=) operators.

• An if statement always begins with keyword if, followed by a condition in parentheses, and ex-
pects one statement in its body.

• An empty statement is a statement that does not perform a task.

Terminology
addition operator (+)
argument
arithmetic operators (*, /, %, + and -)
assignment operator (=)
assignment statement
associativity of operators
backslash (\) escape character
binary operator
body of a class declaration
body of a method declaration
char simple type

character string
class declaration
class keyword
class name
code walkthrough
comma (,)
comma-separated list
Command Prompt
comment
compilation error
condition

98 Chapter 3 Introduction to C# Apps

Console class
console window
Console.Write method
Console.WriteLine method
contextual keyword
Convert class
.cs file-name extension
decimal simple type
decision
division operator (/)
.dll file-name extension
double simple type
dynamically linked library
empty statement (;)
equality operators

== “is equal to”
!= “is not equal to”

Error List window
escape character
escape sequence
.exe file-name extension
executable
expression
fault tolerant
File Name property
fixed text in a format string
float simple type
format item
format string
Framework Class Library
identifier
if statement
int (integer) simple type
integer
integer division
Intellisense
left brace ({)
literal
location of a variable
lower camel casing
Main method
member of a class
method
multiplication operator (*)

namespace
nested parentheses
newline character (\n)
operand
operator precedence
Parameter Info window
parentheses ()

perform an action
precedence of operators
prompt
public keyword
ReadLine method of class Console
redundant parentheses
relational operators

< “is less than”
<= “is less than or equal to”
> “is greater than”
>= “is greater than or equal to”

remainder operator (%)
reserved words
right brace (})
rules of operator precedence
semicolon (;) statement terminator
simple type
single-line comment (//)
standard input/output class (Console)
statement
straight-line form
string
subtraction operator (-)
syntax color highlighting
syntax error
ToInt32 method of class Convert
upper camel casing
using directive
variable
variable declaration
variable declaration statement
variable name
variable size
variable type
variable value
void keyword
whitespace

Self-Review Exercises
3.1 Fill in the blanks in each of the following statements:

a) A(n) begins the body of every method, and a(n) ends the body of
every method.

b) Most statements end with a(n) .

Answers to Self-Review Exercises 99

c) The statement is used to make decisions.
d) begins a single-line comment.
e) , and are called whitespace characters. Newline characters

are also considered whitespace characters.
f) are reserved for use by C#.
g) C# apps begin execution at method .
h) Methods and display information in the console window.

3.2 State whether each of the following is true or false. If false, explain why.
a) Comments cause the computer to display the text after the // on the screen when the

app executes.
b) C# considers the variables number and NuMbEr to be identical.
c) The remainder operator (%) can be used only with integer operands.
d) The arithmetic operators *, /, %, + and - all have the same level of precedence.

3.3 Write statements to accomplish each of the following tasks:
a) Declare variables c, thisIsAVariable, q76354 and number to be of type int.
b) Prompt the user to enter an integer.
c) Input an integer and assign the result to int variable value.
d) If the variable number is not equal to 7, display "The variable number is not equal to 7".
e) Display "This is a C# app" on one line in the console window.
f) Display "This is a C# app" on two lines in the console window. The first line should

end with C#. Use method Console.WriteLine.
g) Display "This is a C# app" on two lines in the console window. The first line should

end with C#. Use method Console.WriteLine and two format items.

3.4 Identify and correct the errors in each of the following statements:
a) if (c < 7);

Console.WriteLine("c is less than 7");

b) if (c => 7)

Console.WriteLine("c is equal to or greater than 7");

3.5 Write declarations, statements or comments that accomplish each of the following tasks:
a) State that an app will calculate the product of three integers.
b) Declare the variables x, y, z and result to be of type int.
c) Prompt the user to enter the first integer.
d) Read the first integer from the user and store it in the variable x.
e) Prompt the user to enter the second integer.
f) Read the second integer from the user and store it in the variable y.
g) Prompt the user to enter the third integer.
h) Read the third integer from the user and store it in the variable z.
i) Compute the product of the three integers contained in variables x, y and z, and assign

the result to the variable result.
j) Display the message "Product is", followed by the value of the variable result.

3.6 Using the statements you wrote in Exercise 3.5, write a complete app that calculates and
displays the product of three integers.

Answers to Self-Review Exercises
3.1 a) left brace ({), right brace (}). b) semicolon (;). c) if. d) //. e) Blank lines, space char-
acters, tab characters. f) Keywords. g) Main. h) Console.WriteLine and Console.Write.

100 Chapter 3 Introduction to C# Apps

3.2 a) False. Comments do not cause any action to be performed when the app
executes. They’re used to document apps and improve their readability.

b) False. C# is case sensitive, so these variables are distinct.
c) False. The remainder operator also can be used with noninteger operands in C#.
d) False. The operators *, / and % are on the same level of precedence, and the operators +

and - are on a lower level of precedence.

3.3 a) int c, thisIsAVariable, q76354, number;

or
int c;

int thisIsAVariable;

int q76354;

int number;

b) Console.Write("Enter an integer: ");

c) value = Convert.ToInt32(Console.ReadLine());

d) if (number != 7)

Console.WriteLine("The variable number is not equal to 7");

e) Console.WriteLine("This is a C# app");

f) Console.WriteLine("This is a C#\napp");

g) Console.WriteLine("{0}\n{1}", "This is a C#", "app");

3.4 a) Error: Semicolon after the right parenthesis of the condition (c < 7) in the if statement.
Correction: Remove the semicolon after the right parenthesis. [Note: With the semicolon,
the output statement executes regardless of whether the condition in the if is true.]

b) Error: The relational operator => is incorrect.
Correction: Change => to >=.

3.5 a) // Calculating the product of three integers

b) int x, y, z, result;

or
int x;

int y;

int z;

int result;

c) Console.Write("Enter first integer: ");

d) x = Convert.ToInt32(Console.ReadLine());

e) Console.Write("Enter second integer: ");

f) y = Convert.ToInt32(Console.ReadLine());

g) Console.Write("Enter third integer: ");

h) z = Convert.ToInt32(Console.ReadLine());

i) result = x * y * z;

j) Console.WriteLine("Product is {0}", result);

3.6 The solution to Self-Review Exercise 3.6 is as follows:

1 // Exercise 3.6: Product.cs
2 // Calculating the product of three integers.
3 using System;
4
5 public class Product
6 {
7 public static void Main(string[] args)
8 {

Exercises 101

Exercises
3.7 Fill in the blanks in each of the following statements:

a) are used to document an app and improve its readability.
b) A decision can be made in a C# app with a(n) .
c) Calculations are normally performed by statements.
d) The arithmetic operators with the same precedence as multiplication are and

.
e) When parentheses in an arithmetic expression are nested, the set of parenthe-

ses is evaluated first.
f) A location in the computer’s memory that may contain different values at various times

throughout the execution of an app is called a(n) .

3.8 Write C# statements that accomplish each of the following tasks:
a) Display the message "Enter an integer: ", leaving the cursor on the same line.
b) Assign the product of variables b and c to variable a.
c) State that an app performs a simple payroll calculation (i.e., use text that helps to doc-

ument an app).

3.9 State whether each of the following is true or false. If false, explain why.
a) C# operators are evaluated from left to right.
b) The following are all valid variable names: _under_bar_, m928134, t5, j7, her_sales,

his_account_total, a, b, c, z and z2.
c) A valid C# arithmetic expression with no parentheses is evaluated from left to right.
d) The following are all invalid variable names: 3g, 87, 67h2, h22 and 2h.

3.10 Assuming that x = 2 and y = 3, what does each of the following statements display?
a) Console.WriteLine("x = {0}", x);

b) Console.WriteLine("Value of {0} + {0} is {1}", x, (x + x));

c) Console.Write("x =");

d) Console.WriteLine("{0} = {1}", (x + y), (y + x));

9 int x; // stores first number to be entered by user
10 int y; // stores second number to be entered by user
11 int z; // stores third number to be entered by user
12 int result; // product of numbers
13
14 Console.Write("Enter first integer: "); // prompt for input
15 x = Convert.ToInt32(Console.ReadLine()); // read first integer
16
17 Console.Write("Enter second integer: "); // prompt for input
18 y = Convert.ToInt32(Console.ReadLine()); // read second integer
19
20 Console.Write("Enter third integer: "); // prompt for input
21 z = Convert.ToInt32(Console.ReadLine()); // read third integer
22
23 result = x * y * z; // calculate the product of the numbers
24
25 Console.WriteLine("Product is {0}", result);
26 } // end Main
27 } // end class Product

Enter first integer: 10
Enter second integer: 20
Enter third integer: 30
Product is 6000

102 Chapter 3 Introduction to C# Apps

3.11 Which of the following C# statements contain variables whose values are modified?
a) p = i + j + k + 7;

b) Console.WriteLine("variables whose values are modified");

c) Console.WriteLine("a = 5");

d) value = Convert.ToInt32(Console.ReadLine());

3.12 Given that y = ax3 + 7, which of the following are correct C# statements for this equation?
a) y = a * x * x * x + 7;

b) y = a * x * x * (x + 7);

c) y = (a * x) * x * (x + 7);

d) y = (a * x) * x * x + 7;

e) y = a * (x * x * x) + 7;

f) y = a * x * (x * x + 7);

3.13 (Order of Evaluation) State the order of evaluation of the operators in each of the following
C# statements and show the value of x after each statement is performed:

a) x = 7 + 3 * 6 / 2 - 1;

b) x = 2 % 2 + 2 * 2 - 2 / 2;

c) x = (3 * 9 * (3 + (9 * 3 / (3))));

3.14 (Displaying Numbers) Write an app that displays the numbers 1 to 4 on the same line, with
each pair of adjacent numbers separated by one space. Write the app using the following techniques:

a) Use one Console.WriteLine statement.
b) Use four Console.Write statements.
c) Use one Console.WriteLine statement with four format items.

3.15 (Arithmetic) Write an app that asks the user to enter two integers, obtains them from the
user and displays their sum, product, difference and quotient (division). Use the techniques shown
in Fig. 3.14.

3.16 (Comparing Integers) Write an app that asks the user to enter two integers, obtains them
from the user and displays the larger number followed by the words "is larger". If the numbers
are equal, display the message "These numbers are equal." Use the techniques shown in Fig. 3.22.

3.17 (Arithmetic, Smallest and Largest) Write an app that inputs three integers from the user
and displays the sum, average, product, and smallest and largest of the numbers. Use the techniques
from Fig. 3.22. [Note: The average calculation in this exercise should result in an integer represen-
tation of the average. So, if the sum of the values is 7, the average should be 2, not 2.3333….]

3.18 (Displaying Shapes with Asterisks) Write an app that displays a box, an oval, an arrow and
a diamond using asterisks (*), as follows:

3.19 What does the following code display?

Console.WriteLine("*\n**\n***\n****\n*****");

********* *** * *
* * * * *** * *
* * * * ***** * *
* * * * * * *
* * * * * * *
* * * * * * *
* * * * * * *
* * * * * * *
********* *** * *

Exercises 103

3.20 What does the following code display?

Console.WriteLine("*");
Console.WriteLine("***");
Console.WriteLine("*****");
Console.WriteLine("****");
Console.WriteLine("**");

3.21 What does the following code display?

Console.Write("*");
Console.Write("***");
Console.Write("*****");
Console.Write("****");
Console.WriteLine("**");

3.22 What does the following code display?

Console.Write("*");
Console.WriteLine("***");
Console.WriteLine("*****");
Console.Write("****");
Console.WriteLine("**");

3.23 What does the following code display?

Console.WriteLine("{0}\n{1}\n{2}", "*", "***", "*****");

3.24 (Odd or Even) Write an app that reads an integer, then determines and displays whether
it’s odd or even. [Hint: Use the remainder operator. An even number is a multiple of 2. Any multiple
of 2 leaves a remainder of 0 when divided by 2.]

3.25 (Multiples) Write an app that reads two integers, determines whether the first is a multiple
of the second and displays the result. [Hint: Use the remainder operator.]

3.26 (Diameter, Circumference and Area of a Circle) Here’s a peek ahead. In this chapter, you
have learned about integers and the type int. C# can also represent floating-point numbers that
contain decimal points, such as 3.14159. Write an app that inputs from the user the radius of a circle
as an integer and displays the circle’s diameter, circumference and area using the floating-point value
3.14159 for π. Use the techniques shown in Fig. 3.14. [Note: You may also use the predefined con-
stant Math.PI for the value of π. This constant is more precise than the value 3.14159. Class Math
is defined in namespace System]. Use the following formulas (r is the radius):

diameter = 2r
circumference = 2πr
area = πr2

Don’t store each calculation’s result in a variable. Rather, specify each calculation as the value to be
output in a Console.WriteLine statement. The values produced by the circumference and area cal-
culations are floating-point numbers. You’ll learn more about floating-point numbers in
Chapter 4.

3.27 (Integer Equivalent of a Character) Here’s another peek ahead. In this chapter, you have
learned about integers and the type int. C# can also represent uppercase letters, lowercase letters
and a considerable variety of special symbols. Every character has a corresponding integer represen-
tation. The set of characters a computer uses and the corresponding integer representations for those
characters is called that computer’s character set. You can indicate a character value in an app simply
by enclosing that character in single quotes, as in 'A'.

You can determine the integer equivalent of a character by preceding that character with
(int), as in

(int) 'A'

104 Chapter 3 Introduction to C# Apps

The keyword int in parentheses is known as a cast operator, and the entire expression is called a
cast expression. (You’ll learn about cast operators in Chapter 5.) The following statement outputs a
character and its integer equivalent:

Console.WriteLine("The character {0} has the value {1}",
'A', ((int) 'A'));

When the preceding statement executes, it displays the character A and the value 65 as part of the
string. See Appendix C for a list of characters and their integer equivalents.

Using statements similar to the one shown earlier in this exercise, write an app that displays
the integer equivalents of some uppercase letters, lowercase letters, digits and special symbols. Dis-
play the integer equivalents of the following: A B C a b c 0 1 2 $ * + / and the space character.

3.28 (Digits of an Integer) Write an app that inputs one number consisting of five digits from
the user, separates the number into its individual digits and displays the digits separated from one
another by three spaces each. For example, if the user types in the number 42339, the app should
display

Assume that the user enters the correct number of digits. What happens when you execute the
app and type a number with more than five digits? What happens when you execute the app and
type a number with fewer than five digits? [Hint: It’s possible to do this exercise with the tech-
niques you learned in this chapter. You’ll need to use both division and remainder operations to
“pick off” each digit.]

3.29 (Table of Squares and Cubes) Using only the programming techniques you learned in this
chapter, write an app that calculates the squares and cubes of the numbers from 0 to 10 and displays
the resulting values in table format, as shown below. All calculations should be done in terms of a
variable x. [Note: This app does not require any input from the user.]

3.30 (Counting Negative, Positive and Zero Values) Write an app that inputs five numbers and
determines and displays the number of negative numbers input, the number of positive numbers
input and the number of zeros input.

Making a Difference Exercises
3.31 (Body Mass Index Calculator) We introduced the body mass index (BMI) calculator in
Exercise 1.29. The formulas for calculating the BMI are

4 2 3 3 9

number square cube
0 0 0
1 1 1
2 4 8
3 9 27
4 16 64
5 25 125
6 36 216
7 49 343
8 64 512
9 81 729
10 100 1000

BMI weightInPounds 703×
heightInInches heightInInches×
--=

Making a Difference Exercises 105

or

Create a BMI calculator app that reads the user’s weight in pounds and height in inches (or, if you
prefer, the user’s weight in kilograms and height in meters), then calculates and displays the user’s
body mass index. The app should also display the following information from the Department of
Health and Human Services/National Institutes of Health so the user can evaluate his/her BMI:

BMI VALUES
Underweight: less than 18.5
Normal: between 18.5 and 24.9
Overweight: between 25 and 29.9
Obese: 30 or greater

3.32 (Car-Pool Savings Calculator) Research several car-pooling websites. Create an app that
calculates your daily driving cost, so that you can estimate how much money could be saved by car
pooling, which also has other advantages such as reducing carbon emissions and reducing traffic
congestion. The app should input the following information and display the user’s cost per day of
driving to work:

a) Total miles driven per day.
b) Cost per gallon of gasoline (in cents).
c) Average miles per gallon.
d) Parking fees per day (in cents).
e) Tolls per day (in cents).

BMI weightInKi ramslog
heightInMeters heightInMeters×
---=

4 Introduction to Classes,
Objects, Methods and
strings

Nothing can have value without
being an object of utility.
—Karl Marx

Your public servants serve you
right.
—Adlai E. Stevensonl

O b j e c t i v e s
In this chapter you’ll:

� Declare a class and use it to
create an object.

� Implement a class’s behaviors
as methods.

� Implement a class’s attributes
as instance variables and
properties.

� Use string objects.

� Call an object’s methods to
make them perform their
tasks.

� Understand the differences
between instance variables of
a class and local variables of a
method.

� Use a constructor to initialize
an object’s data.

4.1 Introduction 107

4.1 Introduction
In this chapter, we begin by explaining the concept of classes using a real-world example.
Then we present five complete working apps to demonstrate how to create and use your
own classes. The first four begin our case study on developing a grade book class that in-
structors can use to maintain student test scores. The last example introduces the type dec-
imal and uses it to declare monetary amounts in the context of a bank account class that
maintains a customer’s balance.

4.2 Classes, Objects, Methods, Properties and Instance
Variables
Let’s begin with a simple analogy to help you understand classes and their contents. Sup-
pose you want to drive a car and make it go faster by pressing down on its accelerator pedal.
What must happen before you can do this? Well, before you can drive a car, someone has
to design it. A car typically begins as engineering drawings, similar to the blueprints used
to design a house. These engineering drawings include the design for an accelerator pedal
to make the car go faster. The pedal “hides” the complex mechanisms that actually make
the car go faster, just as the brake pedal “hides” the mechanisms that slow the car and the
steering wheel “hides” the mechanisms that turn the car. This enables people with little or
no knowledge of how engines work to drive a car easily.

Unfortunately, you can’t drive the engineering drawings of a car. Before you can drive
a car, it must be built from the engineering drawings that describe it. A completed car will
have an actual accelerator pedal to make the car go faster, but even that’s not enough—the
car will not accelerate on its own, so the driver must press the accelerator pedal.

Methods
Now let’s use our car example to introduce the key programming concepts of this section.
Performing a task in an app requires a method. The method describes the mechanisms
that actually perform its tasks. The method hides from its user the complex tasks that it
performs, just as the accelerator pedal of a car hides from the driver the complex mecha-
nisms of making the car go faster.

4.1 Introduction
4.2 Classes, Objects, Methods,

Properties and Instance Variables
4.3 Declaring a Class with a Method and

Instantiating an Object of a Class
4.4 Declaring a Method with a Parameter
4.5 Instance Variables and Properties
4.6 UML Class Diagram with a Property

4.7 Software Engineering with Properties
and set and get Accessors

4.8 Auto-Implemented Properties
4.9 Value Types vs. Reference Types

4.10 Initializing Objects with
Constructors

4.11 Floating-Point Numbers and Type
decimal

4.12 Wrap-Up

Summary | Terminology | Self-Review Exercises | Answers to Self-Review Exercises | Exercises |
Making a Difference Exercises

108 Chapter 4 Introduction to Classes, Objects, Methods and strings

Classes
In C#, we begin by creating an app unit called a class to house (among other things) a
method, just as a car’s engineering drawings house (among other things) the design of an
accelerator pedal. In a class, you provide one or more methods that are designed to per-
form the class’s tasks. For example, a class that represents a bank account might contain
one method to deposit money in an account, another to withdraw money from an account
and a third to inquire what the current account balance is.

Objects
Just as you cannot drive an engineering drawing of a car, you cannot “drive” a class. Just as
someone has to build a car from its engineering drawings before you can actually drive it, you
must build an object of a class before you can make an app perform the tasks the class de-
scribes. That’s one reason C# is known as an object-oriented programming language.

Method Calls
When you drive a car, pressing its gas pedal sends a message to the car to perform a task—
make the car go faster. Similarly, you send messages to an object—each message is known
as a method call and tells the called method of the object to perform its task.

Attributes
Thus far, we’ve used the car analogy to introduce classes, objects and methods. In addition
to a car’s capabilities, it also has many attributes, such as its color, the number of doors,
the amount of gas in its tank, its current speed and its total miles driven (i.e., its odometer
reading). Like the car’s capabilities, these attributes are represented as part of a car’s design
in its engineering drawings. As you drive a car, these attributes are always associated with
the car. Every car maintains its own attributes. For example, each car knows how much
gas is in its own gas tank, but not how much is in the tanks of other cars. Similarly, an
object has attributes that are carried with the object as it’s used in an app. These attributes
are specified as part of the object’s class. For example, a bank-account object has a balance
attribute that represents the amount of money in the account. Each bank-account object
knows the balance in the account it represents, but not the balances of the other accounts
in the bank. Attributes are specified by the class’s instance variables.

Properties, get Accessors and set Accessors
Notice that these attributes are not necessarily accessible directly. The car manufacturer
does not want drivers to take apart the car’s engine to observe the amount of gas in its tank.
Instead, the driver can check the fuel gauge on the dashboard. The bank does not want its
customers to walk into the vault to count the amount of money in an account. Instead,
the customers talk to a bank teller or check personalized online bank accounts. Similarly,
you do not need to have access to an object’s instance variables in order to use them. You
should use the properties of an object. Properties contain get accessors for reading the val-
ues of variables, and set accessors for storing values into them.

4.3 Declaring a Class with a Method and Instantiating an
Object of a Class
We begin with an example that consists of classes GradeBook (Fig. 4.1) and GradeBook-

Test (Fig. 4.2). Class GradeBook (declared in file GradeBook.cs) will be used to display a

4.3 Declaring a Class with a Method and Instantiating an Object of a Class 109

message on the screen (Fig. 4.2) welcoming the instructor to the grade-book app. Class
GradeBookTest (declared in the file GradeBookTest.cs) is a testing class in which the Main
method will create and use an object of class GradeBook. By convention, we declare classes
GradeBook and GradeBookTest in separate files, such that each file’s name matches the
name of the class it contains.

To start, select File > New Project... to open the New Project dialog, then create a
GradeBook Console Application. Rename the Program.cs file to GradeBook.cs. Delete all
the code provided automatically by the IDE and replace it with the code in Fig. 4.1.

Class GradeBook
The GradeBook class declaration (Fig. 4.1) contains a DisplayMessage method (lines 8–
11) that displays a message on the screen. Line 10 of the class displays the message. Recall
that a class is like a blueprint—we need to make an object of this class and call its method
to get line 10 to execute and display its message—we do this in Fig. 4.2.

The class declaration begins in line 5. The keyword public is an access modifier.
Access modifiers determine the accessibility of an object’s properties and methods to other
methods in an app. For now, we simply declare every class public. Every class declaration
contains keyword class followed by the class’s name. Every class’s body is enclosed in a
pair of left and right braces ({ and }), as in lines 6 and 12 of class GradeBook.

Declaration of Method DisplayMessage
In Chapter 3, each class we declared had one method named Main. Class GradeBook also
has one method—DisplayMessage (lines 8–11). Recall that Main is a special method that’s
always called automatically when you execute an app. Most methods do not get called au-
tomatically. As you’ll soon see, you must call method DisplayMessage to tell it to perform
its task.

The method declaration begins with keyword public to indicate that the method is
“available to the public”—that is, it can be called from outside the class declaration’s body
by methods of other classes. Keyword void—known as the method’s return type—indi-
cates that this method will not return (i.e., give back) any information to its calling
method when it completes its task. When a method that specifies a return type other than
void is called and completes its task, the method returns a result to its calling method. For
example, when you go to an automated teller machine (ATM) and request your account

1 // Fig. 4.1: GradeBook.cs
2 // Class declaration with one method.
3 using System;
4
5 public class GradeBook
6 {
7 // display a welcome message to the GradeBook user
8
9 {

10 Console.WriteLine("Welcome to the Grade Book!");
11 } // end method DisplayMessage
12 } // end class GradeBook

Fig. 4.1 | Class declaration with one method.

public void DisplayMessage()

110 Chapter 4 Introduction to Classes, Objects, Methods and strings

balance, you expect the ATM to give you back a value that represents your balance. If you
have a method Square that returns the square of its argument, you’d expect the statement

to return 4 from method Square and assign 4 to variable result. If you have a method
Maximum that returns the largest of three integer arguments, you’d expect the statement

to return the value 114 from method Maximum and assign the value to variable biggest.
You’ve already used methods that return information—for example, in Chapter 3 you
used Console method ReadLine to input a string typed by the user at the keyboard. When
ReadLine inputs a value, it returns that value for use in the app.

Method Name
The name of the method, DisplayMessage, follows the return type (line 8). Generally,
methods are named as verbs or verb phrases while classes are named as nouns. By conven-
tion, method names begin with an uppercase first letter, and all subsequent words in the
name begin with an uppercase letter. This naming convention is referred to as upper camel
case. The parentheses after the method name indicate that this is a method. An empty set
of parentheses, as shown in line 8, indicates that this method does not require additional
information to perform its task. Line 8 is commonly referred to as the method header. Ev-
ery method’s body is delimited by left and right braces, as in lines 9 and 11.

Method Body
The body of a method contains statements that perform the method’s task. In this case,
the method contains one statement (line 10) that displays the message "Welcome to the
Grade Book!", followed by a newline in the console window. After this statement executes,
the method has completed its task.

Using Class GradeBook
Next, we’d like to use class GradeBook in an app. As you learned in Chapter 3, method
Main begins the execution of every app. Class GradeBook cannot begin an app because it
does not contain Main. This was not a problem in Chapter 3, because every class you de-
clared had a Main method. To fix this problem for the GradeBook, we must either declare
a separate class that contains a Main method or place a Main method in class GradeBook.
To help you prepare for the larger apps you’ll encounter later in this book and in industry,
we use a separate class (GradeBookTest in this example) containing method Main to test
each new class we create in this chapter.

Adding a Class to a Visual C# Project
For each example in this chapter, you’ll add a class to your console app. To do this, right
click the project name in the Solution Explorer and select Add > New Item… from the pop-
up menu. In the Add New Item dialog that appears, select Code File, enter the name of your
new file (GradeBookTest.cs) then click Add. A new blank file will be added to your proj-
ect. Add the code from Fig. 4.2 to this file.

int result = Square(2);

int biggest = Maximum(27, 114, 51);

4.3 Declaring a Class with a Method and Instantiating an Object of a Class 111

Class GradeBookTest
The GradeBookTest class declaration (Fig. 4.2) contains the Main method that controls
our app’s execution. Any class that contains a Main method (as shown in line 6) can be
used to execute an app. This class declaration begins in line 3 and ends in line 14. The class
contains only a Main method, which is typical of many classes that simply begin an app’s
execution.

Main Method
Lines 6–13 declare method Main. A key part of enabling the method Main to begin the
app’s execution is the static keyword (line 6), which indicates that Main is a static
method. A static method is special because it can be called without first creating an ob-
ject of the class (in this case, GradeBookTest) in which the method is declared. We explain
static methods in Chapter 7, Methods: A Deeper Look.

Creating a GradeBook Object
In this app, we’d like to call class GradeBook’s DisplayMessage method to display the wel-
come message in the console window. Typically, you cannot call a method that belongs to
another class until you create an object of that class, as shown in line 9. We begin by de-
claring variable myGradeBook. The variable’s type is GradeBook—the class we declared in
Fig. 4.1. Each new class you create becomes a new type in C# that can be used to declare
variables and create objects. New class types will be accessible to all classes in the same proj-
ect. You can declare new class types as needed; this is one reason why C# is known as an
extensible language.

Variable myGradeBook (line 9) is initialized with the result of the object-creation
expression new GradeBook(). The new operator creates a new object of the class specified
to the right of the keyword (i.e., GradeBook). The parentheses to the right of the Grade-
Book are required. As you’ll learn in Section 4.10, those parentheses in combination with
a class name represent a call to a constructor, which is similar to a method, but is used only

1 // Fig. 4.2: GradeBookTest.cs
2 // Create a GradeBook object and call its DisplayMessage method.
3 public class GradeBookTest
4 {
5 // Main method begins program execution
6 public static void Main(string[] args)
7 {
8 // create a GradeBook object and assign it to myGradeBook
9

10
11 // call myGradeBook's DisplayMessage method
12
13 } // end Main
14 } // end class GradeBookTest

Welcome to the Grade Book!

Fig. 4.2 | Create a GradeBook object and call its DisplayMessage method.

GradeBook myGradeBook = new GradeBook();

myGradeBook.DisplayMessage();

112 Chapter 4 Introduction to Classes, Objects, Methods and strings

at the time an object is created to initialize the object’s data. In that section you’ll see that
data can be placed in parentheses to specify initial values for the object’s data. For now, we
simply leave the parentheses empty.

Calling the GradeBook Object’s DisplayMessage Method
We can now use myGradeBook to call its method DisplayMessage. Line 12 calls the meth-
od DisplayMessage (lines 8–11 of Fig. 4.1) using variable myGradeBook followed by a
member access (.) operator, the method name DisplayMessage and an empty set of pa-
rentheses. This call causes the DisplayMessage method to perform its task. This method
call differs from the method calls in Chapter 3 that displayed information in a console
window—each of those method calls provided arguments that specified the data to dis-
play. At the beginning of line 12 (Fig. 4.2), “myGradeBook.” indicates that Main should
use the GradeBook object that was created in line 9. The empty parentheses in line 8 of
Fig. 4.1 indicate that method DisplayMessage does not require additional information to
perform its task. For this reason, the method call (line 12 of Fig. 4.2) specifies an empty
set of parentheses after the method name to indicate that no arguments are being passed
to method DisplayMessage. When method DisplayMessage completes its task, method
Main continues executing at line 13. This is the end of method Main, so the app terminates.

UML Class Diagram for Class GradeBook
Figure 4.3 presents a UML class diagram for class GradeBook of Fig. 4.1. Recall from
Section 1.6 that the UML is a graphical language used by programmers to represent their ob-
ject-oriented systems in a standardized manner. In the UML, each class is modeled in a class
diagram as a rectangle with three compartments. The top compartment contains the name
of the class centered horizontally in boldface type. The middle compartment contains the
class’s attributes, which correspond to instance variables and properties in C#. In Fig. 4.3,
the middle compartment is empty because the version of class GradeBook in Fig. 4.1 does
not have any attributes. The bottom compartment contains the class’s operations, which cor-
respond to methods in C#. The UML models operations by listing the operation name fol-
lowed by a set of parentheses. Class GradeBook has one method, DisplayMessage, so the
bottom compartment of Fig. 4.3 lists one operation with this name. Method DisplayMes-
sage does not require additional information to perform its tasks, so there are empty paren-
theses following DisplayMessage in the class diagram, just as they appeared in the method’s
declaration in line 8 of Fig. 4.1. The plus sign (+) in front of the operation name indicates
that DisplayMessage is a public operation in the UML (i.e., a public method in C#). The
plus sign is sometimes called the public visibility symbol. We’ll often use UML class dia-
grams to summarize a class’s attributes and operations.

Fig. 4.3 | UML class diagram indicating that class GradeBook has a public
DisplayMessage operation.

GradeBook

+ DisplayMessage()

4.4 Declaring a Method with a Parameter 113

4.4 Declaring a Method with a Parameter
In our car analogy from Section 4.2, we discussed the fact that pressing a car’s gas pedal
sends a message to the car to perform a task—make the car go faster. But how fast should
the car accelerate? As you know, the farther down you press the pedal, the faster the car
accelerates. So the message to the car actually includes both the task to be performed and
additional information that helps the car perform the task. This additional information is
known as a parameter—the value of the parameter helps the car determine how fast to ac-
celerate. Similarly, a method can require one or more parameters that represent additional
information it needs to perform its task. A method call supplies values—called argu-
ments—for each of the method’s parameters. For example, the Console.WriteLinemeth-
od requires an argument that specifies the data to be displayed in a console window.
Similarly, to make a deposit into a bank account, a Deposit method specifies a parameter
that represents the deposit amount. When the Deposit method is called, an argument val-
ue representing the deposit amount is assigned to the method’s parameter. The method
then makes a deposit of that amount, by increasing the account’s balance.

Our next example declares class GradeBook (Fig. 4.4) with a DisplayMessagemethod
that displays the course name as part of the welcome message. (See the sample execution
in Fig. 4.5.) The new DisplayMessage method requires a parameter that represents the
course name to output.

1 // Fig. 4.4: GradeBook.cs
2 // Class declaration with a method that has a parameter.
3 using System;
4
5 public class GradeBook
6 {
7 // display a welcome message to the GradeBook user
8
9 {

10 Console.WriteLine("Welcome to the grade book for\n{0}!",
11 courseName);
12 } // end method DisplayMessage
13 } // end class GradeBook

Fig. 4.4 | Class declaration with a method that has a parameter.

1 // Fig. 4.5: GradeBookTest.cs
2 // Create a GradeBook object and pass a string to
3 // its DisplayMessage method.
4 using System;
5
6 public class GradeBookTest
7 {
8 // Main method begins program execution
9 public static void Main(string[] args)

10 {

Fig. 4.5 | Create GradeBook object and pass a string to its DisplayMessage method. (Part 1
of 2.)

public void DisplayMessage(string courseName)

114 Chapter 4 Introduction to Classes, Objects, Methods and strings

Before discussing the new features of class GradeBook, let’s see how the new class is
used from the Main method of class GradeBookTest (Fig. 4.5). Line 12 creates an object
of class GradeBook and assigns it to variable myGradeBook. Line 15 prompts the user to
enter a course name. Line 16 reads the name from the user and assigns it to the variable
nameOfCourse, using Console method ReadLine to perform the input. The user types the
course name and presses Enter to submit the course name to the app. Pressing Enter inserts
a newline character at the end of the characters typed by the user. Method ReadLine reads
characters typed by the user until the newline character is encountered, then returns a
string containing the characters up to, but not including, the newline. The newline char-
acter is discarded.

Line 21 calls myGradeBook’s DisplayMessage method. The variable nameOfCourse in
parentheses is the argument that’s passed to method DisplayMessage so that the method
can perform its task. Variable nameOfCourse’s value in Main becomes the value of method
DisplayMessage’s parameter courseName in line 8 of Fig. 4.4. When you execute this app,
notice that method DisplayMessage outputs as part of the welcome message the name you
type (Fig. 4.5).

More on Arguments and Parameters
When you declare a method, you must specify in the method’s declaration whether the
method requires data to perform its task. To do so, you place additional information in
the method’s parameter list, which is located in the parentheses that follow the method

11 // create a GradeBook object and assign it to myGradeBook
12 GradeBook myGradeBook = new GradeBook();
13
14 // prompt for and input course name
15 Console.WriteLine("Please enter the course name:");
16
17 Console.WriteLine(); // output a blank line
18
19 // call myGradeBook's DisplayMessage method
20 // and pass nameOfCourse as an argument
21
22 } // end Main
23 } // end class GradeBookTest

Please enter the course name:
CS101 Introduction to C# Programming

Welcome to the grade book for
CS101 Introduction to C# Programming!

Software Engineering Observation 4.1
Normally, objects are created with new. One exception is a string literal that’s contained
in quotes, such as "hello". String literals are string objects that are implicitly created
by C# the first time they appear in the code.

Fig. 4.5 | Create GradeBook object and pass a string to its DisplayMessage method. (Part 2
of 2.)

string nameOfCourse = Console.ReadLine(); // read a line of text

myGradeBook.DisplayMessage(nameOfCourse);

4.4 Declaring a Method with a Parameter 115

name. The parameter list may contain any number of parameters, including none at all.
Each parameter is declared as a variable with a type and identifier in the parameter list.
Empty parentheses following the method name (as in Fig. 4.1, line 8) indicate that a meth-
od does not require any parameters. In Fig. 4.4, DisplayMessage’s parameter list (line 8)
declares that the method requires one parameter. Each parameter must specify a type and
an identifier. In this case, the type string and the identifier courseName indicate that
method DisplayMessage requires a string to perform its task. At the time the method is
called, the argument value in the call is assigned to the corresponding parameter (in this
case, courseName) in the method header. Then, the method body uses the parameter
courseName to access the value. Lines 10–11 of Fig. 4.4 display parameter courseName’s
value, using the {0} format item in WriteLine’s first argument. The parameter variable’s
name (Fig. 4.4, line 8) can be the same or different from the argument variable’s name
(Fig. 4.5, line 21).

A method can specify multiple parameters by separating each parameter from the next
with a comma. The number of arguments in a method call must match the number of
required parameters in the parameter list of the called method’s declaration. Also, the types
of the arguments in the method call must be consistent with the types of the corresponding
parameters in the method’s declaration. (As you’ll learn in subsequent chapters, an argu-
ment’s type and its corresponding parameter’s type are not always required to be identical.)
In our example, the method call passes one argument of type string (nameOfCourse is
declared as a string in line 16 of Fig. 4.5), and the method declaration specifies one
parameter of type string (line 8 in Fig. 4.4). So the type of the argument in the method
call exactly matches the type of the parameter in the method header.

Updated UML Class Diagram for Class GradeBook
The UML class diagram of Fig. 4.6 models class GradeBook of Fig. 4.4. Like Fig. 4.4, this
GradeBook class contains public operation DisplayMessage. However, this version of
DisplayMessage has a parameter. The UML models a parameter a bit differently from C#
by listing the parameter name, followed by a colon and the parameter type in the paren-
theses following the operation name. The UML has several data types that are similar to

Common Programming Error 4.1
A compilation error occurs if the number of arguments in a method call does not match
the number of required parameters in the method declaration.

Common Programming Error 4.2
A compilation error occurs if the types of the arguments in a method call are not consistent
with the types of the corresponding parameters in the method declaration.

Fig. 4.6 | UML class diagram indicating that class GradeBook has a public DisplayMessage
operation with a courseName parameter of type string.

GradeBook

+ DisplayMessage(courseName : string)

116 Chapter 4 Introduction to Classes, Objects, Methods and strings

the C# types. For example, UML types String and Integer correspond to C# types
string and int, respectively. Unfortunately, the UML does not provide types that corre-
spond to every C# type. For this reason, and to avoid confusion between UML types and
C# types, we use only C# types in our UML diagrams. Class Gradebook’s method Display-
Message (Fig. 4.4) has a string parameter named courseName, so Fig. 4.6 lists the param-
eter courseName : string between the parentheses following DisplayMessage.

Notes on using Directives
Notice the using directive in Fig. 4.5 (line 4). This indicates to the compiler that the app
uses classes in the System namespace, like the Console class. Why do we need a using di-
rective to use class Console, but not class GradeBook? There’s a special relationship be-
tween classes that are compiled in the same project, like classes GradeBook and
GradeBookTest. By default, such classes are considered to be in the same namespace. A us-

ing directive is not required when one class in a namespace uses another in the same
namespace—such as when class GradeBookTest uses class GradeBook. For simplicity, our
examples in this chapter do not declare a namespace. Any classes that are not explicitly
placed in a namespace are implicitly placed in the so-called global namespace.

Actually, the using directive in line 4 is not required if we always refer to class Con-
sole as System.Console, which includes the full namespace and class name. This is
known as the class’s fully qualified class name. For example, line 15 could be written as

Most C# programmers consider using fully qualified names to be cumbersome, and in-
stead prefer to use using directives.

4.5 Instance Variables and Properties
In Chapter 3, we declared all of an app’s variables in the Main method. Variables declared in
the body of a method are known as local variables and can be used only in that method.
When a method terminates, the values of its local variables are lost. Recall from Section 4.2
that an object has attributes that are carried with it as it’s used in an app. Such attributes exist
before a method is called on an object and after the method completes execution.

Attributes are represented as variables in a class declaration. Such variables are called
fields and are declared inside a class declaration but outside the bodies of the class’s method
declarations. When each object of a class maintains its own copy of an attribute, the field
that represents the attribute is also known as an instance variable—each object (instance)
of the class has a separate instance of the variable. In Chapter 10, we discuss another type
of field called a static variable, where all objects of the same class share one variable.

A class normally contains one or more properties that manipulate the attributes that
belong to a particular object of the class. The example in this section demonstrates a
GradeBook class that contains a courseName instance variable to represent a particular
GradeBook object’s course name, and a CourseName property to manipulate courseName.

GradeBook Class with an Instance Variable and a Property
In our next app (Figs. 4.7–4.8), class GradeBook (Fig. 4.7) maintains the course name as
an instance variable so that it can be used or modified at any time during an app’s execu-
tion. The class also contains one method—DisplayMessage (lines 24–30)—and one

System.Console.WriteLine("Please enter the course name:");

4.5 Instance Variables and Properties 117

property—CourseName (line 11–21). Recall from Chapter 2 that properties are used to
manipulate an object’s attributes. For example, in that chapter, we used a Label’s Text
property to specify the text to display on the Label. In this example, we use a property in
code rather than in the Properties window of the IDE. To do this, we first declare a prop-
erty as a member of the GradeBook class. As you’ll soon see, the GradeBook’s CourseName
property can be used to store a course name in a GradeBook (in instance variable course-
Name) or retrieve the GradeBook’s course name (from instance variable courseName).
Method DisplayMessage—which now specifies no parameters—still displays a welcome
message that includes the course name. However, the method now uses the CourseName
property to obtain the course name from instance variable courseName.

A typical instructor teaches more than one course, each with its own course name.
Line 8 declares courseName as a variable of type string. Line 8 is a declaration for an
instance variable, because the variable is declared in the class’s body (lines 7–31) but out-
side the bodies of the class’s method (lines 24–30) and property (lines 11–21). Every
instance (i.e., object) of class GradeBook contains one copy of each instance variable. For

1 // Fig. 4.7: GradeBook.cs
2 // GradeBook class that contains a private instance variable, courseName,
3 // and a public property to get and set its value.
4 using System;
5
6 public class GradeBook
7 {
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23 // display a welcome message to the GradeBook user
24 public void DisplayMessage()
25 {
26 // use property CourseName to get the
27 // name of the course that this GradeBook represents
28 Console.WriteLine("Welcome to the grade book for\n{0}!",
29); // display property CourseName
30 } // end method DisplayMessage
31 } // end class GradeBook

Fig. 4.7 | GradeBook class that contains a private instance variable, courseName, and a
public property to get and set its value.

private string courseName; // course name for this GradeBook

// property to get and set the course name
public string CourseName
{

get

{
return courseName;

} // end get
set

{
courseName = value;

} // end set
} // end property CourseName

CourseName

118 Chapter 4 Introduction to Classes, Objects, Methods and strings

example, if there are two GradeBook objects, each object has its own copy of courseName.
All the methods and properties of class GradeBook can directly manipulate its instance
variable courseName, but it’s considered good practice for methods of a class to use that
class’s properties to manipulate instance variables (as we do in line 29 of method Dis-

playMessage). The software engineering reasons for this will soon become clear.

Access Modifiers public and private
Most instance-variable declarations are preceded with the keyword private (as in line 8).
Like public, keyword private is an access modifier. Variables, properties or methods de-
clared with access modifier private are accessible only to members (such as properties and
methods) of the class in which they’re declared. Thus, variable courseName can be used
only in property CourseName and method DisplayMessage of class GradeBook.

Declaring instance variables with access modifier private is known as information
hiding (or encapsulation). When an app creates (instantiates) an object of class Grade-
Book, variable courseName is encapsulated (hidden) in the object and can be accessed only
by members of the object’s class.

Setting and Getting the Values of private Instance Variables
How can we allow a program to manipulate a class’s private instance variables but ensure
that they remain in a valid state? We need to provide controlled ways for programmers to
“get” (i.e., retrieve) the value in an instance variable and “set” (i.e., modify) the value in an
instance variable. Although you can define methods like GetCourseName and SetCourse-
Name, C# properties provide a more elegant solution. Next, we show how to declare and
use properties.

GradeBook Class with a Property
The GradeBook class’s CourseName property declaration is located in lines 11–21 of
Fig. 4.7. The property begins in line 11 with an access modifier (in this case, public), fol-
lowed by the type that the property represents (string) and the property’s name (Course-
Name). Properties use the same naming conventions as methods and classes.

Properties contain accessors that handle the details of returning and modifying data.
A property declaration can contain a get accessor, a set accessor or both. The get accessor
(lines 13–16) enables a client to read the value of private instance variable courseName;
the set accessor (lines 17–20) enables a client to modify courseName.

Software Engineering Observation 4.2
Precede every field and method declaration with an access modifier. Generally, instance
variables should be declared private and methods and properties should be declared
public. If the access modifier is omitted before a member of a class, the member is
implicitly declared private. We’ll see that it’s appropriate to declare certain methods
private, if they will be accessed only by other methods of the class.

Software Engineering Observation 4.3
Declaring the instance variables of a class as private and the methods and properties of
the class as public facilitates debugging, because problems with data manipulations are
localized to the class’s methods and properties, since the private instance variables are
accessible only to these methods and properties.

4.5 Instance Variables and Properties 119

After defining a property, you can use it like a variable in your code. For example, you
can assign a value to a property using the = (assignment) operator. This executes the prop-
erty’s set accessor to set the value of the corresponding instance variable. Similarly, refer-
encing the property to use its value (for example, to display it on the screen) executes the code
in the property’s get accessor to obtain the corresponding instance variable’s value. We show
how to use properties shortly. By convention, we name each property with the capitalized
name of the instance variable that it manipulates (e.g., CourseName is the property that rep-
resents instance variable courseName)—C# is case sensitive, so these are distinct identifiers.

get and set Accessors
Let us look more closely at property CourseName’s get and set accessors (Fig. 4.7). The
get accessor (lines 13–16) begins with the identifier get and its body is delimited by
braces. The accessor’s body contains a return statement, which consists of the keyword
return followed by an expression. The expression’s value is returned to the client code that
uses the property. In this example, the value of courseName is returned when the property
CourseName is referenced. For example, in the following statement

the expression gradeBook.CourseName (where gradeBook is an object of class GradeBook)
executes property CourseName’s get accessor, which returns the value of instance variable
courseName. That value is then stored in variable theCourseName. Property CourseName
can be used as simply as if it were an instance variable. The property notation allows the
client to think of the property as the underlying data. Again, the client cannot directly ma-
nipulate instance variable courseName because it’s private.

The set accessor (lines 17–20) begins with the identifier set and its body is delimited
by braces. When the property CourseName appears in an assignment statement, as in

the text "CS100 Introduction to Computers" is assigned to the set accessor’s contextual
keyword named value and the set accessor executes. Note that value is implicitly declared
and initialized in the set accessor—it’s a compilation error to declare a local variable val-
ue in this body. Line 19 stores the contents of value in instance variable courseName. A
set accessor does not return any data when it completes its task.

The statements inside the property in lines 15 and 19 (Fig. 4.7) each access course-
Name even though it was declared outside the property. We can use instance variable
courseName in the methods and properties of class GradeBook, because courseName is an
instance variable of the class.

Using Property CourseName in Method DisplayMessage
Method DisplayMessage (lines 24–30 of Fig. 4.7) does not receive any parameters. Lines
28–29 output a welcome message that includes the value of instance variable courseName.
We do not reference courseName directly. Instead, we access property CourseName (line
29), which executes the property’s get accessor, returning the value of courseName.

GradeBookTest Class That Demonstrates Class GradeBook
Class GradeBookTest (Fig. 4.8) creates a GradeBook object and demonstrates property
CourseName. Line 11 creates a GradeBook object and assigns it to local variable myGrade-

string theCourseName = gradeBook.CourseName;

gradeBook.CourseName = "CS100 Introduction to Computers";

120 Chapter 4 Introduction to Classes, Objects, Methods and strings

Book. Lines 14–15 display the initial course name using the object’s CourseName proper-
ty—this executes the property’s get accessor, which returns the value of courseName.

The first line of the output shows an empty name (marked by single quotes, '').
Unlike local variables, which are not automatically initialized, every field has a default ini-
tial value—a value provided by C# when you do not specify the initial value. Thus, fields
are not required to be explicitly initialized before they’re used in an app—unless they must
be initialized to values other than their default values. The default value for an instance
variable of type string (like courseName) is null. When you display a string variable that
contains the value null, no text is displayed on the screen.

Line 18 prompts the user to enter a course name. Line 19 assigns the course name
entered by the user to object myGradeBook’s CourseName property. When a value is assigned
to CourseName, the value specified (which is returned by ReadLine in this case) is assigned to
implicit parameter value of CourseName’s set accessor (lines 17–20, Fig. 4.7). Then param-
eter value is assigned by the set accessor to instance variable courseName (line 19 of

1 // Fig. 4.8: GradeBookTest.cs
2 // Create and manipulate a GradeBook object.
3 using System;
4
5 public class GradeBookTest
6 {
7 // Main method begins program execution
8 public static void Main(string[] args)
9 {

10 // create a GradeBook object and assign it to myGradeBook
11 GradeBook myGradeBook = new GradeBook();
12
13 // display initial value of CourseName
14 Console.WriteLine("Initial course name is: '{0}'\n",
15);
16
17 // prompt for and read course name
18 Console.WriteLine("Please enter the course name:");
19
20 Console.WriteLine(); // output a blank line
21
22 // display welcome message after specifying course name
23
24 } // end Main
25 } // end class GradeBookTest

Initial course name is: ''

Please enter the course name:
CS101 Introduction to C# Programming

Welcome to the grade book for
CS101 Introduction to C# Programming!

Fig. 4.8 | Create and manipulate a GradeBook object.

myGradeBook.CourseName

myGradeBook.CourseName = Console.ReadLine(); // set CourseName

myGradeBook.DisplayMessage();

4.6 UML Class Diagram with a Property 121

Fig. 4.7). Line 20 (Fig. 4.8) displays a blank line, then line 23 calls myGradeBook’s Dis-
playMessage method to display the welcome message containing the course name.

4.6 UML Class Diagram with a Property
Figure 4.9 contains an updated UML class diagram for the version of class GradeBook in
Fig. 4.7. We model properties in the UML as attributes—the property (in this case,
CourseName) is listed as a public attribute—as indicated by the plus (+) sign—preceded by
the word “property” in guillemets (« and »). Using descriptive words in guillemets (called
stereotypes in the UML) helps distinguish properties from other attributes and opera-
tions. The UML indicates the type of the property by placing a colon and a type after the
property name. The get and set accessors of the property are implied, so they’re not listed
in the UML diagram. Class GradeBook also contains one public method Display-

Message, so the class diagram lists this operation in the third compartment. Recall that the
plus (+) sign is the public visibility symbol.

A class diagram helps you design a class, so it’s not required to show every implemen-
tation detail of the class. Since an instance variable that’s manipulated by a property is
really an implementation detail of that property, our class diagram does not show the
courseName instance variable. A programmer implementing the GradeBook class based on
this class diagram would create the instance variable courseName as part of the implemen-
tation process (as we did in Fig. 4.7).

In some cases, you may find it necessary to model the private instance variables of a
class. Like properties, instance variables are attributes of a class and are modeled in the
middle compartment of a class diagram. The UML represents instance variables as attri-
butes by listing the attribute name, followed by a colon and the attribute type. To indicate
that an attribute is private, a class diagram would list the private visibility symbol—a
minus sign (–)—before the attribute’s name. For example, the instance variable course-
Name in Fig. 4.7 would be modeled as “- courseName : string” to indicate that it’s a
private attribute of type string.

4.7 Software Engineering with Properties and set and
get Accessors
Using properties as described earlier in this chapter would seem to violate the notion of
private data. Although providing a property with get and set accessors may appear to

Fig. 4.9 | UML class diagram indicating that class GradeBook has a public CourseName
property of type string and one public method.

GradeBook

+ DisplayMessage()

+ «property» CourseName : string

122 Chapter 4 Introduction to Classes, Objects, Methods and strings

be the same as making its corresponding instance variable public, this is not the case. A
public instance variable can be read or written by any property or method in the program.
If an instance variable is private, the client code can access the instance variable only in-
directly through the class’s non-private properties or methods. This allows the class to
control the manner in which the data is set or returned. For example, get and set accessors
can translate between the format of the data stored in the private instance variable and
the format of the data preferred by the client.

Validation
Consider a Clock class that represents the time of day as a private int instance variable
time, containing the number of seconds since midnight. Suppose the class provides a Time
property of type string to manipulate this instance variable. Although get accessors typ-
ically return data exactly as it’s stored in an object, they need not expose the data in this
“raw” format. When a client refers to a Clock object’s Time property, the property’s get
accessor could use instance variable time to determine the number of hours, minutes and
seconds since midnight, then return the time as a string of the form "hh:mm:ss" in which
hh represents the hour, mm the minute and ss the second. Similarly, suppose a Clock ob-
ject’s Time property is assigned a string of the form "hh:mm:ss". Using the string capa-
bilities presented in Chapter 16, and the method Convert.ToInt32 presented in
Section 3.6, the Time property’s set accessor can convert this string to an int number of
seconds since midnight and store the result in the Clock object’s private instance variable
time. The Time property’s set accessor can also provide data-validation capabilities that
scrutinize attempts to modify the instance variable’s value to ensure that the value it re-
ceives represents a valid time (e.g., "12:30:45" is valid but "42:85:70" is not). We dem-
onstrate data validation in Section 4.11. So, although a property’s accessors enable clients
to manipulate private data, they carefully control those manipulations, and the object’s
private data remains safely encapsulated (i.e., hidden) in the object. This is not possible
with public instance variables, which can easily be set by clients to invalid values.

Manipulating Data within a Class Via the Class’s Properties
Properties of a class should also be used by the class’s own methods to manipulate the
class’s private instance variables, even though the methods can directly access the pri-
vate instance variables. Accessing an instance variable via a property’s accessors—as in the
body of method DisplayMessage (Fig. 4.7, lines 28–29)—creates a more robust class
that’s easier to maintain and less likely to malfunction. If we decide to change the repre-
sentation of instance variable courseName in some way, the declaration of method Dis-

playMessage does not require modification—only the bodies of property CourseName’s
get and set accessors that directly manipulate the instance variable will need to change.
For example, suppose we want to represent the course name as two separate instance vari-
ables—courseNumber (e.g., "CS101") and courseTitle (e.g., "Introduction to C# Pro-
gramming"). The DisplayMessage method can still use property CourseName’s get

accessor to obtain the full course name to display as part of the welcome message. In this
case, the get accessor would need to build and return a string containing the courseNum-
ber, followed by the courseTitle. Method DisplayMessage would continue to display
the complete course title “CS101 Introduction to C# Programming,” because it’s unaffect-
ed by the change to the class’s instance variables.

4.8 Auto-Implemented Properties 123

4.8 Auto-Implemented Properties
In Fig. 4.7, we created a GradeBook class with a private courseName instance variable and
a public property CourseName to enable client code to access the courseName. When you
look at the CourseName property’s definition (Fig. 4.7, lines 11–21), notice that the get ac-
cessor simply returns private instance variable courseName’s value and the set accessor
simply assigns a value to the instance variable—no other logic appears in the accessors. For
such cases, C# provides automatically implemented properties (also known as auto-
implemented properties). With an auto-implemented property, the C# compiler creates a
private instance variable, and the get and set accessors for returning and modifying the
private instance variable. Unlike a user-defined property, an auto-implemented property,
must have both a get and a set accessor. This enables you to implement the property triv-
ially, which is handy when you’re first designing a class. If you later decide to include other
logic in the get or set accessors, you can simply modify the property’s implementation. To
use an auto-implemented property in the GradeBook class of Fig. 4.7, you can replace the
private instance variable at line 8 and the property at lines 11–21 with the following code:

Code Snippets for Auto-Implemented Properties
The IDE has a feature called code snippets that allows you to insert predefined code tem-
plates into your source code. One such snippet enables you to insert a public auto-imple-
mented property by typing the word “prop” in the code window and pressing the Tab key
twice. Certain pieces of the inserted code are highlighted for you to easily change the prop-
erty’s type and name. You can press the Tab key to move from one highlighted piece of
text to the next in the inserted code. By default, the new property’s type is int and its name
is MyProperty. To get a list of all available code snippets, type Ctrl + k, Ctrl + x. This dis-
plays the Insert Snippet window in the code editor. You can navigate through the Visual
C# snippet folders with the mouse to see the snippets. This feature can also be accessed by
right clicking in the source code editor and selecting the Insert Snippet… menu item.

4.9 Value Types vs. Reference Types
Types in C# are divided into two categories—value types and reference types.

Value Types
C#’s simple types (like int and double) are all value types. A variable of a value type simply
contains a value of that type. For example, Fig. 4.10 shows an int variable named count that
contains the value 7.

public string CourseName { get; set; }

Fig. 4.10 | Value-type variable.

7
A variable (count) of a value type (int)

contains a value (7) of that type

count

int count = 7;

124 Chapter 4 Introduction to Classes, Objects, Methods and strings

Reference Types
By contrast, a reference-type variable (sometimes called a reference) contains the address of a
location in memory where the data referred to by that variable is stored. Such a variable is
said to refer to an object in the program. Line 11 of Fig. 4.8 creates a GradeBook object, plac-
es it in memory and stores the object’s reference in variable myGradeBook of type GradeBook
as shown in Fig. 4.11. The GradeBook object is shown with its courseName instance variable.

Reference-Type Instance Variables Initialized to null

Reference-type instance variables (such as myGradeBook in Fig. 4.11) are initialized by de-
fault to the value null. string is a reference type. For this reason, string variable course-
Name is shown in Fig. 4.11 with an empty box representing the null-valued variable. A
string variable with the value null is not an empty string, which is represented by "" or
string.Empty. The value null represents a reference that does not refer to an object. The
empty string is a string object with no characters in it.

Using a Variable That Refers to an Object to Send Messages to the Object
A client of an object must use a variable that refers to the object to invoke (i.e., call) the
object’s methods and access the object’s properties. In Fig. 4.8, the statements in Main use
variable myGradeBook, which contains the GradeBook object’s reference, to send messages
to the GradeBook object. These messages are calls to methods (like DisplayMessage) or
references to properties (like CourseName) that enable the program to interact with Grade-
Book objects. For example, the statement (in line 19 of Fig. 4.8)

uses the reference myGradeBook to set the course name by assigning a value to property
CourseName. This sends a message to the GradeBook object to invoke the CourseName prop-
erty’s set accessor. The message includes as an argument the value read from the user’s input
(in this case, "CS101 Introduction to C# Programming") that CourseName’s set accessor re-
quires to perform its task. The set accessor uses this information to set the courseName in-
stance variable. In Section 7.16, we discuss value types and reference types in detail.

Fig. 4.11 | Reference-type variable.

myGradeBook.CourseName = Console.ReadLine(); // set CourseName

Software Engineering Observation 4.4
A variable’s declared type (e.g., int, double or GradeBook) indicates whether the variable
is of a value type or a reference type. If a variable’s type is not one of the simple types
(Appendix B), or an enum or a struct type (which we discuss in Section 7.10 and
Chapter 16, respectively), then it’s a reference type. For example, Account account1

indicates that account1 is a variable that can refer to an Account object.

GradeBook myGradeBook = new GradeBook();

GradeBook objectmyGradeBook

A variable (myGradeBook) of a reference type

(GradeBook) contains a reference (memory

address) to an object of that type

courseName
(The arrow represents

the memory address of

the GradeBook object)

4.10 Initializing Objects with Constructors 125

4.10 Initializing Objects with Constructors
As mentioned in Section 4.5, when a GradeBook (Fig. 4.7) object is created, its instance
variable courseName is initialized to null by default. This is also true of the private in-
stance variable that the compiler creates for the auto-implemented CourseName property
discussed in Section 4.8. What if you want to provide a course name when you create a
GradeBook object? Each class can provide a constructor that can be used to initialize an
object of a class when the object is created. In fact, C# requires a constructor call for every
object that’s created. The new operator calls the class’s constructor to perform the initial-
ization. The constructor call is indicated by the class name, followed by parentheses. For
example, line 11 of Fig. 4.8 first uses new to create a GradeBook object. The empty paren-
theses after “new GradeBook()” indicate a call without arguments to the class’s constructor.
The compiler provides a public default constructor with no parameters in any class that
does not explicitly define a constructor, so every class has a constructor. The default con-
structor does not modify the default values of the instance variables.

Custom Initialization with Constructors
When you declare a class, you can provide your own constructor (or several constructors,
as you’ll learn in Chapter 10) to specify custom initialization for objects of your class. For
example, you might want to specify a course name for a GradeBook object when the object
is created, as in

In this case, the argument "CS101 Introduction to C# Programming" is passed to the
GradeBook object’s constructor and used to initialize the CourseName. Each time you cre-
ate a new GradeBook object, you can provide a different course name. The preceding state-
ment requires that the class provide a constructor with a string parameter. Figure 4.12
contains a modified GradeBook class with such a constructor.

GradeBook myGradeBook =
new GradeBook("CS101 Introduction to C# Programming");

1 // Fig. 4.12: GradeBook.cs
2 // GradeBook class with a constructor to initialize the course name.
3 using System;
4
5 public class GradeBook
6 {
7 // auto-implemented property CourseName implicitly created an
8 // instance variable for this GradeBook's course name
9 public string CourseName { get; set; }

10
11
12
13
14
15
16
17

Fig. 4.12 | GradeBook class with a constructor to initialize the course name. (Part 1 of 2.)

// constructor initializes auto-implemented property
// CourseName with string supplied as argument
public GradeBook(string name)
{

CourseName = name; // set CourseName to name
} // end constructor

126 Chapter 4 Introduction to Classes, Objects, Methods and strings

Declaring a Constructor
Lines 13–16 declare the constructor for class GradeBook. A constructor must have the same
name as its class. Like a method, a constructor specifies in its parameter list the data it re-
quires to perform its task. When you use new to create an object, you place this data in the
parentheses that follow the class name. Unlike a method, a constructor doesn’t specify a
return type, not even void. Line 13 indicates that class GradeBook’s constructor has a pa-
rameter called name of type string. In line 15, the name passed to the constructor is used
to initialize auto-implemented property CourseName via its set accessor.

Initializing GradeBook Objects with a Custom Constructor
Figure 4.13 demonstrates initializing GradeBook objects using this constructor. Lines 12–
13 create and initialize a GradeBook object. The constructor of class GradeBook is called
with the argument "CS101 Introduction to C# Programming" to initialize the course
name. The object-creation expression to the right of = in lines 12–13 returns a reference to
the new object, which is assigned to variable gradeBook1. Lines 14–15 repeat this process
for another GradeBook object, this time passing the argument "CS102 Data Structures in
C#" to initialize the course name for gradeBook2. Lines 18–21 use each object’s Course-
Name property to obtain the course names and show that they were indeed initialized when
the objects were created. In Section 4.5, you learned that each instance (i.e., object) of a
class contains its own copy of the class’s instance variables. The output confirms that each
GradeBook maintains its own course name.

18 // display a welcome message to the GradeBook user
19 public void DisplayMessage()
20 {
21 // use auto-implemented property CourseName to get the
22 // name of the course that this GradeBook represents
23 Console.WriteLine("Welcome to the grade book for\n{0}!",
24 CourseName);
25 } // end method DisplayMessage
26 } // end class GradeBook

1 // Fig. 4.13: GradeBookTest.cs
2 // GradeBook constructor used to specify the course name at the
3 // time each GradeBook object is created.
4 using System;
5
6 public class GradeBookTest
7 {
8 // Main method begins program execution
9 public static void Main(string[] args)

10 {

Fig. 4.13 | GradeBook constructor used to specify the course name at the time each
GradeBook object is created. (Part 1 of 2.)

Fig. 4.12 | GradeBook class with a constructor to initialize the course name. (Part 2 of 2.)

4.10 Initializing Objects with Constructors 127

Normally, constructors are declared public. If a class does not explicitly define a con-
structor, the class’s instance variables are initialized to their default values—0 for numeric
types, false for type bool and null for reference types. If you declare any constructors for
a class, C# will not create a default constructor for that class.

Adding the Constructor to Class GradeBook’s UML Class Diagram
The UML class diagram of Fig. 4.14 models class GradeBook of Fig. 4.12, which has a
constructor that has a name parameter of type string. Like operations, the UML models
constructors in the third compartment of a class in a class diagram. To distinguish a con-
structor from a class’s operations, the UML places the word “constructor” between guil-
lemets (« and ») before the constructor’s name. It’s customary to list constructors before
other operations in the third compartment.

11 // create GradeBook object
12
13
14
15
16
17 // display initial value of courseName for each GradeBook
18 Console.WriteLine("gradeBook1 course name is: {0}",
19 gradeBook1.CourseName);
20 Console.WriteLine("gradeBook2 course name is: {0}",
21 gradeBook2.CourseName);
22 } // end Main
23 } // end class GradeBookTest

gradeBook1 course name is: CS101 Introduction to C# Programming
gradeBook2 course name is: CS102 Data Structures in C#

Error-Prevention Tip 4.1
Unless default initialization of your class’s instance variables is acceptable, provide a con-
structor to ensure that your class’s instance variables are initialized with meaningful val-
ues when each new object of your class is created.

Fig. 4.14 | UML class diagram indicating that class GradeBook has a constructor with a
name parameter of type string.

Fig. 4.13 | GradeBook constructor used to specify the course name at the time each
GradeBook object is created. (Part 2 of 2.)

GradeBook gradeBook1 = new GradeBook(// invokes constructor
"CS101 Introduction to C# Programming");

GradeBook gradeBook2 = new GradeBook(// invokes constructor
"CS102 Data Structures in C#");

GradeBook

+ «constructor» GradeBook(name : string)

+ DisplayMessage()

+ «property» CourseName : string

128 Chapter 4 Introduction to Classes, Objects, Methods and strings

4.11 Floating-Point Numbers and Type decimal
In our next app, we depart temporarily from our GradeBook case study to declare a class
called Account that maintains a bank account’s balance. Most account balances are not
whole numbers (such as 0, –22 and 1024), rather they’re numbers that include a decimal
point, such as 99.99 or –20.15. For this reason, class Account represents the account bal-
ance as a real number. C# provides three simple types for storing real numbers—float,
double, and decimal. Types float and double are called floating-point types. The pri-
mary difference between them and decimal is that decimal variables store a limited range
of real numbers precisely, whereas floating-point variables store only approximations of real
numbers, but across a much greater range of values. Also, double variables can store num-
bers with larger magnitude and finer detail (i.e., more digits to the right of the decimal
point—also known as the number’s precision) than float variables. A key use of type
decimal is representing monetary amounts.

Real-Number Precision and Storage Requirements
Variables of type float represent single-precision floating-point numbers and have seven
significant digits. Variables of type double represent double-precision floating-point
numbers. These require twice as much storage as float variables and provide 15–16 sig-
nificant digits—approximately double the precision of float variables. Variables of type
decimal require twice as much storage as double variables and provide 28–29 significant
digits. In some apps, even variables of type double and decimal will be inadequate—such
apps are beyond the scope of this book.

Most programmers represent floating-point numbers with type double. In fact, C#
treats all real numbers you type in an app’s source code (such as 7.33 and 0.0975) as
double values by default. Such values in the source code are known as floating-point lit-
erals. To type a decimal literal, you must type the letter “M” or “m” (which stands for
“money”) at the end of a real number (for example, 7.33M is a decimal literal rather than
a double). Integer literals are implicitly converted into type float, double or decimal
when they’re assigned to a variable of one of these types. See Appendix B for the ranges of
values for floats, doubles, decimals and all the other simple types.

Although floating-point numbers are not always 100% precise, they have numerous
applications. For example, when we speak of a “normal” body temperature of 98.6, we
do not need to be precise to a large number of digits. When we read the temperature on
a thermometer as 98.6, it may actually be 98.5999473210643. Calling this number
simply 98.6 is fine for most applications involving body temperatures. Due to the impre-
cise nature of floating-point numbers, type decimal is preferred over the floating-point
types whenever the calculations need to be exact, as with monetary calculations. In cases
where approximation is enough, double is preferred over type float because double vari-
ables can represent floating-point numbers more accurately. For this reason, we use type
decimal throughout the book for monetary amounts and type double for other real num-
bers.

Real numbers also arise as a result of division. In conventional arithmetic, for
example, when we divide 10 by 3, the result is 3.3333333…, with the sequence of 3s
repeating infinitely. The computer allocates only a fixed amount of space to hold such a
value, so clearly the stored floating-point value can be only an approximation.

4.11 Floating-Point Numbers and Type decimal 129

Account Class with an Instance Variable of Type decimal
Our next app (Figs. 4.15–4.16) contains a simple class named Account (Fig. 4.15) that
maintains the balance of a bank account. A typical bank services many accounts, each with
its own balance, so line 7 declares an instance variable named balance of type decimal.
Variable balance is an instance variable because it’s declared in the body of the class (lines
6–36) but outside the class’s method and property declarations (lines 10–13, 16–19 and
22–35). Every instance (i.e., object) of class Account contains its own copy of balance.

Common Programming Error 4.3
Using floating-point numbers in a manner that assumes they’re represented precisely can
lead to logic errors.

1 // Fig. 4.15: Account.cs
2 // Account class with a constructor to
3 // initialize instance variable balance.
4
5 public class Account
6 {
7
8
9 // constructor

10 public Account(initialBalance)
11 {
12 Balance = initialBalance; // set balance using property
13 } // end Account constructor
14
15 // credit (add) an amount to the account
16 public void Credit(amount)
17 {
18 Balance = Balance + amount; // add amount to balance
19 } // end method Credit
20
21 // a property to get and set the account balance
22 public Balance
23 {
24 get

25 {
26 return balance;
27 } // end get
28 set

29 {
30
31
32
33
34 } // end set
35 } // end property Balance
36 } // end class Account

Fig. 4.15 | Account class with a constructor to initialize instance variable balance.

private decimal balance; // instance variable that stores the balance

decimal

decimal

decimal

// validate that value is greater than or equal to 0;
// if it is not, balance is left unchanged
if (value >= 0)

balance = value;

130 Chapter 4 Introduction to Classes, Objects, Methods and strings

Account Class Constructor
Class Account contains a constructor, a method, and a property. Since it’s common for
someone opening an account to place money in the account immediately, the constructor
(lines 10–13) receives a parameter initialBalance of type decimal that represents the ac-
count’s starting balance. Line 12 assigns initialBalance to the property Balance, invok-
ing Balance’s set accessor to initialize the instance variable balance.

Account Method Credit

Method Credit (lines 16–19) doesn’t return data when it completes its task, so its return
type is void. The method receives one parameter named amount—a decimal value that’s
added to the property Balance. Line 18 uses both the get and set accessors of Balance.
The expression Balance + amount invokes property Balance’s get accessor to obtain the
current value of instance variable balance, then adds amount to it. We then assign the re-
sult to instance variable balance by invoking the Balance property’s set accessor (thus
replacing the prior balance value).

Account Property Balance
Property Balance (lines 22–35) provides a get accessor, which allows clients of the class
(i.e., other classes that use this class) to obtain the value of a particular Account object’s
balance. The property has type decimal (line 22). Balance also provides an enhanced set
accessor.

In Section 4.5, we introduced properties whose set accessors allow clients of a class
to modify the value of a private instance variable. In Fig. 4.7, class GradeBook defines
property CourseName’s set accessor to assign the value received in its parameter value to
instance variable courseName (line 19). This CourseName property does not ensure that
courseName contains only valid data.

The app of Figs. 4.15–4.16 enhances the set accessor of class Account’s property
Balance to perform this validation (also known as validity checking). Line 32 (Fig. 4.15)
ensures that value is nonnegative. If the value is greater than or equal to 0, the amount
stored in value is assigned to instance variable balance in line 33. Otherwise, balance is
left unchanged.

AccountTest Class to Use Class Account
Class AccountTest (Fig. 4.16) creates two Account objects (lines 10–11) and initializes
them respectively with 50.00M and -7.53M (the decimal literals representing the real num-
bers 50.00 and -7.53). The Account constructor (lines 10–13 of Fig. 4.15) references
property Balance to initialize balance. In previous examples, the benefit of referencing
the property in the constructor was not evident. Now, however, the constructor takes ad-
vantage of the validation provided by the set accessor of the Balance property. The con-
structor simply assigns a value to Balance rather than duplicating the set accessor’s
validation code. When line 11 of Fig. 4.16 passes an initial balance of -7.53 to the Ac-
count constructor, the constructor passes this value to the set accessor of property Bal-
ance, where the actual initialization occurs. This value is less than 0, so the set accessor
does not modify balance, leaving this instance variable with its default value of 0.

4.11 Floating-Point Numbers and Type decimal 131

1 // Fig. 4.16: AccountTest.cs
2 // Create and manipulate Account objects.
3 using System;
4
5 public class AccountTest
6 {
7 // Main method begins execution of C# app
8 public static void Main(string[] args)
9 {

10 Account account1 = new Account(50.00M); // create Account object
11 Account account2 = new Account(-7.53M); // create Account object
12
13 // display initial balance of each object using a property
14 Console.WriteLine("account1 balance: ",
15 account1.Balance); // display Balance property
16 Console.WriteLine("account2 balance: \n",
17 account2.Balance); // display Balance property
18
19
20
21 // prompt and obtain user input
22 Console.Write("Enter deposit amount for account1: ");
23
24 Console.WriteLine("adding to account1 balance\n",
25 depositAmount);
26 account1.Credit(depositAmount); // add to account1 balance
27
28 // display balances
29 Console.WriteLine("account1 balance: ",
30 account1.Balance);
31 Console.WriteLine("account2 balance: \n",
32 account2.Balance);
33
34 // prompt and obtain user input
35 Console.Write("Enter deposit amount for account2: ");
36
37 Console.WriteLine("adding to account2 balance\n",
38 depositAmount);
39 account2.Credit(depositAmount); // add to account2 balance
40
41 // display balances
42 Console.WriteLine("account1 balance: ", account1.Balance);
43 Console.WriteLine("account2 balance: ", account2.Balance);
44 } // end Main
45 } // end class AccountTest

account1 balance: $50.00
account2 balance: $0.00

Enter deposit amount for account1: 49.99
adding $49.99 to account1 balance

Fig. 4.16 | Create and manipulate Account objects. (Part 1 of 2.)

{0:C}

{0:C}

decimal depositAmount; // deposit amount read from user

depositAmount = Convert.ToDecimal(Console.ReadLine());
{0:C}

{0:C}

{0:C}

depositAmount = Convert.ToDecimal(Console.ReadLine());
{0:C}

{0:C}
{0:C}

132 Chapter 4 Introduction to Classes, Objects, Methods and strings

Lines 14–17 in Fig. 4.16 output the balance in each Account by using the Account’s
Balance property. When Balance is used for account1 (line 15), the value of account1’s
balance is returned by the get accessor in line 26 of Fig. 4.15 and displayed by the Con-
sole.WriteLine statement (Fig. 4.16, lines 14–15). Similarly, when property Balance is
called for account2 from line 17, the value of the account2’s balance is returned from line
26 of Fig. 4.15 and displayed by the Console.WriteLine statement (Fig. 4.16, lines 16–
17). The balance of account2 is 0 because the constructor ensured that the account could
not begin with a negative balance. The value is output by WriteLine with the format item
{0:C}, which formats the account balance as a monetary amount. The : after the 0 indi-
cates that the next character represents a format specifier, and the C format specifier after
the : specifies a monetary amount (C is for currency). The cultural settings on the user’s
machine determine the format for displaying monetary amounts. For example, in the
United States, 50 displays as $50.00. In Germany, 50 displays as 50,00 €. [Note: Change
the Command Prompt’s font to Lucida Console for the € symbol to display correctly.]
Figure 4.17 lists a few other format specifiers in addition to C.

Line 19 declares local variable depositAmount to store each deposit amount entered
by the user. Unlike the instance variable balance in class Account, the local variable

account1 balance: $99.99
account2 balance: $0.00

Enter deposit amount for account2: 123.21
adding $123.21 to account2 balance

account1 balance: $99.99
account2 balance: $123.21

Format
specifier Description

C or c Formats the string as currency. Displays an appropriate currency symbol ($ in the
U.S.) next to the number. Separates digits with an appropriate separator character
(comma in the U.S.) and sets the number of decimal places to two by default.

D or d Formats the string as a whole number (integer types only). Displays number as an
integer.

N or n Formats the string with a thousands separator and a default of two decimal places.

E or e Formats the number using scientific notation with a default of six decimal places.

F or f Formats the string with a fixed number of decimal places (two by default).

G or g Formats the number normally with decimal places or using scientific notation,
depending on context. If a format item does not contain a format specifier, format
G is assumed implicitly.

X or x Formats the string as hexadecimal.

Fig. 4.17 | string format specifiers.

Fig. 4.16 | Create and manipulate Account objects. (Part 2 of 2.)

4.11 Floating-Point Numbers and Type decimal 133

depositAmount in Main is not initialized to 0 by default. Also, a local variable can be used
only in the method in which it’s declared. However, this variable does not need to be initial-
ized here because its value will be determined by the user’s input. The compiler does not
allow a local variable’s value to be read until it’s initialized.

Line 22 prompts the user to enter a deposit amount for account1. Line 23 obtains the
input from the user by calling the Console class’s ReadLine method, then passing the
string entered by the user to the Convert class’s ToDecimal method, which returns the
decimal value in this string. Lines 24–25 display the deposit amount. Line 26 calls object
account1’s Creditmethod and supplies depositAmount as the method’s argument. When
the method is called, the argument’s value is assigned to parameter amount of method
Credit (lines 16–19 of Fig. 4.15), then method Credit adds that value to the balance
(line 18 of Fig. 4.15). Lines 29–32 (Fig. 4.16) output the balances of both Accounts again
to show that only account1’s balance changed.

Line 35 prompts the user to enter a deposit amount for account2. Line 36 obtains the
input from the user by calling method Console.ReadLine, and passing the return value to
the Convert class’s ToDecimal method. Lines 37–38 display the deposit amount. Line 39
calls object account2’s Credit method and supplies depositAmount as the method’s argu-
ment, then method Credit adds that value to the balance. Finally, lines 42–43 output the
balances of both Accounts again to show that only account2’s balance changed.

set and get Accessors with Different Access Modifiers
By default, the get and set accessors of a property have the same access as the property—
for example, for a public property, the accessors are public. It’s possible to declare the
get and set accessors with different access modifiers. In this case, one of the accessors must
implicitly have the same access as the property and the other must be declared with a more
restrictive access modifier than the property. For example, in a public property, the get
accessor might be public and the set accessor might be private. We demonstrate this
feature in Section 10.7.

UML Class Diagram for Class Account
The UML class diagram in Fig. 4.18 models class Account of Fig. 4.15. The diagram
models the Balance property as a UML attribute of type decimal (because the corre-
sponding C# property had type decimal). The diagram models class Account’s construc-
tor with a parameter initialBalance of type decimal in the third compartment of the
class. The diagram models operation Credit in the third compartment with an amount pa-
rameter of type decimal (because the corresponding method has an amount parameter of
C# type decimal).

Error-Prevention Tip 4.2
The benefits of data integrity are not automatic simply because instance variables are
made private—you must provide appropriate validity checking and report the errors.

Error-Prevention Tip 4.3
set accessors that set the values of private data should verify that the intended new val-
ues are proper; if they’re not, the set accessors should leave the instance variables un-
changed and indicate an error. We demonstrate how to indicate errors in Chapter 10.

134 Chapter 4 Introduction to Classes, Objects, Methods and strings

4.12 Wrap-Up
In this chapter, you learned the basic object-oriented concepts of classes, objects, methods,
instance variables, properties and constructors—these will be used in most substantial C#
apps you create. You learned how to declare instance variables of a class to maintain data
for each object of the class, how to declare methods that operate on that data, and how to
declare properties to obtain and set that data. We demonstrated how to call a method to
tell it to perform its task and how to pass information to methods as arguments. We dis-
cussed the difference between a local variable of a method and an instance variable of a
class and that only instance variables are initialized automatically. We discussed the differ-
ence between a value type and a reference type. You learned how to create auto-imple-
mented properties. You also learned how to use a class’s constructor to specify the initial
values for an object’s instance variables. We discussed some of the differences between val-
ue types and reference types. You learned about the value types float, double and deci-
mal for storing real numbers.

We showed how the UML can be used to create class diagrams that model the con-
structors, methods, properties and attributes of classes. You learned the value of declaring
instance variables private and using public properties to manipulate them. For example,
we demonstrated how set accessors in properties can be used to validate an object’s data
and ensure that the object is maintained in a consistent state. In the next chapter we begin
our introduction to control statements, which specify the order in which an app’s actions
are performed. You’ll use these in your methods to specify how they should perform their
tasks.

Fig. 4.18 | UML class diagram indicating that class Account has a public Balance
property of type decimal, a constructor and a method.

Account

+ «constructor» Account(initialBalance : decimal)

+ Credit(amount : decimal)

+ «property» Balance : decimal

Summary
Section 4.2 Classes, Objects, Methods, Properties and Instance Variables
• Methods perform tasks. Each method describes the mechanisms that actually perform its tasks.

The method hides from its user the complex tasks that it performs.

• The app unit that houses a method is called a class. A class may contain one or more methods
that are designed to perform the class’s tasks.

• A method can perform a task and may return a result.

• An instance of a class is called an object.

• Each message sent to an object is a method call and tells that method to perform its task.

• Each method can specify parameters that represent additional information the method requires
to perform its task correctly. A method call supplies arguments for the method’s parameters.

Summary 135

• An object has attributes that are carried with the object as it’s used in an app. These attributes
are specified as part of the object’s class. Attributes are specified in classes by fields.

• An object has properties for accessing attributes. Properties contain get accessors for reading at-
tributes and set accessors for storing into them.

Section 4.3 Declaring a Class with a Method and Instantiating an Object of a Class
• Keyword public is an access modifier.

• Every class declaration contains keyword class followed immediately by the class’s name.

• A method declaration that begins with keyword public indicates that the method is “available to
the public”—that is, it can be called by other classes declared outside the class declaration.

• Keyword void indicates that a method will not return any information when it completes its task.

• By convention, method names begin with an uppercase first letter, and all subsequent words in
the name begin with an uppercase first letter. This is called upper camel case.

• Empty parentheses following a method name indicate that the method does not require any pa-
rameters to perform its task.

• Every method’s body is delimited by left and right braces ({ and }).

• The body of a method contains statements that perform the method’s task. After the statements
execute, the method has completed its task.

• When you attempt to execute an app, C# looks for a Main method to begin execution.

• Typically, you create an object of a class to call the class’s methods.

• Object creation expressions begin with the new operator and create new objects.

• To call a method of an object, follow the variable name with a member access operator (.), the
method name and a set of parentheses containing the method’s arguments.

• In the UML, each class is modeled in a class diagram as a rectangle with three compartments. The
top compartment contains the name of the class, centered horizontally in boldface. The middle
compartment contains the class’s attributes, which correspond to fields in C#. The bottom com-
partment contains the class’s operations, which correspond to methods and constructors in C#.

• The UML models operations by listing the operation name, followed by a set of parentheses. A
plus sign (+) in front of the operation name indicates that the operation is a public operation in
the UML (i.e., a public method in C#). The plus sign is called the public visibility symbol.

Section 4.4 Declaring a Method with a Parameter
• Methods often require additional information to perform their tasks. Such additional informa-

tion is provided to methods via arguments in method calls.

• Console method ReadLine reads characters until a newline character is encountered, then returns
the characters as a string.

• A method that requires data to perform its task must specify this in its declaration by placing ad-
ditional information in the method’s parameter list.

• Each parameter must specify both a type and an identifier.

• At the time a method is called, its arguments are assigned to its parameters. Then the method
body uses the parameter variables to access the argument values.

• A method can specify multiple parameters in a comma-separated parameter list.

• The number of arguments in the method call must match the number of required parameters in
the method declaration’s parameter list. Also, the argument types in the method call must be
consistent with the types of the corresponding parameters in the method’s declaration.

136 Chapter 4 Introduction to Classes, Objects, Methods and strings

• The UML models a parameter of an operation by listing the parameter name, followed by a colon
and the parameter type between the parentheses following the operation name.

• There’s a special relationship between classes that are compiled in the same project. By default,
such classes are considered to be in the same namespace. A using directive is not required when
one class in a namespace uses another in the same namespace.

• A using directive is not required if you always refer to a class with its fully qualified class name.

Section 4.5 Instance Variables and Properties
• Local variables can be used only in the method in which they’re declared.

• A class normally contains methods that manipulate the attributes that belong to a particular ob-
ject of the class. Attributes are represented as instance variables in a class declaration. Such vari-
ables are declared inside a class declaration but outside its method’s bodies.

• Each object (instance) of a class has a separate copy of each instance variable.

• Most instance-variable declarations are preceded with the private access modifier. Variables,
properties or methods declared with access modifier private are accessible only to members of
the class in which they’re declared.

• Declaring instance variables with access modifier private is known as information hiding.

• Properties contain accessors that handle the details of modifying and returning data.

• Properties provide a controlled way for programmers to “get” (i.e., retrieve) the value in an in-
stance variable and “set” (i.e., modify) the value in an instance variable.

• A property declaration can contain a get accessor, a set accessor or both. The get accessor typ-
ically enables a client to read the value of a private instance variable. The set accessor typically
enables a client to modify that instance variable’s value.

• After defining a property, you can use it the same way as you use a variable.

• The default value for a field of type string is null.

Section 4.6 UML Class Diagram with a Property
• We model properties in the UML as attributes, preceded by the word “property” in guillemets

(« and »). Using descriptive words in guillemets (called stereotypes in the UML) helps distinguish
properties from other attributes.

• A class diagram helps you design a class, so it’s not required to show every implementation detail
of the class. Since an instance variable that’s manipulated by a property is really an implementa-
tion detail of that property, our class diagrams do not show instance variables.

• private class members are preceded by the private visibility symbol (-) in the UML.

• The UML represents instance variables and properties as attributes by listing the attribute name,
followed by a colon and the attribute type.

Section 4.7 Software Engineering with Properties and set and get Accessors
• Properties can scrutinize attempts to modify an instance variable’s value (known as data valida-

tion), thus ensuring that the new value for that instance variable is valid.

• Using properties would seem to violate the notion of private data. However, a set accessor can
validate data to ensure that the value is set properly; get and set accessors can translate between
the format of the data used by the client and the format used in the private instance variable.

• A benefit of fields over local variables is that all of a class’s methods and properties can use the
fields. Another distinction is that a field has a default initial value provided by C# when you do
not specify the field’s initial value, but a local variable does not.

Summary 137

Section 4.8 Auto-Implemented Properties
• With an auto-implemented property, the C# compiler automatically creates a private instance

variable, and the get and set accessors for returning and modifying the private instance variable.

• Visual Studio has a feature called code snippets that allows you to insert predefined code tem-
plates into your source code. One such snippet enables you to insert a public auto-implemented
property by typing the word “prop” in the code window and pressing the Tab key twice.

• Pieces of the inserted code are highlighted for you to easily change the property’s type and name.
Press the Tab key to move from one highlighted piece of text to the next in the inserted code.

• To get a list of all available code snippets, type Ctrl + k, Ctrl + x. This displays the Insert Snippet
window in the code editor. This feature can also be accessed by right clicking in the source code
editor and selecting the Insert Snippet… menu item.

Section 4.9 Value Types vs. Reference Types
• Types are divided into two categories—value types and reference types.

• A variable of a value type contains data of that type.

• A variable of a reference type (sometimes called a reference) contains the address of a location in
memory where an object is stored.

• Reference-type instance variables are initialized by default to the value null.

Section 4.10 Initializing Objects with Constructors
• A constructor can be used to initialize an object of a class when the object is created.

• If no constructor is provided for a class, the compiler provides a public default constructor with
no parameters that does not modify the instance variables’ default values.

• Like operations, the UML models constructors in the third compartment of a class diagram. To
distinguish a constructor from a class’s operations, the UML places the word “constructor” be-
tween guillemets (« and ») before the constructor’s name.

• Constructors can specify parameters but cannot specify return types.

Section 4.11 Floating-Point Numbers and Type decimal
• A real number is a number with a decimal point, such as 7.33, 0.0975 or 1000.12345. C# pro-

vides three simple types for storing real numbers—float, double, and decimal.

• Types float and double are called floating-point types. The primary difference between them
and the decimal type is that decimal variables store a limited range of real numbers precisely, but
floating-point variables store approximations of real numbers across a much greater range.

• Variables of type float represent single-precision floating-point numbers and have seven signif-
icant digits. Variables of type double represent double-precision floating-point numbers. These
require twice as much storage as float variables and provide 15–16 significant digits—approxi-
mately double the precision of float variables. Furthermore, variables of type decimal require
twice as much storage as double variables and provide 28–29 significant digits.

• Real number values that appear in source code are of type double by default.

• Convert method ToDecimal extracts a decimal value from a string.

• The : in a format item indicates that the next character represents a format specifier.

• The C format specifier specifies a monetary amount (C is for currency).

• It’s possible to declare the get and set accessors of a property with different access modifiers.
One accessor must implicitly have the same access as the property and the other must be declared
with a more restrictive access modifier than the property; private is more restrictive than public.

138 Chapter 4 Introduction to Classes, Objects, Methods and strings

Terminology
access modifier
attribute (UML)
auto-implemented property
automatically implemented property
C format specifier
calling method
class
class declaration
class keyword
client of an object or a class
code snippet
compartment in a class diagram (UML)
constructor
create an object
decimal simple type
default value
double-precision floating-point number
double simple type
field
float simple type
floating-point number
format specifier
fully qualified class name
get accessor
global namespace
guillemets, « and » (UML)
information hiding
instance of a class (object)
instance variable
instantiate (or create) an object
invoke a method

local variable
member access (.) operator
message
method
method header
new operator
null keyword
object (or instance)
object-creation expression
operation (UML)
parameter
parameter list
precision of a floating-point value
precision of a formatted floating-point number
“prop” code snippet
property
private access modifier
public access modifier
public default constructor
public method
ReadLine method of class Console
refer to an object
reference
reference type
send a message
set accessor
single-precision floating-point number
ToDecimal method of class Convert
UML class diagram
UML visibility symbol
void keyword

Self-Review Exercises
4.1 Fill in the blanks in each of the following:

a) A house is to a blueprint as a(n) is to a class.
b) Every class declaration contains keyword followed immediately by the class’s

name.
c) Operator creates an object of the class specified to the right of the keyword.
d) Each parameter must specify both a(n) and a(n) .
e) By default, classes that are not explicitly declared in a namespace are implicitly placed

in the .
f) When each object of a class maintains its own copy of an attribute, the field that repre-

sents the attribute is also known as a(n) .
g) C# provides three simple types for storing real numbers— , and

.
h) Variables of type double represent floating-point numbers.
i) Convert method returns a decimal value.
j) Keyword public is a(n) .

Answers to Self-Review Exercises 139

k) Return type indicates that a method will not return any information when it
completes its task.

l) Console method reads characters until a newline character is encountered,
then returns those characters (not including the newline) as a string.

m) A(n) is not required if you always refer to a class with its fully qualified class
name.

n) Variables of type float represent floating-point numbers.
o) The format specifier is used to display values in a monetary format.
p) Types are either types or types.
q) For a(n) , the compiler automatically generates a private instance variable and

set and get accessors.

4.2 State whether each of the following is true or false. If false, explain why.
a) By convention, method names begin with a lowercase first letter and all subsequent

words in the name begin with a capital first letter.
b) A property’s get accessor enables a client to modify the value of the instance variable

associated with the property.
c) A using directive is not required when one class in a namespace uses another in the same

namespace.
d) Empty parentheses following a method name in a method declaration indicate that the

method does not require any parameters to perform its task.
e) After defining a property, you can use it the same way you use a method, but with emp-

ty parentheses, because no arguments are passed to a property.
f) Variables or methods declared with access modifier private are accessible only to mem-

bers of the class in which they’re declared.
g) Variables declared in the body of a particular method are known as instance variables

and can be used in all methods of the class.
h) A property declaration must contain both a get accessor and a set accessor.
i) The body of any method or property is delimited by left and right braces.
j) Local variables are initialized by default.
k) Reference-type instance variables are initialized by default to the value null.
l) Any class that contains public static void Main(string[] args) can be used to exe-

cute an app.
m) The number of arguments in the method call must match the number of required pa-

rameters in the method declaration’s parameter list.
n) Real number values that appear in source code are known as floating-point literals and

are of type float by default.

4.3 What is the difference between a local variable and an instance variable?

4.4 Explain the purpose of a method parameter. What is the difference between a parameter
and an argument?

Answers to Self-Review Exercises
4.1 a) object. b) class. c) new. d) type, name. e) global namespace. f) instance variable.
g) float, double, decimal. h) double-precision. i) ToDecimal. j) access modifier. k) void.
l) ReadLine. m) using directive. n) single-precision. o) C. p) value, reference. q) auto-implemented
property.

4.2 a) False. By convention, method names begin with an uppercase first letter and all subse-
quent words in the name begin with an uppercase first letter. b) False. A property’s get accessor
enables a client to retrieve the value of the instance variable associated with the property. A proper-

140 Chapter 4 Introduction to Classes, Objects, Methods and strings

ty’s set accessor enables a client to modify the value of the instance variable associated with the
property. c) True. d) True. e) False. After defining a property, you can use it the same way you
use a variable. f) True. g) False. Such variables are called local variables and can be used only in the
method in which they’re declared. h) False. A property declaration can contain a get accessor, a set
accessor or both. i) True. j) False. Instance variables are initialized by default. k) True. l) True.
m) True. n) False. Such literals are of type double by default.

4.3 A local variable is declared in the body of a method and can be used only in the method in
which it’s declared. An instance variable is declared in a class, but not in the body of any of the class’s
members. Every object (instance) of a class has a separate copy of the class’s instance variables. Also,
instance variables are accessible to all members of the class. (We’ll see an exception to this in
Chapter 10.)

4.4 A parameter represents additional information that a method requires to perform its task.
Each parameter required by a method is specified in the method’s declaration. An argument is the
actual value that’s passed to a method parameter when a method is called.

Exercises
4.5 What is the purpose of operator new? Explain what happens when this keyword is used in
an app.

4.6 What is a default constructor? How are an object’s instance variables initialized if a class has
only a default constructor?

4.7 Explain the purpose of an instance variable.

4.8 Explain how an app could use class Console without using a using directive.

4.9 Explain why a class might provide a property for an instance variable.

4.10 (GradeBook Modification) Modify class GradeBook (Fig. 4.12) as follows:
a) Include a second string auto-implemented property that represents the name of the

course’s instructor.
b) Modify the constructor to specify two parameters—one for the course name and one

for the instructor’s name.
c) Modify method DisplayMessage such that it first outputs the welcome message and

course name, then outputs "This course is presented by: ", followed by the instruc-
tor’s name.

Use your modified class in a test app that demonstrates the class’s new capabilities.

4.11 (Account Modification) Modify class Account (Fig. 4.15) to provide a method called Debit

that withdraws money from an Account. Ensure that the debit amount doesn’t exceed the balance. If
it does, the balance should not be changed and the method should display a message indicating "Debit
amount exceeded account balance." Modify class AccountTest (Fig. 4.16) to test method Debit.

4.12 (Invoice Class) Create a class called Invoice that a hardware store might use to represent
an invoice for an item sold at the store. An Invoice should include four pieces of information as
either instance variables or automatic properties—a part number (type string), a part description
(type string), a quantity of the item being purchased (type int) and a price per item (decimal).
Your class should have a constructor that initializes the four values. Provide a property with a get
and set accessor for any instance variables. For the Quantity and PricePerItem properties, if the
value passed to the set accessor is negative, the value of the instance variable should be left un-
changed. Also, provide a method named GetInvoiceAmount that calculates the invoice amount (i.e.,
multiplies the quantity by the price per item), then returns the amount as a decimal value. Write a
test app named InvoiceTest that demonstrates class Invoice’s capabilities.

Making a Difference Exercises 141

4.13 (Employee Class) Create a class called Employee that includes three pieces of information as
either instance variables or automatic properties—a first name (type string), a last name (type
string) and a monthly salary (decimal). Your class should have a constructor that initializes the
three values. Provide a property with a get and set accessor for any instance variables. If the month-
ly salary is negative, the set accessor should leave the instance variable unchanged. Write a test app
named EmployeeTest that demonstrates class Employee’s capabilities. Create two Employee objects
and display each object’s yearly salary. Then give each Employee a 10% raise and display each Em-

ployee’s yearly salary again.

4.14 (Date Class) Create a class called Date that includes three pieces of information as automatic
properties—a month (type int), a day (type int) and a year (type int). Your class should have a
constructor that initializes the three automatic properties and assumes that the values provided are
correct. Provide a method DisplayDate that displays the month, day and year separated by forward
slashes (/). Write a test app named DateTest that demonstrates class Date’s capabilities.

Making a Difference Exercises
4.15 (Target-Heart-Rate Calculator) While exercising, you can use a heart-rate monitor to see that
your heart rate stays within a safe range suggested by your trainers and doctors. According to the
American Heart Association (AHA) (www.heart.org/HEARTORG/GettingHealthy/PhysicalActivity/
Target-Heart-Rates_UCM_434341_Article.jsp), the formula for calculating your maximum heart rate
in beats per minute is 220 minus your age in years. Your target heart rate is a range that is 50–85% of
your maximum heart rate. [Note: These formulas are estimates provided by the AHA. Maximum and
target heart rates may vary based on the health, fitness and gender of the individual. Always consult a
physician or qualified health care professional before beginning or modifying an exercise program.]
Create a class called HeartRates. The class attributes should include the person’s first name, last name,
year of birth and the current year. Your class should have a constructor that receives this data as pa-
rameters. For each attribute provide a property with set and get accessors. The class also should in-
clude a property that calculates and returns the person’s age (in years), a property that calculates and
returns the person’s maximum heart rate and properties that calculate and return the person’s mini-
mum and maximim target heart rates. Write an app that prompts for the person’s information, instan-
tiates an object of class HeartRates and displays the information from that object—including the
person’s first name, last name and year of birth—then calculates and displays the person’s age in
(years), maximum heart rate and target-heart-rate range.

4.16 (Computerization of Health Records) A health care issue that has been in the news lately is
the computerization of health records. This possibility is being approached cautiously because of
sensitive privacy and security concerns, among others. [We address such concerns in later exercises.]
Computerizing health records could make it easier for patients to share their health profiles and his-
tories among their various health care professionals. This could improve the quality of health care,
help avoid drug conflicts and erroneous drug prescriptions, reduce costs and, in emergencies, could
save lives. In this exercise, you’ll design a “starter” HealthProfile class for a person. The class attri-
butes should include the person’s first name, last name, gender, date of birth (consisting of separate
attributes for the month, day and year of birth), height (in inches) and weight (in pounds). Your class
should have a constructor that receives this data. For each attribute provide a property with set and
get accessors. The class also should include methods that calculate and return the user’s age in years,
maximum heart rate and target-heart-rate range (see Exercise 4.15), and body mass index (BMI; see
Exercise 3.31). Write an app that prompts for the person’s information, instantiates an object of
class HealthProfile for that person and displays the information from that object—including the
person’s first name, last name, gender, date of birth, height and weight—then calculates and dis-
plays the person’s age in years, BMI, maximum heart rate and target-heart-rate range. It should also
display the “BMI values” chart from Exercise 3.31.

www.heart.org/HEARTORG/GettingHealthy/PhysicalActivity/Target-Heart-Rates_UCM_434341_Article.jsp
www.heart.org/HEARTORG/GettingHealthy/PhysicalActivity/Target-Heart-Rates_UCM_434341_Article.jsp

5 Control Statements: Part 1

Let’s all move one place on.
—Lewis Carroll

The wheel is come full circle.
—William Shakespeare

All the evolution we know of
proceeds from the vague to the
definite.
—Charles Sanders Peirce

O b j e c t i v e s
In this chapter you’ll:

� Learn basic problem-solving
techniques.

� Develop algorithms through
the process of top-down,
stepwise refinement.

� Use the if and if…else
selection statements to
choose between actions.

� Use the while statement to
execute statements
repeatedly.

� Use counter-controlled
repetition and sentinel-
controlled repetition.

� Use the increment,
decrement and compound
assignment operators.

5.1 Introduction 143

5.1 Introduction
Before writing a program to solve a problem, we must have a thorough understanding of
the problem and a carefully planned approach to solving it. We must also understand the
available building blocks and employ proven program-construction techniques. In this
chapter and in Chapter 6, Control Statements: Part 2, we discuss these issues as we present
the theory and principles of structured programming. The concepts presented here are cru-
cial to building effective classes and manipulating objects.

In this chapter, we introduce C#’s if, if…else and while statements, three of the
building blocks that allow you to specify the logic required for member functions to per-
form their tasks. We devote a portion of this chapter (and Chapters 6 and 8) to further
developing the GradeBook class. In particular, we add a member function to the GradeBook
class that uses control statements to calculate the average of a set of student grades.
Another example demonstrates additional ways to combine control statements. We intro-
duce C#’s assignment, increment and decrement operators. These additional operators
abbreviate and simplify many program statements.

5.2 Algorithms
Any computing problem can be solved by executing a series of actions in a specific order.
A procedure for solving a problem in terms of

1. the actions to execute and

2. the order in which these actions execute

is called an algorithm. The following example demonstrates that correctly specifying the
order in which the actions execute is important.

Consider the “rise-and-shine algorithm” followed by one junior executive for getting
out of bed and going to work: (1) get out of bed, (2) take off pajamas, (3) take a shower,
(4) get dressed, (5) eat breakfast and (6) carpool to work. This routine prepares the exec-
utive for a productive day at the office.

5.1 Introduction
5.2 Algorithms
5.3 Pseudocode
5.4 Control Structures
5.5 if Single-Selection Statement
5.6 if…else Double-Selection

Statement
5.7 while Repetition Statement
5.8 Formulating Algorithms: Counter-

Controlled Repetition

5.9 Formulating Algorithms: Sentinel-
Controlled Repetition

5.10 Formulating Algorithms: Nested
Control Statements

5.11 Compound Assignment Operators
5.12 Increment and Decrement Operators
5.13 Simple Types
5.14 Wrap-Up

Summary | Terminology | Self-Review Exercises | Answers to Self-Review Exercises | Exercises |
Making a Difference Exercises

144 Chapter 5 Control Statements: Part 1

However, suppose that the same steps are performed in a different order: (1) get out
of bed, (2) take off pajamas, (3) get dressed, (4) take a shower, (5) eat breakfast, (6) carpool
to work. In this case, our junior executive shows up for work soaking wet.

Specifying the order in which statements (actions) execute is called program control.
This chapter investigates program control using C#’s control statements.

5.3 Pseudocode
Pseudocode is an informal language that helps you develop algorithms without having to
worry about the strict details of C# language syntax. Pseudocode is useful for developing
algorithms that will be converted to structured portions of C# apps. Pseudocode is similar
to English—it’s not a programming language.

Pseudocode does not execute on computers. Rather, it helps you “think out” an app
before attempting to write it in C#. This chapter shows how to use pseudocode to develop
C# apps.

You can create pseudocode using any text appeditor. Carefully prepared pseudocode
can easily be converted to a corresponding C# app. In many cases, this simply requires
replacing pseudocode statements with C# equivalents.

Pseudocode normally describes only actions, such as input, output and calculations. We
do not include variable declarations in our pseudocode, but some programmers do.

5.4 Control Structures
Normally, statements execute one after the other in the order in which they’re written.
This process is called sequential execution. Various C# statements enable you to specify
that the next statement to execute is not necessarily the next one in sequence. This is called
transfer of control.

During the 1960s, it became clear that the indiscriminate use of transfers of control
was the root of much difficulty experienced by software development groups. The blame
was pointed at the goto statement (used in most programming languages of the time),
which allows you to specify a transfer of control to one of a wide range of possible desti-
nations in an app (creating what is often called “spaghetti code”). The notion of so-called
structured programming became almost synonymous with “goto elimination.” We rec-
ommend that you avoid C#’s goto statement.

Research1 had demonstrated that apps could be written without goto statements. The
challenge of the era for programmers was to shift their styles to “goto-less programming.”
Not until the 1970s did programmers start taking structured programming seriously. The
results were impressive because structured apps were clearer, easier to debug and modify,
and more likely to be bug free in the first place.

Bohm and Jacopini’s work demonstrated that all apps could be written in terms of
only three control structures—the sequence structure, the selection structure and the rep-
etition structure. When we introduce C#’s implementations of control structures, we’ll
refer to them in the terminology of the C# Language Specification as “control statements.”

1. Böhm, C., and G. Jacopini, “Flow Diagrams, Turing Machines, and Languages with Only Two For-
mation Rules,” Communications of the ACM, Vol. 9, No. 5, May 1966, pp. 366–371.

5.4 Control Structures 145

Sequence Structure in C#
The sequence structure is built into C#. Unless directed otherwise, the computer executes
C# statements one after the other in the order in which they’re written—that is, in se-
quence. The UML activity diagram in Fig. 5.1 illustrates a typical sequence structure in
which two calculations are performed in order. C# lets you have as many actions as you
want in a sequence structure.

An activity diagram models the workflow (also called the activity) of a portion of a
software system. Such workflows may include a portion of an algorithm, such as the
sequence structure in Fig. 5.1. Activity diagrams are composed of special-purpose sym-
bols, such as action-state symbols (rectangles with their left and right sides replaced with
arcs curving outward), diamonds and small circles. These symbols are connected by tran-
sition arrows, which represent the flow of the activity—that is, the order in which the
actions should occur.

Like pseudocode, activity diagrams help you develop and represent algorithms,
although many programmers prefer pseudocode. Activity diagrams clearly show how con-
trol structures operate.

Consider the activity diagram for the sequence structure in Fig. 5.1. It contains two
action states that represent actions to perform. Each action state contains an action
expression—for example, “add grade to total” or “add 1 to counter”—that specifies an
action to perform. Other actions might include calculations or input–output operations.
The arrows in the activity diagram represent transitions, which indicate the order in
which the actions occur. The portion of the app that implements the activities illustrated
by the diagram in Fig. 5.1 first adds grade to total, then adds 1 to counter.

The solid circle at the top of the diagram represents the activity’s initial state—the
beginning of the workflow before the app performs the modeled actions. The solid circle
surrounded by a hollow circle that appears at the bottom of the diagram represents the
final state—the end of the workflow after the app performs its actions.

Figure 5.1 also includes rectangles with the upper-right corners folded over. These are
UML notes (like comments in C#) that describe the purpose of symbols in the diagram.
Figure 5.1 uses UML notes to show the C# code associated with each action state in the
activity diagram. A dotted line connects each note with the element that the note describes.
Activity diagrams normally do not show the C# code that implements the activity. We use
notes for this purpose here to illustrate how the diagram relates to C# code.

Fig. 5.1 | Sequence structure activity diagram.

add 1 to counter

add grade to total Corresponding C# statement:
total = total + grade;

Corresponding C# statement:
counter = counter + 1;

146 Chapter 5 Control Statements: Part 1

Selection Structures in C#
C# has three types of selection structures, which from this point forward we shall refer to
as selection statements. The if statement either performs (selects) an action if a condition
is true or skips the action if the condition is false. The if…else statement performs an
action if a condition is true or performs a different action if the condition is false. The
switch statement (Chapter 6) performs one of many different actions, depending on the
value of an expression.

The if statement is called a single-selection statement because it selects or ignores a
single action (or, as we’ll soon see, a single group of actions). The if…else statement is
called a double-selection statement because it selects between two different actions (or
groups of actions). The switch statement is called a multiple-selection statement because
it selects among many different actions (or groups of actions).

Repetition Structures in C#
C# provides four repetition structures, which from this point forward we shall refer to as
repetition statements (also called iteration statements or loops). Repetition statements
enable apps to perform statements repeatedly, depending on the value of a loop-continu-
ation condition. The repetition statements are the while, do…while, for and foreach

statements. (Chapter 6 presents the do…while and for statements. Chapter 8 discusses
the foreach statement.) The while, for and foreach statements perform the action (or
group of actions) in their bodies zero or more times—if the loop-continuation condition is
initially false, the action (or group of actions) will not execute. The do…while statement
performs the action (or group of actions) in its body one or more times. The words if,
else, switch, while, do, for and foreach are C# keywords.

Summary of Control Statements in C#
C# has only three kinds of structured control statements: the sequence statement, selection
statement (three types) and repetition statement (four types). We combine as many of each
type of statement as necessary to make the program flow and work as required. As with the
sequence statement in Fig. 5.1, we can model each control statement as an activity diagram.
Each diagram contains one initial state and one final state that represent a control state-
ment’s entry point and exit point, respectively. Single-entry/single-exit control statements
make it easy to build apps—the control statements are “attached” to one another by con-
necting the exit point of one to the entry point of the next. This procedure is similar to the
way in which a child stacks building blocks, so we call it control-statement stacking. You’ll
learn that there’s only one other way in which control statements may be connected: con-
trol-statement nesting, in which a control statement appears inside another control state-
ment. Thus, algorithms in C# apps are constructed from only three kinds of structured
control statements, combined in only two ways. This is the essence of simplicity.

5.5 if Single-Selection Statement
Apps use selection statements to choose among alternative courses of action. For example,
suppose that the passing grade on an exam is 60. The pseudocode statement

if grade is greater than or equal to 60
display “Passed”

5.5 if Single-Selection Statement 147

determines whether the condition “grade is greater than or equal to 60” is true or false. If
the condition is true, “Passed” is displayed, and the next pseudocode statement in order is
“performed.” (Remember that pseudocode is not a real programming language.) If the
condition is false, the display statement is ignored, and the next pseudocode statement in
order is performed. The indentation of the second line of this selection statement is op-
tional, but recommended, because it emphasizes the inherent structure.

The preceding pseudocode if statement may be written in C# as

The C# code corresponds closely to the pseudocode. This is one of the characteristics of
pseudocode that makes it such a useful app-development tool.

Figure 5.2 illustrates the single-selection if statement. This activity diagram contains
what is perhaps the most important symbol in an activity diagram—the diamond, or deci-
sion symbol, which indicates that a decision is to be made. The workflow will continue
along a path determined by one of the symbol’s two associated guard conditions—one
must be true and the other false. Each transition arrow emerging from a decision symbol
has a guard condition (specified in square brackets next to the transition arrow). If a guard
condition is true, the workflow enters the action state to which the transition arrow points.
In Fig. 5.2, if the grade is greater than or equal to 60, the app displays “Passed,” then tran-
sitions to the final state of this activity. If the grade is less than 60, the app immediately
transitions to the final state without displaying a message.

The if statement is a single-entry/single-exit control statement. You’ll see that the
activity diagrams for the remaining control statements also contain initial states, transition
arrows, action states that indicate actions to perform and decision symbols (with associated
guard conditions) that indicate decisions to be made, and final states. This is consistent
with the action/decision model of programming we’ve been emphasizing.

Envision eight bins, each containing only one type of C# control statement. The con-
trol statements are all empty. Your task is to assemble an app from as many of each type
of control statement as the algorithm demands, combining the control statements in only
two possible ways (stacking or nesting), then filling in the action states and decisions with
action expressions and guard conditions appropriate for the algorithm. We’ll discuss in
detail the variety of ways in which actions and decisions can be written.

if (grade >= 60)
Console.WriteLine("Passed");

Fig. 5.2 | if single-selection statement UML activity diagram.

Corresponding C# statement:
Console.WriteLine("Passed");

display “Passed”
[grade >= 60]

[grade < 60]

148 Chapter 5 Control Statements: Part 1

5.6 if…else Double-Selection Statement
The if single-selection statement performs an indicated action only when the condition is
true; otherwise, the action is skipped. The if…else double-selection statement allows
you to specify an action to perform when the condition is true and a different action when
the condition is false. For example, the pseudocode statement

displays “Passed” if the grade is greater than or equal to 60, or “Failed” otherwise. In either
case, after displaying occurs, the next pseudocode statement in sequence is “performed.”

The preceding if…else pseudocode statement can be written in C# as

The body of the else part is also indented. Whatever indentation convention you choose
should be applied consistently throughout your apps. It’s difficult to read code that do not
obey uniform spacing conventions.

Figure 5.3 illustrates the flow of control in the if…else statement. Imagine again a
deep bin containing as many empty if…else statements as might be needed to build any
C# app. Your job is to assemble these if…else statements (by stacking and nesting) with
any other control statements required by the algorithm. You fill in the action states and

if grade is greater than or equal to 60
display “Passed”

else
display “Failed”

if (grade >= 60)
Console.WriteLine("Passed");

else

Console.WriteLine("Failed");

Good Programming Practice 5.1
Indent both body statements of an if…else statement.

Good Programming Practice 5.2
If there are several levels of indentation, each level should be indented the same additional
amount of space.

Fig. 5.3 | if…else double-selection statement UML activity diagram.

display “Passed”display“Failed”
[grade >= 60][grade < 60]

5.6 if…else Double-Selection Statement 149

decision symbols with action expressions and guard conditions appropriate for the algo-
rithm you’re developing.

Conditional Operator (?:)
C# provides the conditional operator (?:), which can be used in place of an if…else

statement like the one diagrammed in Fig. 5.3. This is C#’s only ternary operator—this
means that it takes three operands. Together, the operands and the ?: symbols form a con-
ditional expression. The first operand (to the left of the ?) is a boolean expression (i.e., an
expression that evaluates to a bool-type value—true or false), the second operand (be-
tween the ? and :) is the value of the conditional expression if the boolean expression is
true and the third operand (to the right of the :) is the value of the conditional expression
if the boolean expression is false. For example, the statement

displays the value of WriteLine’s conditional-expression argument. The conditional expres-
sion in the preceding statement evaluates to the string "Passed" if the boolean expression
grade >= 60 is true and evaluates to the string "Failed" if the boolean expression is false.
Thus, this statement with the conditional operator performs essentially the same function as
the if…else statement shown earlier in this section, in which the boolean expression grade
>= 60 was used as the if…else statement’s condition. Actually, every control statement’s
condition must evaluate to the bool-type value true or false. You’ll see that conditional ex-
pressions can be used in some situations where if…else statements cannot.

Nested if…else Statements
An app can test multiple cases by placing if…else statements inside other if…else

statements to create nested if…else statements. For example, the following pseudocode
represents a nested if…else statement that displays A for exam grades greater than or
equal to 90, B for grades in the range 80 to 89, C for grades in the range 70 to 79, D for
grades in the range 60 to 69 and F for all other grades:

Console.WriteLine(grade >= 60 ? "Passed" : "Failed");

Good Programming Practice 5.3
When a conditional expression is inside a larger expression, it’s good practice to parenthe-
size the conditional expression for clarity. Adding parentheses may also prevent operator-
precedence problems that could cause syntax errors.

if grade is greater than or equal to 90
display “A”

else
if grade is greater than or equal to 80

display “B”
else

if grade is greater than or equal to 70
display “C”

else
if grade is greater than or equal to 60

display “D”
else

display “F”

150 Chapter 5 Control Statements: Part 1

This pseudocode may be written in C# as

If grade is greater than or equal to 90, the first four conditions will be true, but only the
statement in the if-part of the first if…else statement will execute. After that statement
executes, the else-part of the “outermost” if…else statement is skipped. Most C# pro-
grammers prefer to write the preceding if…else statement as

The two forms are identical except for the spacing and indentation, which the compiler
ignores. The latter form is popular because it avoids deep indentation of the code to the
right—such indentation often leaves little room on a line of code, forcing lines to be split
and decreasing the readability of your code.

Dangling-else Problem
The C# compiler always associates an else with the immediately preceding if unless told
to do otherwise by the placement of braces ({ and }). This behavior can lead to what is
referred to as the dangling-else problem. For example,

appears to indicate that if x is greater than 5, the nested if statement determines whether
y is also greater than 5. If so, the string "x and y are > 5" is output. Otherwise, it appears
that if x is not greater than 5, the else part of the if…else outputs the string "x is <= 5".

Beware! This nested if…else statement does not execute as it appears. The compiler
actually interprets the statement as

if (grade >= 90)
Console.WriteLine("A");

else

if (grade >= 80)
Console.WriteLine("B");

else

if (grade >= 70)
Console.WriteLine("C");

else

if (grade >= 60)
Console.WriteLine("D");

else

Console.WriteLine("F");

if (grade >= 90)
Console.WriteLine("A");

else if (grade >= 80)
Console.WriteLine("B");

else if (grade >= 70)
Console.WriteLine("C");

else if (grade >= 60)
Console.WriteLine("D");

else

Console.WriteLine("F");

if (x > 5)
if (y > 5)

Console.WriteLine("x and y are > 5");
else

Console.WriteLine("x is <= 5");

5.6 if…else Double-Selection Statement 151

in which the body of the first if is a nested if…else. The outer if statement tests wheth-
er x is greater than 5. If so, execution continues by testing whether y is also greater than 5.
If the second condition is true, the proper string—"x and y are > 5"—is displayed. How-
ever, if the second condition is false, the string "x is <= 5" is displayed, even though we
know that x is greater than 5.

To force the nested if…else statement to execute as it was originally intended, we
must write it as follows:

The braces ({}) indicate to the compiler that the second if statement is in the body of the
first if and that the else is associated with the first if. Exercises 5.27–5.28 investigate the
dangling-else problem further.

Blocks
The if statement expects only one statement in its body. To include several statements in
the body of an if (or the body of an else for an if…else statement), enclose the
statements in braces ({ and }). A set of statements contained within a pair of braces is
called a block. A block can be placed anywhere in an app that a single statement can be
placed.

The following example includes a block in the else-part of an if…else statement:

In this case, if grade is less than 60, the app executes both statements in the body of the
else and displays

Note the braces surrounding the two statements in the else clause. These braces are im-
portant. Without the braces, the statement

if (x > 5)
if (y > 5)

Console.WriteLine("x and y are > 5");
else

Console.WriteLine("x is <= 5");

if (x > 5)
{

if (y > 5)
Console.WriteLine("x and y are > 5");

}
else

Console.WriteLine("x is <= 5");

if (grade >= 60)
Console.WriteLine("Passed");

else

{
Console.WriteLine("Failed");
Console.WriteLine("You must take this course again.");

}

Failed.
You must take this course again.

Console.WriteLine("You must take this course again.");

152 Chapter 5 Control Statements: Part 1

would be outside the body of the else-part of the if…else statement and would execute
regardless of whether the grade was less than 60.

Syntax errors are caught by the compiler. A logic error (e.g., when both braces in a
block are left out) has its effect at execution time. A fatal logic error causes an app to fail
and terminate prematurely. A nonfatal logic error allows an app to continue executing,
but causes it to produce incorrect results.

Just as a block can be placed anywhere a single statement can be placed, it’s also pos-
sible to have an empty statement. Recall from Section 3.9 that the empty statement is rep-
resented by placing a semicolon (;) where a statement would normally be.

5.7 while Repetition Statement
A repetition statement allows you to specify that an app should repeat an action while
some condition remains true. The pseudocode statement

describes the repetition that occurs during a shopping trip. The condition “there are more
items on my shopping list” may be true or false. If it’s true, then the action “Purchase next
item and cross it off my list” is performed. This action will be performed repeatedly while
the condition remains true. The statement(s) contained in the while repetition statement
constitute the body of the while repetition statement, which may be a single statement or
a block. Eventually, the condition will become false (when the last item on the shopping
list has been purchased and crossed off the list). At this point, the repetition terminates,
and the first statement after the repetition statement executes.

As an example of C#’s while repetition statement, consider a code segment designed
to find the first power of 3 larger than 100. When the following while statement finishes
executing, product contains the result:

When this while statement begins execution, the value of variable product is 3. Each rep-
etition of the while statement multiplies product by 3, so product takes on the subse-
quent values 9, 27, 81 and 243 successively. When variable product becomes 243, the

Good Programming Practice 5.4
Some programmers always use braces in an if…else (or other) statement to prevent their
accidental omission, especially when adding statements to the if-part or the else-part at
a later time. To avoid omitting one or both of the braces, some programmers type the be-
ginning and ending braces of blocks before typing the individual statements within them.

Common Programming Error 5.1
Placing a semicolon after the condition in an if or if…else statement leads to a logic
error in single-selection if statements and a syntax error in double-selection if…else

statements (when the if-part contains an actual body statement).

while there are more items on my shopping list
put next item in cart and cross it off my list

int product = 3;

while (product <= 100)
product = 3 * product;

5.7 while Repetition Statement 153

while statement condition—product <= 100—becomes false. This terminates the repe-
tition, so the final value of product is 243. At this point, execution continues with the next
statement after the while statement.

while Repetition Statement Activity Diagram
The activity diagram in Fig. 5.4 illustrates the flow of control for the preceding while

statement. This diagram also introduces the UML’s merge symbol. The UML represents
both the merge and decision symbols as diamonds. The merge symbol joins two flows of
activity into one. In this diagram, the merge symbol joins the transitions from the initial
state and the action state, so they both flow into the decision that determines whether the
loop should begin (or continue) executing. The decision and merge symbols can be distin-
guished by the number of “incoming” and “outgoing” transition arrows. A decision sym-
bol has one transition arrow pointing to the diamond and two or more transition arrows
pointing out from the diamond to indicate possible transitions from that point. Each tran-
sition arrow pointing out of a decision symbol has a guard condition. A merge symbol has
two or more transition arrows pointing to the diamond and only one transition arrow point-
ing from the diamond, to indicate multiple activity flows merging to continue the activity.
None of the transition arrows associated with a merge have guard conditions.

Figure 5.4 clearly shows the repetition of the while statement discussed earlier in this
section. The transition arrow emerging from the action state points back to the merge,
from which program flow transitions back to the decision that’s tested at the beginning of
each repetition of the loop. The loop continues to execute until the guard condition
product > 100 becomes true. Then the while statement exits (reaches its final state), and
control passes to the next statement in sequence in the app.

Common Programming Error 5.2
Not providing in the body of a while statement an action that eventually causes the con-
dition in the while to become false normally results in a logic error called an infinite
loop, in which the loop never terminates.

Fig. 5.4 | while repetition statement UML activity diagram.

triple product value

Corresponding C# statement:
product = product * 3;

decision
[product <= 100]

[product > 100]

merge

154 Chapter 5 Control Statements: Part 1

5.8 Formulating Algorithms: Counter-Controlled
Repetition
To illustrate how algorithms are developed, we modify the GradeBook class of Chapter 4
to solve two variations of a problem that averages student grades. Consider the following
problem statement:

A class of 10 students took a quiz. The grades (integers in the range 0 to 100) for this
quiz are available to you. Determine the class average on the quiz.

The class average is equal to the sum of the grades divided by the number of students. The
algorithm for solving this problem on a computer must input each grade, keep track of the
total of all grades input, perform the averaging calculation and display the result.

Pseudocode Algorithm with Counter-Controlled Repetition
Let’s use pseudocode to list the actions to execute and specify the order in which they
should execute. We use counter-controlled repetition to input the grades one at a time.
This technique uses a variable called a counter (or control variable) to control the number
of times a set of statements will execute. Counter-controlled repetition is often called defi-
nite repetition, because the number of repetitions is known before the loop begins execut-
ing. In this example, repetition terminates when the counter exceeds 10. This section
presents a fully developed pseudocode algorithm (Fig. 5.5) and a version of class GradeBook
(Fig. 5.6) that implements the algorithm in a C# method. The section then presents an app
(Fig. 5.7) that demonstrates the algorithm in action. In Section 5.9, we demonstrate how
to use pseudocode to develop such an algorithm from scratch.

Note the references in the algorithm of Fig. 5.5 to a total and a counter. A total is a
variable used to accumulate the sum of several values. A counter is a variable used to
count—in this case, the grade counter indicates which of the 10 grades is about to be

Software Engineering Observation 5.1
Experience has shown that the most difficult part of solving a problem on a computer is
developing the algorithm for the solution. Once a correct algorithm has been specified, the
process of producing a working C# app from it is normally straightforward.

1 set total to zero
2 set grade counter to one
3
4 while grade counter is less than or equal to 10
5 prompt the user to enter the next grade
6 input the next grade
7 add the grade into the total
8 add one to the grade counter
9

10 set the class average to the total divided by 10
11 display the class average

Fig. 5.5 | Pseudocode algorithm that uses counter-controlled repetition to solve the class-
average problem.

5.8 Formulating Algorithms: Counter-Controlled Repetition 155

entered by the user. Variables used to store totals are normally initialized to zero before
being used in an app.

Implementing Counter-Controlled Repetition in Class GradeBook
Class GradeBook (Fig. 5.6) contains a constructor (lines 12–15) that assigns a value to the
instance variable created by auto-implemented property CourseName in line 9. Lines 18–23
declare method DisplayMessage. Lines 26–52 declare method DetermineClassAverage,
which implements the class-averaging algorithm described by the pseudocode in Fig. 5.5.

1 // Fig. 5.6: GradeBook.cs
2 // GradeBook class that solves the class-average problem using
3 // counter-controlled repetition.
4 using System;
5
6 public class GradeBook
7 {
8 // auto-implemented property CourseName
9 public string CourseName { get; set; }

10
11 // constructor initializes CourseName property
12 public GradeBook(string name)
13 {
14 CourseName = name; // set CourseName to name
15 } // end constructor
16
17 // display a welcome message to the GradeBook user
18 public void DisplayMessage()
19 {
20 // property CourseName gets the name of the course
21 Console.WriteLine("Welcome to the grade book for\n{0}!\n",
22 CourseName);
23 } // end method DisplayMessage
24
25 // determine class average based on 10 grades entered by user
26
27 {
28 int total; // sum of the grades entered by user
29
30 int grade; // grade value entered by the user
31 int average; // average of the grades
32
33 // initialization phase
34 total = 0; // initialize the total
35
36
37 // processing phase
38 while () // loop 10 times
39 {
40 Console.Write("Enter grade: "); // prompt the user
41 grade = Convert.ToInt32(Console.ReadLine()); // read grade

Fig. 5.6 | GradeBook class that solves the class-average problem using counter-controlled
repetition. (Part 1 of 2.)

public void DetermineClassAverage()

int gradeCounter; // number of the grade to be entered next

gradeCounter = 1; // initialize the loop counter

gradeCounter <= 10

156 Chapter 5 Control Statements: Part 1

Method DetermineClassAverage

Lines 28–31 declare local variables total, gradeCounter, grade and average to be of type
int. In this example, variable total accumulates the sum of the grades entered and grade-
Counter counts the number of grades entered. Variable grade stores the most recent grade
value entered (line 41). Variable average stores the average grade.

The declarations (in lines 28–31) appear in method DetermineClassAverage’s body.
Variables declared in a method body are local variables and can be used only from the line
of their declaration to the closing right brace of the block in which they’re declared. A local
variable’s declaration must appear before the variable is used in that method. A local vari-
able cannot be accessed outside the block in which it’s declared.

In the versions of class GradeBook in this chapter, we simply read and process a set of
grades. The averaging calculation is performed in method DetermineClassAverage using
local variables—we do not preserve any information about student grades in instance vari-
ables of the class. In later versions of the class (in Chapter 8), we store the grades using an
instance variable that refers to a data structure known as an array. This will allow a Grade-
Book object to perform various calculations on the same set of grades without requiring
the user to enter the grades multiple times.

We say that a variable is definitely assigned when it’s guaranteed to be assigned a value
before the variable is used. Notice that each local variable declared in lines 28–31 is defi-
nitely assigned before it’s used in calculations. The assignments (in lines 34–35) initialize
total to 0 and gradeCounter to 1. Variables grade and average (for the user input and
calculated average, respectively) need not be initialized here—their values are assigned as
they’re input or calculated later in the method.

42 total = total + grade; // add the grade to total
43
44 } // end while
45
46 // termination phase
47
48
49 // display total and average of grades
50 Console.WriteLine("\nTotal of all 10 grades is {0}", total);
51 Console.WriteLine("Class average is {0}", average);
52 } // end method DetermineClassAverage
53 } // end class GradeBook

Good Programming Practice 5.5
Separate declarations from other statements in methods with a blank line for readability.

Common Programming Error 5.3
Using the value of a local variable before it’s definitely assigned results in a compilation error.
All local variables must be definitely assigned before their values are used in expressions.

Fig. 5.6 | GradeBook class that solves the class-average problem using counter-controlled
repetition. (Part 2 of 2.)

gradeCounter = gradeCounter + 1; // increment the counter by 1

average = total / 10; // integer division yields integer result

5.8 Formulating Algorithms: Counter-Controlled Repetition 157

Line 38 indicates that the while statement should continue looping (also called iter-
ating) as long as the value of gradeCounter is less than or equal to 10. While this condition
remains true, the while statement repeatedly executes the statements between the braces
that delimit its body (lines 39–44).

Line 40 displays the prompt "Enter grade: " in the console window. Line 41 reads
the grade entered by the user and assigns it to variable grade. Then line 42 adds the new
grade entered by the user to the total and assigns the result to total, which replaces its
previous value.

Line 43 adds 1 to gradeCounter to indicate that the app has processed a grade and is
ready to input the next grade from the user. Incrementing gradeCounter eventually causes
gradeCounter to exceed 10. At that point the while loop terminates, because its condition
(line 38) becomes false.

When the loop terminates, line 47 performs the averaging calculation and assigns its
result to the variable average. Line 50 uses Console’s WriteLine method to display the
text "Total of all 10 grades is " followed by variable total’s value. Line 51 then dis-
plays the text "Class average is " followed by variable average’s value. Method Deter-
mineClassAverage returns control to the calling method (i.e., Main in GradeBookTest of
Fig. 5.7) after reaching line 52.

Class GradeBookTest
Class GradeBookTest (Fig. 5.7) creates an object of class GradeBook (Fig. 5.6) and demon-
strates its capabilities. Lines 9–10 of Fig. 5.7 create a new GradeBook object and assign it to
variable myGradeBook. The string in line 10 is passed to the GradeBook constructor (lines
12–15 of Fig. 5.6). Line 12 (Fig. 5.7) calls myGradeBook’s DisplayMessage method to dis-
play a welcome message to the user. Line 13 then calls myGradeBook’s DetermineClassAv-
erage method to allow the user to enter 10 grades, for which the method then calculates
and displays the average—the method performs the algorithm shown in Fig. 5.5.

Error-Prevention Tip 5.1
Initialize each counter and total, either in its declaration or in an assignment statement.
Totals are normally initialized to 0. Counters are normally initialized to 0 or 1, depend-
ing on how they’re used (we’ll show examples of each).

1 // Fig. 5.7: GradeBookTest.cs
2 // Create GradeBook object and invoke its DetermineClassAverage method.
3 public class GradeBookTest
4 {
5 public static void Main(string[] args)
6 {
7 // create GradeBook object myGradeBook and
8 // pass course name to constructor
9 GradeBook myGradeBook = new GradeBook(

10 "CS101 Introduction to C# Programming");
11
12 myGradeBook.DisplayMessage(); // display welcome message

Fig. 5.7 | Create GradeBook object and invoke its DetermineClassAverage method. (Part 1
of 2.)

158 Chapter 5 Control Statements: Part 1

Notes on Integer Division and Truncation
The averaging calculation performed by method DetermineClassAverage in response to
the method call at line 13 in Fig. 5.7 produces an integer result. The app’s output indicates
that the sum of the grade values in the sample execution is 848, which, when divided by
10, should yield the floating-point number 84.8. However, the result of the calculation
total / 10 (line 47 of Fig. 5.6) is the integer 84, because total and 10 are both integers.
Dividing two integers results in integer division—any fractional part of the calculation is
lost (i.e., truncated, not rounded). We’ll see how to obtain a floating-point result from the
averaging calculation in the next section.

5.9 Formulating Algorithms: Sentinel-Controlled
Repetition
Let us generalize Section 5.8’s class-average problem. Consider the following problem:

Develop a class-averaging app that processes grades for an arbitrary number of students
each time it’s run.

In the previous class-average example, the problem statement specified the number of stu-
dents, so the number of grades (10) was known in advance. In this example, no indication
is given of how many grades the user will enter during the app’s execution. The app must

13
14 } // end Main
15 } // end class GradeBookTest

Welcome to the grade book for
CS101 Introduction to C# Programming!

Enter grade: 88
Enter grade: 79
Enter grade: 95
Enter grade: 100
Enter grade: 48
Enter grade: 88
Enter grade: 92
Enter grade: 83
Enter grade: 90
Enter grade: 85

Total of all 10 grades is 848
Class average is 84

Common Programming Error 5.4
Assuming that integer division rounds (rather than truncates) can lead to incorrect results.
For example, 7 ÷ 4, which yields 1.75 in conventional arithmetic, truncates to 1 in inte-
ger arithmetic, rather than rounding to 2.

Fig. 5.7 | Create GradeBook object and invoke its DetermineClassAverage method. (Part 2
of 2.)

myGradeBook.DetermineClassAverage(); // find average of 10 grades

5.9 Formulating Algorithms: Sentinel-Controlled Repetition 159

process an arbitrary number of grades. How can it determine when to stop the input of
grades? How will it know when to calculate and display the class average?

One way to solve this problem is to use a special value called a sentinel value (also called
a signal value, a dummy value or a flag value) to indicate “end of data entry.” This is called
sentinel-controlled repetition.The user enters grades until all legitimate grades have been
entered. The user then types the sentinel value to indicate that no more grades will be
entered. Sentinel-controlled repetition is often called indefinite repetition because the
number of repetitions is not known by the app before the loop begins executing.

Clearly, a sentinel value must be chosen that cannot be confused with an acceptable
input value. Grades on a quiz are nonnegative integers, so –1 is an acceptable sentinel value
for this problem. Thus, a run of the class-average app might process a stream of inputs such
as 95, 96, 75, 74, 89 and –1. The app would then compute and display the class average
for the grades 95, 96, 75, 74 and 89. Since –1 is the sentinel value, it should not enter into
the averaging calculation.

Developing the Pseudocode Algorithm with Top-Down, Stepwise Refinement:
The Top and First Refinement
We approach the class-average app with a technique called top-down, stepwise refine-
ment, which is essential to the development of well-structured apps. We begin with a
pseudocode representation of the top—a single statement that conveys the overall func-
tion of the app:

The top is, in effect, a complete representation of an app. Unfortunately, the top rarely con-
veys sufficient detail from which to write a C# app. So we now begin the refinement pro-
cess. We divide the top into a series of smaller tasks and list these in the order in which
they’ll be performed. This results in the following first refinement:

This refinement uses only the sequence structure—the steps listed should execute in order,
one after the other.

Common Programming Error 5.5
Choosing a sentinel value that’s also a legitimate data value is a logic error.

determine the class average for the quiz

initialize variables
input, sum and count the quiz grades
calculate and display the class average

Software Engineering Observation 5.2
Each refinement, as well as the top itself, is a complete specification of the algorithm—
only the level of detail varies.

Software Engineering Observation 5.3
Many apps can be divided logically into three phases: an initialization phase that
initializes the variables; a processing phase that inputs data values and adjusts variables
(e.g., counters and totals) accordingly; and a termination phase that calculates and
outputs the final results.

160 Chapter 5 Control Statements: Part 1

Proceeding to the Second Refinement
The preceding Software Engineering Observation is often all you need for the first refine-
ment in the top-down process. To proceed to the next level, the second refinement, we
specify individual variables. In this example, we need a running total of the numbers, a
count of how many numbers have been processed, a variable to receive the value of each
grade as it’s input by the user and a variable to hold the calculated average. The pseudo-
code statement

can be refined as follows:

Only the variables total and counter need to be initialized before they’re used. The variables
average and grade (for the calculated average and the user input, respectively) need not be
initialized, because their values will be replaced as they’re calculated or input.

The pseudocode statement

requires a repetition statement that successively inputs each grade. We do not know in ad-
vance how many grades are to be processed, so we’ll use sentinel-controlled repetition. The
user enters grades one at a time. After entering the last grade, the user enters the sentinel
value. The app tests for the sentinel value after each grade is input and terminates the loop
when the user enters the sentinel value. The second refinement of the preceding pseudo-
code statement is then

In pseudocode, we do not use braces around the statements that form the body of the while
structure. We simply indent the statements under the while to show that they belong to
the while. Again, pseudocode is only an informal app-development aid.

The pseudocode statement

can be refined as follows:

initialize variables

initialize total to zero
initialize counter to zero

input, sum and count the quiz grades

prompt the user to enter the first grade
input the first grade (possibly the sentinel)

while the user has not yet entered the sentinel
add this grade into the running total
add one to the grade counter
prompt the user to enter the next grade
input the next grade (possibly the sentinel)

calculate and display the class average

if the counter is not equal to zero
set the average to the total divided by the counter
display the average

else
display “No grades were entered”

5.9 Formulating Algorithms: Sentinel-Controlled Repetition 161

We’re careful here to test for the possibility of division by zero—a logic error that, if unde-
tected, would cause the app to fail. The complete second refinement of the pseudocode for
the class-average problem is shown in Fig. 5.8.

In Fig. 5.5 and Fig. 5.8, we included some completely blank lines and indentation in
the pseudocode to make it more readable. The blank lines separate the pseudocode algo-
rithms into their various phases and set off control statements, and the indentation empha-
sizes the bodies of the control statements.

The pseudocode algorithm in Fig. 5.8 solves the more general class-averaging
problem. This algorithm was developed after only two refinements. Sometimes more
refinements are necessary.

Error-Prevention Tip 5.2
When performing division by an expression whose value could be zero, explicitly test for
this possibility and handle it appropriately in your app (e.g., by displaying an error mes-
sage) rather than allowing the error to occur.

1 initialize total to zero
2 initialize counter to zero
3
4 prompt the user to enter the first grade
5 input the first grade (possibly the sentinel)
6
7 while the user has not yet entered the sentinel
8 add this grade into the running total
9 add one to the grade counter

10 prompt the user to enter the next grade
11 input the next grade (possibly the sentinel)
12
13 if the counter is not equal to zero
14 set the average to the total divided by the counter
15 display the average
16 else
17 display “No grades were entered”

Fig. 5.8 | Class-average problem pseudocode algorithm with sentinel-controlled repetition.

Software Engineering Observation 5.4
Terminate the top-down, stepwise refinement process when you’ve specified the pseudocode
algorithm in sufficient detail for you to convert the pseudocode to C#. Normally,
implementing the C# app is then straightforward.

Software Engineering Observation 5.5
Some experienced programmers write apps without ever using app-development tools like
pseudocode. They feel that their ultimate goal is to solve the problem on a computer and
that writing pseudocode merely delays the production of final outputs. Although this
method may work for simple and familiar problems, it can lead to serious errors and delays
in large, complex projects.

162 Chapter 5 Control Statements: Part 1

Implementing Sentinel-Controlled Repetition in Class GradeBook
Figure 5.9 shows the C# class GradeBook containing method DetermineClassAverage

that implements the pseudocode algorithm of Fig. 5.8. Although each grade is an integer,
the averaging calculation is likely to produce a number with a decimal point—in other
words, a real number or floating-point number. The type int cannot represent such a
number, so this class uses type double to do so.

1 // Fig. 5.9: GradeBook.cs
2 // GradeBook class that solves the class-average problem using
3 // sentinel-controlled repetition.
4 using System;
5
6 public class GradeBook
7 {
8 // auto-implemented property CourseName
9 public string CourseName { get; set; }

10
11 // constructor initializes the CourseName property
12 public GradeBook(string name)
13 {
14 CourseName = name; // set CourseName to name
15 } // end constructor
16
17 // display a welcome message to the GradeBook user
18 public void DisplayMessage()
19 {
20 Console.WriteLine("Welcome to the grade book for\n{0}!\n",
21 CourseName);
22 } // end method DisplayMessage
23
24 // determine the average of an arbitrary number of grades
25
26 {
27 int total; // sum of grades
28 int gradeCounter; // number of grades entered
29 int grade; // grade value
30
31
32 // initialization phase
33 total = 0; // initialize total
34
35
36 // processing phase
37
38
39
40
41
42 while (grade != -1)
43 {

Fig. 5.9 | GradeBook class that solves the class-average problem using sentinel-controlled
repetition. (Part 1 of 2.)

public void DetermineClassAverage()

double average; // number with decimal point for average

gradeCounter = 0; // initialize loop counter

// prompt for and read a grade from the user
Console.Write("Enter grade or -1 to quit: ");
grade = Convert.ToInt32(Console.ReadLine());

// loop until sentinel value is read from the user

5.9 Formulating Algorithms: Sentinel-Controlled Repetition 163

In this example, we see that control statements may be stacked on top of one another (in
sequence) just as a child stacks building blocks. The while statement (lines 42–50) is fol-
lowed in sequence by an if…else statement (lines 54–65). Much of the code in this app is
identical to the code in Fig. 5.6, so we concentrate on the new features and issues.

Line 30 declares double variable average. This variable allows us to store the calcu-
lated class average as a floating-point number. Line 34 initializes gradeCounter to 0,
because no grades have been entered yet. Remember that this app uses sentinel-controlled
repetition to input the grades from the user. To keep an accurate record of the number of
grades entered, the app increments gradeCounter only when the user inputs a valid grade
value.

Program Logic for Sentinel-Controlled Repetition vs. Counter-Controlled Repetition
Compare the program logic for sentinel-controlled repetition in this app with that for
counter-controlled repetition in Fig. 5.6. In counter-controlled repetition, each repetition
of the while statement (e.g., lines 38–44 of Fig. 5.6) reads a value from the user, for the
specified number of repetitions. In sentinel-controlled repetition, the app reads the first
value (lines 38–39 of Fig. 5.9) before reaching the while. This value determines whether
the app’s flow of control should enter the body of the while. If the condition of the while
is false, the user entered the sentinel value, so the body of the while does not execute (be-
cause no grades were entered). If, on the other hand, the condition is true, the body begins
execution, and the loop adds the grade value to the total (line 44) and adds 1 to grade-
Counter (line 45). Then lines 48–49 in the loop’s body input the next value from the user.

44 total = total + grade; // add grade to total
45 gradeCounter = gradeCounter + 1; // increment counter
46
47
48
49
50 } // end while
51
52 // termination phase
53 // if the user entered at least one grade...
54 if ()
55 {
56
57
58
59 // display the total and average (with two digits of precision)
60 Console.WriteLine("\nTotal of the {0} grades entered is {1}",
61 gradeCounter, total);
62 Console.WriteLine("Class average is ", average);
63 } // end if
64 else // no grades were entered, so output error message
65 Console.WriteLine("No grades were entered");
66 } // end method DetermineClassAverage
67 } // end class GradeBook

Fig. 5.9 | GradeBook class that solves the class-average problem using sentinel-controlled
repetition. (Part 2 of 2.)

// prompt for and read the next grade from the user
Console.Write("Enter grade or -1 to quit: ");
grade = Convert.ToInt32(Console.ReadLine());

gradeCounter != 0

// calculate the average of all the grades entered
average = (double) total / gradeCounter;

{0:F}

164 Chapter 5 Control Statements: Part 1

Next, program control reaches the closing right brace of the body at line 50, so execution
continues with the test of the while’s condition (line 42).

The condition uses the most recent grade input by the user to determine whether the
loop’s body should execute again. The value of variable grade is always input from the user
immediately before the app tests the while condition. This allows the app to determine
whether the value just input is the sentinel value before the app processes that value (i.e.,
adds it to the total). If the sentinel value is input, the loop terminates; the app does not
add –1 to the total.

Notice the while statement’s block in Fig. 5.9 (lines 43–50). Without the braces, the
loop would consider its body to be only the first statement, which adds the grade to the
total. The last three statements in the block would fall outside the loop’s body, causing
the computer to interpret the code incorrectly as follows:

The preceding code would cause an infinite loop if the user did not enter the sentinel -1 at
line 39 (before the while statement).

After the loop terminates, the if…else statement at lines 54–65 executes. The con-
dition at line 54 determines whether any grades were input. If none were input, the else
part (lines 64–65) of the if…else statement executes and displays the message "No

grades were entered", and the method returns control to the calling method.

Explicitly and Implicitly Converting Between Simple Types
If at least one grade was entered, line 57 calculates the average of the grades. Recall from
Fig. 5.6 that integer division yields an integer result. Even though variable average is de-
clared as a double (line 30), the calculation

loses the division’s fractional part before the result is assigned to average. This occurs be-
cause total and gradeCounter are both integers, and integer division yields an integer re-
sult. To perform a floating-point calculation with integer values, we must temporarily treat
these values as floating-point numbers for use in the calculation. C# provides the unary cast
operator to accomplish this task. Line 57 uses the (double) cast operator—which has high-
er precedence than the arithmetic operators—to create a temporary floating-point copy of

Good Programming Practice 5.6
In a sentinel-controlled loop, the prompts requesting data entry should explicitly remind
the user of the sentinel value.

while (grade != -1)
total = total + grade; // add grade to total

gradeCounter = gradeCounter + 1; // increment counter

// prompt for input and read next grade from user
Console.Write("Enter grade or -1 to quit: ");
grade = Convert.ToInt32(Console.ReadLine());

Error-Prevention Tip 5.3
Omitting the braces that delimit a block can lead to logic errors, such as infinite loops. To
prevent this problem, some programmers enclose the body of every control statement in
braces even if the body contains only a single statement.

average = total / gradeCounter;

5.9 Formulating Algorithms: Sentinel-Controlled Repetition 165

its operand total (which appears to the right of the operator). Using a cast operator in this
manner is called explicit conversion. The value stored in total is still an integer.

The calculation now consists of a floating-point value (the temporary double version
of total) divided by the integer gradeCounter. C# knows how to evaluate only arithmetic
expressions in which the operands’ types are identical. To ensure that the operands are of
the same type, C# performs an operation called promotion (or implicit conversion) on
selected operands. For example, in an expression containing values of the types int and
double, the int values are promoted to double values for use in the expression. In this
example, the value of gradeCounter is promoted to type double, then floating-point divi-
sion is performed and the result of the calculation is assigned to average. As long as the
(double) cast operator is applied to any variable in the calculation, the calculation will
yield a double result.

Cast operators are available for all simple types. We’ll discuss cast operators for refer-
ence types in Chapter 12. The cast operator is formed by placing parentheses around the
name of a type. This operator is a unary operator (i.e., an operator that takes only one
operand). In Chapter 3, we studied the binary arithmetic operators. C# also supports
unary versions of the plus (+) and minus (–) operators, so you can write expressions like +5
or -7. Cast operators associate from right to left and have the same precedence as other
unary operators, such as unary + and unary -. This precedence is one level higher than that
of the multiplicative operators *, / and %. (See the operator precedence chart in
Appendix A.) We indicate the cast operator with the notation (type) in our precedence
charts, to indicate that any type name can be used to form a cast operator.

Line 62 outputs the class average. In this example, we decided that we’d like to display
the class average rounded to the nearest hundredth and output the average with exactly two
digits to the right of the decimal point. The format specifier F in WriteLine’s format item
(line 62) indicates that variable average’s value should be displayed as a real number. By
default, numbers output with F have two digits to the right of the decimal point. The
number of decimal places to the right of the decimal point is also known as the number’s
precision. Any floating-point value output with F will be rounded to the hundredths posi-
tion—for example, 123.457 will be rounded to 123.46, and 27.333 will be rounded to
27.33. In this app, the three grades entered during the sample execution of class Grade-
BookTest (Fig. 5.10) total 263, which yields the average 87.66666…. The format item
rounds the average to the hundredths position, and the average is displayed as 87.67.

Common Programming Error 5.6
A cast operator can be used to convert between simple numeric types, such as int and dou-
ble, and between related reference types (as we discuss in Chapter 12, OOP: Polymor-
phism, Interfaces and Operator Overloading). Casting to the wrong type may cause
compilation or runtime errors.

1 // Fig. 5.10: GradeBookTest.cs
2 // Create GradeBook object and invoke its DetermineClassAverage method.
3 public class GradeBookTest
4 {

Fig. 5.10 | Create GradeBook object and invoke DetermineClassAverage method. (Part 1 of 2.)

166 Chapter 5 Control Statements: Part 1

5.10 Formulating Algorithms: Nested Control Statements
For the next example, we once again formulate an algorithm by using pseudocode and top-
down, stepwise refinement, and write a corresponding C# app. We’ve seen that control
statements can be stacked on top of one another (in sequence). In this case study, we ex-
amine the only other structured way control statements can be connected, namely, by
nesting one control statement within another.

Consider the following problem statement:

A college offers a course that prepares students for the state licensing exam for real estate brokers.
Last year, 10 of the students who completed this course took the exam. The college wants to
know how well its students did on the exam. You’ve been asked to write an app to summarize
the results. You’ve been given a list of these 10 students. Next to each name is written a 1 if the
student passed the exam or a 2 if the student failed.

Your app should analyze the results of the exam as follows:

1. Input each test result (i.e., a 1 or a 2). Display the message “Enter result” on the screen
each time the app requests another test result.

2. Count the number of test results of each type.

3. Display a summary of the test results indicating the number of students who passed and
the number who failed.

4. If more than eight students passed the exam, display the message “Bonus to instructor!”

After reading the problem statement, we make the following observations:

1. The app must process test results for 10 students. A counter-controlled loop can be
used because the number of test results is known in advance.

5 public static void Main(string[] args)
6 {
7 // create GradeBook object myGradeBook and
8 // pass course name to constructor
9 GradeBook myGradeBook = new GradeBook(

10 "CS101 Introduction to C# Programming");
11
12 myGradeBook.DisplayMessage(); // display welcome message
13 myGradeBook.DetermineClassAverage(); // find average of grades
14 } // end Main
15 } // end class GradeBookTest

Welcome to the grade book for
CS101 Introduction to C# Programming!

Enter grade or -1 to quit: 96
Enter grade or -1 to quit: 88
Enter grade or -1 to quit: 79
Enter grade or -1 to quit: -1

Total of the 3 grades entered is 263
Class average is 87.67

Fig. 5.10 | Create GradeBook object and invoke DetermineClassAverage method. (Part 2 of 2.)

5.10 Formulating Algorithms: Nested Control Statements 167

2. Each test result has a numeric value—either a 1 or a 2. Each time the app reads a
test result, the app must determine whether the number is a 1 or a 2. We test for
a 1 in our algorithm. If the number is not a 1, we assume that it’s a 2.
(Exercise 5.24 considers the consequences of this assumption.)

3. Two counters are used to keep track of the exam results—one to count the num-
ber of students who passed the exam and one to count the number of students
who failed the exam.

4. After the app has processed all the results, it must determine whether more than
eight students passed the exam.

Let us proceed with top-down, stepwise refinement. We begin with a pseudocode rep-
resentation of the top:

Once again, the top is a complete representation of the app, but several refinements are like-
ly to be needed before the pseudocode can evolve naturally into a C# app.

Our first refinement is

Here, too, even though we have a complete representation of the entire app, further re-
finement is necessary. We now specify individual variables. Counters are needed to record
the passes and failures, a counter will be used to control the looping process and a variable
is needed to store the user input. The variable in which the user input will be stored is not
initialized at the start of the algorithm, because its value is read from the user during each
repetition of the loop.

The pseudocode statement

can be refined as follows:

Notice that only the counters are initialized at the start of the algorithm.
The pseudocode statement

requires a loop that successively inputs the result of each exam. We know in advance that
there are precisely 10 exam results, so counter-controlled looping is appropriate. Inside the
loop (i.e., nested within the loop), a double-selection statement will determine whether
each exam result is a pass or a failure and will increment the appropriate counter. The re-
finement of the preceding pseudocode statement is then

analyze exam results and decide whether the instructor should receive a bonus

initialize variables
input the 10 exam results, and count passes and failures
display a summary of the exam results and decide if the instructor should

receive a bonus

initialize variables

initialize passes to zero
initialize failures to zero
initialize student counter to one

input the 10 exam results, and count passes and failures

168 Chapter 5 Control Statements: Part 1

We use blank lines to isolate the if…else control statement, which improves readability.
The pseudocode statement

can be refined as follows:

Complete Second Refinement of Pseudocode and Conversion to Class Analysis
The complete second refinement of the pseudocode appears in Fig. 5.11. Notice that blank
lines are also used to set off the while statement for readability. This pseudocode is now suf-
ficiently refined for conversion to C#. The program that implements the pseudocode algo-
rithm and sample outputs are shown in Fig. 5.12.

while student counter is less than or equal to 10
prompt the user to enter the next exam result
input the next exam result

if the student passed
add one to passes

else
add one to failures

add one to student counter

display a summary of the exam results and decide if the instructor should
receive a bonus

display the number of passes
display the number of failures

if more than eight students passed
display “Bonus to instructor!”

1 initialize passes to zero
2 initialize failures to zero
3 initialize student counter to one
4
5 while student counter is less than or equal to 10
6 prompt the user to enter the next exam result
7 input the next exam result
8
9 if the student passed

10 add one to passes
11 else
12 add one to failures
13
14 add one to student counter
15

Fig. 5.11 | Pseudocode for the examination-results problem. (Part 1 of 2.)

5.10 Formulating Algorithms: Nested Control Statements 169

This example contains only one class, with method Main performing all the class’s
work. In this chapter and in Chapter 4, you’ve seen examples consisting of two classes—
one class containing methods that perform useful tasks and one containing method Main,
which creates an object of the other class and calls its methods. Occasionally, when it
makes no sense to try to create a reusable class, we’ll use a mechanical example contained
entirely within the Main method of a single class.

Lines 10–13 of Fig. 5.12 declare the variables that method Main uses to process the
examination results. Several of these declarations use C#’s ability to incorporate variable
initialization into declarations (passes is assigned 0, failures is assigned 0 and student-
Counter is assigned 1).

16 display the number of passes
17 display the number of failures
18
19 if more than eight students passed
20 display “Bonus to instructor!”

1 // Fig. 5.12: Analysis.cs
2 // Analysis of examination results, using nested control statements.
3 using System;
4
5 public class Analysis
6 {
7 public static void Main(string[] args)
8 {
9

10
11
12
13 int result; // one exam result from user
14
15 // process 10 students using counter-controlled repetition
16 while (studentCounter <= 10)
17 {
18 // prompt user for input and obtain a value from the user
19 Console.Write("Enter result (1 = pass, 2 = fail): ");
20 result = Convert.ToInt32(Console.ReadLine());
21
22
23
24
25
26
27
28 // increment studentCounter so loop eventually terminates
29 studentCounter = studentCounter + 1;
30 } // end while

Fig. 5.12 | Analysis of examination results, using nested control statements. (Part 1 of 2.)

Fig. 5.11 | Pseudocode for the examination-results problem. (Part 2 of 2.)

// initialize variables in declarations
int passes = 0; // number of passes
int failures = 0; // number of failures
int studentCounter = 1; // student counter

// if...else nested in while
if (result == 1) // if result 1,

passes = passes + 1; // increment passes
else // else result is not 1, so

failures = failures + 1; // increment failures

170 Chapter 5 Control Statements: Part 1

The while statement (lines 16–30) loops 10 times. During each repetition, the loop
inputs and processes one exam result. Notice that the if…else statement (lines 23–26)
for processing each result is nested in the while statement. If the result is 1, the if…else

statement increments passes; otherwise, it assumes the result is 2 and increments fail-
ures. Line 29 increments studentCounter before the loop condition is tested again at line
16. After 10 values have been input, the loop terminates and line 33 displays the number
of passes and the number of failures. Lines 36–37 determine whether more than eight
students passed the exam and, if so, outputs the message "Bonus to instructor!".

Figure 5.12 shows the input and output from two sample executions of the app.
During the first sample execution, the condition at line 36 is true—more than eight stu-
dents passed the exam, so the app outputs a message indicating that the instructor should
receive a bonus.

31
32 // termination phase; prepare and display results
33 Console.WriteLine("Passed: {0}\nFailed: {1}", passes, failures);
34
35 // determine whether more than 8 students passed
36 if (passes > 8)
37 Console.WriteLine("Bonus to instructor!");
38 } // end Main
39 } // end class Analysis

Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 2
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Passed: 9
Failed: 1
Bonus to instructor!

Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 2
Enter result (1 = pass, 2 = fail): 2
Enter result (1 = pass, 2 = fail): 2
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 2
Enter result (1 = pass, 2 = fail): 2
Passed: 5
Failed: 5

Fig. 5.12 | Analysis of examination results, using nested control statements. (Part 2 of 2.)

5.11 Compound Assignment Operators 171

5.11 Compound Assignment Operators
C# provides several compound assignment operators for abbreviating assignment expres-
sions. Any statement of the form

where operator is one of the binary operators +, -, *, / or % (or others we discuss later in
the text) can be written in the form

For example, you can abbreviate the statement

with the addition compound assignment operator, +=, as

The += operator adds the value of the expression on the right of the operator to the value
of the variable on the left of the operator and stores the result in the variable on the left
of the operator. Thus, the assignment expression c += 3 adds 3 to c. Figure 5.13 shows the
arithmetic compound assignment operators, sample expressions using the operators and
explanations of what the operators do.

5.12 Increment and Decrement Operators
C# provides two unary operators for adding 1 to or subtracting 1 from the value of a nu-
meric variable. These are the unary increment operator, ++, and the unary decrement op-
erator, --, respectively, which are summarized in Fig. 5.14. An app can increment by 1 the

Error-Prevention Tip 5.4
Initializing local variables when they’re declared helps you avoid compilation errors that
might arise from attempts to use uninitialized data. While C# does not require that local-
variable initializations be incorporated into declarations, it does require that local vari-
ables be initialized before their values are used in an expression.

variable = variable operator expression;

variable operator= expression;

c = c + 3;

c += 3;

Assignment
operator

Sample
expression Explanation Assigns

Assume: int c = 3, d = 5, e = 4, f = 6, g = 12;

+= c += 7 c = c + 7 10 to c

-= d -= 4 d = d - 4 1 to d

*= e *= 5 e = e * 5 20 to e

/= f /= 3 f = f / 3 2 to f

%= g %= 9 g = g % 9 3 to g

Fig. 5.13 | Arithmetic compound assignment operators.

172 Chapter 5 Control Statements: Part 1

value of a variable called c using the increment operator, ++, rather than the expression
c = c + 1 or c += 1. An increment or decrement operator that’s prefixed to (placed before) a
variable is referred to as the prefix increment operator or prefix decrement operator, re-
spectively. An increment or decrement operator that’s postfixed to (placed after) a variable
is referred to as the postfix increment operator or postfix decrement operator, respectively.

Incrementing (or decrementing) a variable with an increment (or decrement) operator
causes it to be incremented (or decremented) by 1. For a prefix increment (or decrement)
operator, the variable’s new value is used in the expression in which the variable appears.
For a postfix increment (or decrement) operator, the variable’s original value is used in the
expression in which the variable appears.

Figure 5.15 demonstrates the difference between the prefix increment and postfix
increment versions of the ++ increment operator. The decrement operator (--) works sim-
ilarly. In this example, we simply want to show the mechanics of the ++ operator, so we
use only one class declaration containing method Main.

Operator Called
Sample
expression Explanation

++ prefix
increment

++a Increments a by 1 and uses the new value of a
in the expression in which a resides.

++ postfix
increment

a++ Increments a by 1, but uses the original value
of a in the expression in which a resides.

-- prefix
decrement

--b Decrements b by 1 and uses the new value of
b in the expression in which b resides.

-- postfix
decrement

b-- Decrements b by 1 but uses the original value
of b in the expression in which b resides.

Fig. 5.14 | Increment and decrement operators.

Good Programming Practice 5.7
Unlike binary operators, the unary increment and decrement operators should (by con-
vention) be placed next to their operands, with no intervening spaces.

1 // Fig. 5.15: Increment.cs
2 // Prefix increment and postfix increment operators.
3 using System;
4
5 public class Increment
6 {
7 public static void Main(string[] args)
8 {
9 int c;

10

Fig. 5.15 | Prefix increment and postfix increment operators. (Part 1 of 2.)

5.12 Increment and Decrement Operators 173

Line 12 initializes the variable c to 5, and line 13 outputs c’s initial value. Line 14 out-
puts the value of the expression c++. This expression performs the postfix increment oper-
ation on the variable c, so even though c’s value is incremented, c’s original value (5) is
output. Thus, line 14 outputs c’s initial value (5) again. Line 15 outputs c’s new value (6)
to prove that the variable’s value was indeed incremented in line 14.

Line 20 resets c’s value to 5, and line 21 outputs c’s value. Line 22 outputs the value
of the expression ++c. This expression performs the prefix increment operation on c, so its
value is incremented and the new value (6) is output. Line 23 outputs c’s value again to
show that the value of c is still 6 after line 22 executes.

The arithmetic compound assignment operators and the increment and decrement
operators can be used to simplify statements. For example, the three assignment state-
ments in Fig. 5.12 (lines 24, 26 and 29)

can be written more concisely with compound assignment operators as

and even more concisely with prefix increment operators as

11 // demonstrate postfix increment operator
12 c = 5; // assign 5 to c
13 Console.WriteLine(c); // display 5
14
15
16
17 Console.WriteLine(); // skip a line
18
19 // demonstrate prefix increment operator
20 c = 5; // assign 5 to c
21 Console.WriteLine(c); // display 5
22
23
24 } // end Main
25 } // end class Increment

5
5
6

5
6
6

passes = passes + 1;
failures = failures + 1;
studentCounter = studentCounter + 1;

passes += 1;
failures += 1;
studentCounter += 1;

++passes;
++failures;
++studentCounter;

Fig. 5.15 | Prefix increment and postfix increment operators. (Part 2 of 2.)

Console.WriteLine(c++); // increment c and display 5
Console.WriteLine(c); // display 6

Console.WriteLine(++c); // increment c and display 6
Console.WriteLine(c); // display 6 again

174 Chapter 5 Control Statements: Part 1

or with postfix increment operators as

When incrementing or decrementing a variable in a statement by itself, the prefix
increment and postfix increment forms have the same result, and the prefix decrement and
postfix decrement forms have the same result. It’s only when a variable appears in the con-
text of a larger expression that the prefix increment and postfix increment have different
results (and similarly for the prefix decrement and postfix decrement).

Precedence and Associativity of the Operators We’ve Discussed So Far
Figure 5.16 shows the precedence and associativity of the operators we’ve introduced to
this point. The operators are shown from top to bottom in decreasing order of precedence.
The second column describes the associativity of the operators at each level of precedence.
The conditional operator (?:); the unary operators prefix increment (++), prefix decre-
ment (--), plus (+) and minus (-); the cast operators; and the assignment operators =, +=,
-=, *=, /= and %= associate from right to left. All the other operators in the operator pre-
cedence chart in Fig. 5.16 associate from left to right. The third column names the groups
of operators.

5.13 Simple Types
The table in Appendix B lists the 13 simple types in C#. Like its predecessor languages C
and C++, C# requires all variables to have a type. For this reason, C# is referred to as a
strongly typed language.

In C and C++, you frequently have to write separate versions of apps to support dif-
ferent computer platforms, because the simple types are not guaranteed to be identical

passes++;
failures++;
studentCounter++;

Common Programming Error 5.7
Attempting to use the increment or decrement operator on an expression other than one to
which a value can be assigned is a syntax error. For example, writing ++(x + 1) is a syntax
error, because (x + 1) is not an expression to which a value can be assigned.

Operators Associativity Type

. new ++(postfix) --(postfix) left to right highest precedence

++ -- + - (type) right to left unary prefix
* / % left to right multiplicative
+ - left to right additive
< <= > >= left to right relational
== != left to right equality
?: right to left conditional
= += -= *= /= %= right to left assignment

Fig. 5.16 | Precedence and associativity of the operators discussed so far.

5.14 Wrap-Up 175

from computer to computer. For example, an int value on one machine might be repre-
sented by 16 bits (2 bytes) of storage, while an int value on another machine might be
represented by 32 bits (4 bytes) of storage. In C#, int values are always 32 bits (4 bytes).
In fact, all C# numeric types have fixed sizes, as is shown in Appendix B.

Each type in Appendix B is listed with its size in bits (there are eight bits to a byte)
and its range of values. Because the designers of C# want it to be maximally portable, they
use internationally recognized standards for both character formats (Unicode; for more
information, see Appendix F, Unicode®) and floating-point numbers (IEEE 754; for
more information, visit grouper.ieee.org/groups/754/).

Recall from Section 4.5 that variables of simple types declared outside of a method as
fields of a class are automatically assigned default values unless explicitly initialized.
Instance variables of types char, byte, sbyte, short, ushort, int, uint, long, ulong,
float, double, and decimal are all given the value 0 by default. Instance variables of type
bool are given the value false by default. Similarly, reference-type instance variables are
initialized by default to the value null.

5.14 Wrap-Up
This chapter presented basic problem-solving techniques that you’ll use in building classes
and developing methods for these classes. We demonstrated how to construct an algo-
rithm (i.e., an approach to solving a problem), then how to refine the algorithm through
several phases of pseudocode development, resulting in C# code that can be executed as
part of a method. The chapter showed how to use top-down, stepwise refinement to plan
out the specific actions that a method must perform and the order in which the method
must perform these actions.

Only three types of control structures—sequence, selection and repetition—are
needed to develop any algorithm. Specifically, we demonstrated the if single-selection
statement, the if…else double-selection statement and the while repetition statement.
These are some of the building blocks used to construct solutions to many problems. We
used control-statement stacking to compute the total and the average of a set of student
grades with counter- and sentinel-controlled repetition, and we used control-statement
nesting to analyze and make decisions based on a set of exam results. We introduced C#’s
compound assignment, unary cast, conditional (?:), increment and decrement operators.
Finally, we discussed the simple types. In Chapter 6, we continue our discussion of control
statements, introducing the for, do…while and switch statements.

Summary
Section 5.2 Algorithms
• An algorithm is a procedure for solving a problem in terms of the actions to execute and the order

in which these actions execute.

• Specifying the order in which statements (actions) execute in an app is called program control.

176 Chapter 5 Control Statements: Part 1

Section 5.3 Pseudocode
• Pseudocode is an informal language that helps you develop algorithms without having to worry

about the strict details of C# language syntax.

• Carefully prepared pseudocode can easily be converted to a corresponding C# app.

Section 5.4 Control Structures
• There are three types of control structures—sequence, selection and repetition.

• The sequence structure is built into C#. Unless directed otherwise, the computer executes C#
statements one after the other in the order in which they’re written.

• Activity diagrams are part of the UML. An activity diagram models the workflow of a portion of
a software system.

• Activity diagrams are composed of special-purpose symbols, such as action-state symbols, dia-
monds and small circles. These symbols are connected by transition arrows, which represent the
flow of the activity.

• Like pseudocode, activity diagrams help you develop and represent algorithms. Activity diagrams
clearly show how control structures operate.

• Action-state symbols (rectangles with their left and right sides replaced with arcs curving out-
ward) represent actions to perform.

• The arrows in an activity diagram represent transitions, which indicate the order in which the
actions represented by the action states occur.

• The solid circle in an activity diagram represents the activity’s initial state. The solid circle sur-
rounded by a hollow circle represents the final state.

• Rectangles with the upper-right corners folded over are UML notes (like comments in C#)—
explanatory remarks that describe the purpose of symbols in the diagram.

• C# has three types of selection statements: the if statement, the if…else statement and the
switch statement.

• The if statement is called a single-selection statement because it selects or ignores a single action.

• The if…else statement is called a double-selection statement because it selects between two dif-
ferent actions (or groups of actions).

• The switch statement is called a multiple-selection statement because it selects among many dif-
ferent actions (or groups of actions).

• C# provides four repetition statements: the while, do…while, for and foreach statements.

• The while, for and foreach statements perform the actions in their bodies zero or more times.

• The do…while statement performs the actions in its body one or more times.

• Control statements may be connected in two ways: control-statement stacking and control-state-
ment nesting.

Section 5.5 if Single-Selection Statement
• The if single-selection statement performs an indicated action (or group of actions) only when

the condition is true; otherwise, the action is skipped.

• In an activity diagram, the diamond symbol indicates that a decision is to be made. The workflow
will continue along a path determined by the symbol’s associated guard conditions.

• When modelled by a UML activity diagram, all control statements contain initial states, transi-
tion arrows, action states and decision symbols.

Summary 177

Section 5.6 if…else Double-Selection Statement
• The if…else double-selection statement allows you to specify an action (or group of actions)

to perform when the condition is true and a different action (or group of actions) when the con-
dition is false.

• C# provides the conditional operator (?:), which can be used in place of an if…else statement.
The conditional expression evaluates to the second operand if the first operand evaluates to true,
and evaluates to the third operand if the first operand evaluates to false.

• To include several statements in the body of an if (or the body of an else for an if…else state-
ment), enclose the statements in braces ({ and }).

• A set of statements contained within a pair of braces is called a block. A block can be placed any-
where in an app that a single statement can be placed.

Section 5.7 while Repetition Statement
• A repetition statement allows you to specify that an app should repeat an action while some con-

dition remains true.

• The format for the while repetition statement is

while (condition)
statement

Section 5.8 Formulating Algorithms: Counter-Controlled Repetition
• Counter-controlled repetition is a technique that uses a variable called a counter to control the

number of times a set of statements will execute.

• A variable is said to be definitely assigned when the variable is guaranteed to be assigned a value
in every possible flow of control. Local variables must be definitely assigned before they’re used
in calculations.

• Dividing two integers results in integer division—any fractional part of the calculation is lost.

Section 5.9 Formulating Algorithms: Sentinel-Controlled Repetition
• Sentinel-controlled repetition is a technique that uses a special value called a sentinel value to in-

dicate “end of data entry.”

Section 5.10 Formulating Algorithms: Nested Control Statements
• The unary cast operator (double) creates a temporary floating-point copy of its operand. Using

a cast operator in this manner is called explicit conversion.

• To ensure that both operands of a binary operator are of the same type, C# performs promotion
on selected operands.

• The format specifier F indicates that a variable’s value should be displayed as a real number.

Section 5.11 Compound Assignment Operators
• C# provides several compound assignment operators for abbreviating assignment expressions, in-

cluding +=, -=, *=, /= and %=.

Section 5.12 Increment and Decrement Operators
• C# provides the unary increment operator, ++, and the unary decrement operator, --, for adding

1 to or subtracting 1 from the value of a numeric variable.

• Incrementing (or decrementing) a variable with the prefix increment (or prefix decrement) op-
erator increments (or decrements) the variable by 1 and uses the new variable value in the expres-
sion in which the variable appears. Incrementing (or decrementing) a variable with the postfix

178 Chapter 5 Control Statements: Part 1

increment (or postfix decrement) operator increments (or decrements) the variable by 1 but uses
the original variable value in the expression in which the variable appears.

Section 5.13 Simple Types
• C# is a strongly typed language—it requires all variables to have a type.

• Variables of simple types declared outside a method as fields of a class are automatically assigned
default values. Instance variables of types char, byte, sbyte, short, ushort, int, uint, long,
ulong, float, double, and decimal are all given the value 0 by default. Instance variables of type
bool are given the value false by default. Reference-type instance variables are initialized by de-
fault to the value null.

Terminology
-- operator
?: operator
++ operator
action
action/decision model of programming
action expression (in the UML)
action state (in the UML)
action-state symbol (in the UML)
activity (in the UML)
activity diagram (in the UML)
addition compound assignment operator (+=)
algorithm
arithmetic compound assignment operators:

+=, -=, *=, /= and %=

block
body of a loop
bool simple type
boolean expression
cast operator, (type)
compound assignment operator
conditional expression
conditional operator (?:)
control statement
control-statement nesting
control-statement stacking
control structure
control variable
counter
counter-controlled repetition
dangling-else problem
decision
decision symbol (in the UML)
decrement operator (--)
definite assignment
definite repetition
diamond (in the UML)
dotted line
double-selection statement

dummy value
explicit conversion
false

fatal logic error
final state (in the UML)
flag value
goto statement
guard condition (in the UML)
if statement
if…else statement
implicit conversion
increment operator (++)
indefinite repetition
infinite loop
initial state (in the UML)
integer division
instantiate an object
iteration statement
logic error
loop
loop-continuation condition
merge symbol (in the UML)
multiple-selection statement
multiplicative operators
nested control statements
nested if…else statements
nonfatal logic error
note (in the UML)
order in which actions should execute
postfix decrement operator
postfix increment operator
prefix decrement operator
prefix increment operator
procedure
program control
promotion
pseudocode
refinement

Self-Review Exercises 179

repetition
repetition statement
selection statement
sentinel-controlled repetition
sentinel value
sequence structure
sequential execution
signal value
simple types
single-entry/single-exit control structures
single-selection statement
small circle (in the UML)
solid circle (in the UML)
solid circle surrounded by a hollow circle

(in the UML)
stacked control statements

strongly typed language
structured programming
syntax error
ternary operator
top-down stepwise refinement
total
transfer of control
transition (in the UML)
transition arrow (in the UML)
true

truncate
unary cast operator
unary operator
while statement
workflow

Self-Review Exercises
5.1 Fill in the blanks in each of the following statements:

a) All apps can be written in terms of three types of control structures: ,
and .

b) The statement is used to execute one action when a condition is true and an-
other when that condition is false.

c) Repeating a set of instructions a specific number of times is called repetition.
d) When it’s not known in advance how many times a set of statements will be repeated,

a(n) value can be used to terminate the repetition.
e) The structure is built into C#—by default, statements execute in the order

they appear.
f) Instance variables of type int are given the value by default.
g) C# is a(n) language—it requires all variables to have a type.
h) If the increment operator is to a variable, the variable is incremented by 1 and

its new value is used in the expression.

5.2 State whether each of the following is true or false. If false, explain why.
a) An algorithm is a procedure for solving a problem in terms of the actions to execute and

the order in which these actions execute.
b) A set of statements contained within a pair of parentheses is called a block.
c) A selection statement specifies that an action is to be repeated while some condition re-

mains true.
d) A nested control statement appears in the body of another control statement.
e) C# provides the arithmetic compound assignment operators +=, -=, *=, /= and %= for

abbreviating assignment expressions.
f) Specifying the order in which statements (actions) execute in an app is called program

control.
g) The unary cast operator (double) creates a temporary integer copy of its operand.
h) Instance variables of type bool are given the value true by default.
i) Pseudocode helps you think out an app before attempting to write it in a programming

language.

5.3 Write four different C# statements that each add 1 to int variable x.

180 Chapter 5 Control Statements: Part 1

5.4 Write C# statements to accomplish each of the following tasks:
a) Assign the sum of x and y to z, and increment x by 1 with ++. Use only one statement

and ensure that the original value of x is used in the statement.
b) Test whether variable count is greater than 10. If it is, display "Count is greater than 10".
c) Decrement the variable x by 1, then subtract it from the variable total. Use only one

statement.
d) Calculate the remainder after q is divided by divisor, and assign the result to q. Write

this statement in two different ways.

5.5 Write a C# statement to accomplish each of the following tasks:
a) Declare variable sum to be of type int.
b) Declare variable x to be of type int.
c) Assign 1 to variable x.
d) Assign 0 to variable sum.
e) Add variable x to variable sum, and assign the result to variable sum.
f) Display "The sum is: ", followed by the value of variable sum.

5.6 Combine the statements that you wrote in Exercise 5.5 into a C# app that calculates and
displays the sum of the integers from 1 to 10. Use a while statement to loop through the calculation
and increment statements. The loop should terminate when the value of x becomes 11.

5.7 Determine the values of the variables in the following statement after it executes. Assume
that when the statement begins executing, all variables are type int and have the value 5.

product *= x++;

5.8 Identify and correct the errors in each of the following sets of code:
a) while (c <= 5)

{

product *= c;

++c;

b) if (gender == 1)

Console.WriteLine("Woman");

else;

Console.WriteLine("Man");

5.9 What is wrong with the following while statement?

while (z >= 0)
sum += z;

Answers to Self-Review Exercises
5.1 a) sequence, selection, repetition. b) if…else. c) counter-controlled (or definite). d) sen-
tinel, signal, flag or dummy. e) sequence. f) 0 (zero). g) strongly typed. h) prefixed.

5.2 a) True. b) False. A set of statements contained within a pair of braces ({ and }) is called a
block. c) False. A repetition statement specifies that an action is to be repeated while some condi-
tion remains true. A selection statement determines whether an action is performed based on the
truth or falsity of a condition. d) True. e) True. f) True. g) False. The unary cast operator (double)
creates a temporary floating-point copy of its operand. h) False. Instance variables of type bool are
given the value false by default. i) True.

5.3 x = x + 1;

x += 1;

++x;

x++;

Answers to Self-Review Exercises 181

5.4 a) z = x++ + y;

b) if (count > 10)

Console.WriteLine("Count is greater than 10");

c) total -= --x;

d) q %= divisor;

q = q % divisor;

5.5 a) int sum;

b) int x;

c) x = 1;

d) sum = 0;

e) sum += x; or sum = sum + x;

f) Console.WriteLine("The sum is: {0}", sum);

5.6 The app is as follows:

5.7 product = 25, x = 6

5.8 a) Error: The closing right brace of the while statement’s body is missing.
Correction: Add a closing right brace after the statement ++c;.

b) Error: The semicolon after else results in a logic error. The second output statement
will always execute.
Correction: Remove the semicolon after else.

5.9 The value of the variable z is never changed in the while statement. Therefore, an infinite
loop occurs if the loop-continuation condition (z >= 0) is initially true. To prevent an infinite loop,
z must be decremented so that it eventually becomes less than 0.

1 // Ex. 5.6: Calculate.cs
2 // Calculate the sum of the integers from 1 to 10
3 using System;
4
5 public class Calculate
6 {
7 public static void Main(string[] args)
8 {
9 int sum;

10 int x;
11
12 x = 1; // initialize x to 1 for counting
13 sum = 0; // initialize sum to 0 for totaling
14
15 while (x <= 10) // while x is less than or equal to 10
16 {
17 sum += x; // add x to sum
18 ++x; // increment x
19 } // end while
20
21 Console.WriteLine("The sum is: {0}", sum);
22 } // end Main
23 } // end class Calculate

The sum is: 55

182 Chapter 5 Control Statements: Part 1

Exercises
5.10 Compare and contrast the if single-selection statement and the while repetition statement.
How are these two statements similar? How are they different?

5.11 (Integer Division) Explain what happens when a C# app attempts to divide one integer by
another. What happens to the fractional part of the calculation? How can you avoid that outcome?

5.12 (Combining Control Statements) Describe the two ways in which control statements can be
combined.

5.13 (Choosing Repetition Statements) What type of repetition would be appropriate for calcu-
lating the sum of the first 100 positive integers? What type of repetition would be appropriate for
calculating the sum of an arbitrary number of positive integers? Briefly describe how each of these
tasks could be performed.

5.14 (Prefix vs. Postfix Increment Operators) What is the difference between the prefix incre-
ment operator and the postfix increment operator?

5.15 (Find the Error) Identify and correct the errors in each of the following pieces of code.
[Note: There may be more than one error in each piece of code.]

a) if (age >= 65);

Console.WriteLine("Age greater than or equal to 65");

else

Console.WriteLine("Age is less than 65)";

b) int x = 1, total;

while (x <= 10)

{

total += x;

++x;

}

c) while (x <= 100)

total += x;

++x;

d) while (y > 0)

{

Console.WriteLine(y);

++y;

5.16 (What Does This Program Do?) What does the following app display?

1 // Ex. 5.16: Mystery.cs
2 using System;
3
4 public class Mystery
5 {
6 public static void Main(string[] args)
7 {
8 int y;
9 int x = 1;

10 int total = 0;
11
12 while (x <= 10)
13 {
14 y = x * x;

Exercises 183

For Exercises 5.17–5.20, perform each of the following steps:
a) Read the problem statement.
b) Formulate the algorithm using pseudocode and top-down, stepwise refinement.
c) Write a C# app.
d) Test, debug and execute the C# app.
e) Process three complete sets of data.

5.17 (Gas Mileage) Drivers are concerned with the mileage their automobiles get. One driver has
kept track of several tankfuls of gasoline by recording the miles driven and gallons used for each
tankful. Develop a C# app that will input the miles driven and gallons used (both as integers) for
each tankful. The app should calculate and display the miles per gallon obtained for each tankful
and display the combined miles per gallon obtained for all tankfuls up to this point. All averaging
calculations should produce floating-point results. Display the results rounded to the nearest hun-
dredth. Use the Console class’s ReadLine method and sentinel-controlled repetition to obtain the
data from the user.

5.18 (Credit Limit Calculator) Develop a C# app that will determine whether any of several de-
partment-store customers has exceeded the credit limit on a charge account. For each customer, the
following facts are available:

a) account number
b) balance at the beginning of the month
c) total of all items charged by the customer this month
d) total of all credits applied to the customer’s account this month
e) allowed credit limit.

The app should input all these facts as integers, calculate the new balance (= beginning balance +
charges – credits), display the new balance and determine whether the new balance exceeds the cus-
tomer’s credit limit. For those customers whose credit limit is exceeded, the app should display the
message "Credit limit exceeded". Use sentinel-controlled repetition to obtain the data for each
account.

5.19 (Sales Commission Calculator) A large company pays its salespeople on a commission basis.
The salespeople receive $200 per week plus 9% of their gross sales for that week. For example, a
salesperson who sells $5,000 worth of merchandise in a week receives $200 plus 9% of $5,000, or
a total of $650. You’ve been supplied with a list of the items sold by each salesperson. The values of
these items are as follows:

Item Value
1 239.99
2 129.75
3 99.95
4 350.89

Develop a C# app that inputs one salesperson’s items sold for the last week, then calculates and dis-
plays that salesperson's earnings. There’s no limit to the number of items that can be sold by a
salesperson.

15 Console.WriteLine(y);
16 total += y;
17 ++x;
18 } // end while
19
20 Console.WriteLine("Total is {0}", total);
21 } // end Main
22 } // end class Mystery

184 Chapter 5 Control Statements: Part 1

5.20 (Salary Calculator) Develop a C# app that will determine the gross pay for each of three
employees. The company pays straight time for the first 40 hours worked by each employee and
time-and-a-half for all hours worked in excess of 40 hours. You’re given a list of the three employees
of the company, the number of hours each employee worked last week and the hourly rate of each
employee. Your app should input this information for each employee, then should determine and
display the employee’s gross pay. Use the Console class’s ReadLine method to input the data.

5.21 (Find the Largest Number) The process of finding the maximum value (i.e., the largest of
a group of values) is used frequently in computer applications. For example, an app that determines
the winner of a sales contest would input the number of units sold by each salesperson. The sales-
person who sells the most units wins the contest. Write pseudocode, then a C# app that inputs a
series of 10 integers, then determines and displays the largest integer. Your app should use at least
the following three variables:

a) counter: A counter to count to 10 (i.e., to keep track of how many numbers have been
input and to determine when all 10 numbers have been processed).

b) number: The integer most recently input by the user.
c) largest: The largest number found so far.

5.22 (Tabular Output) Write a C# app that uses looping to display the following table of values:

5.23 (Find the Two Largest Numbers) Using an approach similar to that for Exercise 5.21, find
the two largest values of the 10 values entered. [Note: You may input each number only once.]

5.24 (Validating User Input) Modify the app in Fig. 5.12 to validate its inputs. For any input,
if the value entered is other than 1 or 2, display the message “Invalid input,” then keep looping until
the user enters a correct value.

5.25 (What Does This Program Do?) What does the following app display?

N 10*N 100*N 1000*N

1 10 100 1000
2 20 200 2000
3 30 300 3000
4 40 400 4000
5 50 500 5000

1 // Ex. 5.25: Mystery2.cs
2 using System;
3
4 public class Mystery2
5 {
6 public static void Main(string[] args)
7 {
8 int count = 1;
9

10 while (count <= 10)
11 {
12 Console.WriteLine(count % 2 == 1 ? "****" : "++++++++");
13 ++count;
14 } // end while
15 } // end Main
16 } // end class Mystery2

Exercises 185

5.26 (What Does This Program Do?) What does the following app display?

5.27 (Dangling-else Problem) Determine the output for each of the given sets of code when x

is 9 and y is 11 and when x is 11 and y is 9. The compiler ignores the indentation in a C# app. Also,
the C# compiler always associates an else with the immediately preceding if unless told to do oth-
erwise by the placement of braces ({}). On first glance, you may not be sure which if an else

matches—this situation is referred to as the “dangling-else problem.” We’ve eliminated the inden-
tation from the following code to make the problem more challenging. [Hint: Apply the indentation
conventions you’ve learned.]

a) if (x < 10)

if (y > 10)

Console.WriteLine("*****");

else

Console.WriteLine("#####");

Console.WriteLine("$$$$$");

b) if (x < 10)

{

if (y > 10)

Console.WriteLine("*****");

}

else

{

Console.WriteLine("#####");

Console.WriteLine("$$$$$");

}

5.28 (Another Dangling-else Problem) Modify the given code to produce the output shown in
each part of the problem. Use proper indentation techniques. Make no changes other than inserting
braces and changing the indentation of the code. The compiler ignores indentation in a C# app.

1 // Ex. 5.26: Mystery3.cs
2 using System;
3
4 public class Mystery3
5 {
6 public static void Main(string[] args)
7 {
8 int row = 10;
9 int column;

10
11 while (row >= 1)
12 {
13 column = 1;
14
15 while (column <= 10)
16 {
17 Console.Write(row % 2 == 1 ? "<" : ">");
18 ++column;
19 } // end while
20
21 --row;
22 Console.WriteLine();
23 } // end while
24 } // end Main
25 } // end class Mystery3

186 Chapter 5 Control Statements: Part 1

We’ve eliminated the indentation from the given code to make the problem more challenging.
[Note: It’s possible that no modification is necessary for some of the parts.]

if (y == 8)
if (x == 5)
Console.WriteLine("@@@@@");
else

Console.WriteLine("#####");
Console.WriteLine("$$$$$");
Console.WriteLine("&&&&&");

a) Assuming that x = 5 and y = 8, the following output is produced:

@@@@@
$$$$$
&&&&&

b) Assuming that x = 5 and y = 8, the following output is produced:

@@@@@

c) Assuming that x = 5 and y = 8, the following output is produced:

@@@@@
&&&&&

d) Assuming that x = 5 and y = 7, the following output is produced.

#####
$$$$$
&&&&&

5.29 (Square of Asterisks) Write an app that prompts the user to enter the size of the side of a
square, then displays a hollow square of that size made of asterisks. Your app should work for squares
of all side lengths between 1 and 20. If the user enters a number less than 1 or greater than 20, your
app should display a square of size 1 or 20, respectively.

5.30 (Palindromes) A palindrome is a sequence of characters that reads the same backward as for-
ward. For example, each of the following five-digit integers is a palindrome: 12321, 55555, 45554
and 11611. Write an app that reads in a five-digit integer and determines whether it’s a palindrome.
If the number is not five digits long, display an error message and allow the user to enter a new value.
[Hint: Use the remainder and division operators to pick off the number’s digits one at a time, from
right to left.]

5.31 (Displaying the Decimal Equivalent of a Binary Number) Write an app that inputs an in-
teger containing only 0s and 1s (i.e., a binary integer) and displays its decimal equivalent. [Hint:
Picking the digits off a binary number is similar to picking the digits off a decimal number, which
you did in Exercise 5.30. In the decimal number system, the rightmost digit has a positional value
of 1 and the next digit to the left has a positional value of 10, then 100, then 1000 and so on. The
decimal number 234 can be interpreted as 4 * 1 + 3 * 10 + 2 * 100. In the binary number system,
the rightmost digit has a positional value of 1, the next digit to the left has a positional value of 2,
then 4, then 8 and so on. The decimal equivalent of binary 1101 is 1 * 1 + 0 * 2 + 1 * 4 + 1 * 8, or
1 + 0 + 4 + 8, or 13.]

5.32 (Checkerboard Pattern of Asterisks) Write an app that uses only the output statements

Console.Write("* ");
Console.Write(" ");
Console.WriteLine();

to display the checkerboard pattern that follows. A Console.WriteLine method call with no argu-
ments outputs a single newline character. [Hint: Repetition statements are required.]

Making a Difference Exercises 187

5.33 (Multiples of 2) Write an app that keeps displaying in the console window the powers of
the integer 2—namely, 2, 4, 8, 16, 32, 64 and so on. Loop 40 times. What happens when you run
this app?

5.34 (What’s Wrong with This Code?) What is wrong with the following statement? Provide the
correct statement to add 1 to the sum of x and y.

Console.WriteLine(++(x + y));

5.35 (Sides of a Triangle) Write an app that reads three nonzero values entered by the user, then
determines and displays whether they could represent the sides of a triangle.

5.36 (Sides of a Right Triangle) Write an app that reads three nonzero integers, then determines
and displays whether they could represent the sides of a right triangle.

5.37 (Factorials) The factorial of a nonnegative integer n is written as n! (pronounced “n facto-
rial”) and is defined as follows:

n! = n · (n – 1) · (n – 2) · … · 1 (for values of n greater than or equal to 1)

and

n! = 1 (for n = 0)

For example, 5! = 5 · 4 · 3 · 2 · 1, which is 120. Write an app that reads a nonnegative integer and
computes and displays its factorial.

5.38 (Infinite Series: Mathematical Constant e) Write an app that estimates the value of the
mathematical constant e by using the formula

The predefined constant Math.E (class Math is in the System namespace) provides a good approxi-
mation of e. Use the WriteLine method to output both your estimated value of e and Math.E for
comparison.

5.39 (Infinite Series: ex) Write an app that computes the value of ex by using the formula

Compare the result of your calculation to the return value of the method call

Math.Pow(Math.E, x)

[Note: The predefined method Math.Pow takes two arguments and raises the first argument to the
power of the second. We discuss Math.Pow in Section 6.4.]

Making a Difference Exercises
5.40 (World Population Growth) World population has grown considerably over the centuries.
Continued growth could eventually challenge the limits of breathable air, drinkable water, arable

* * * * * * * *
* * * * * * * *
* * * * * * * *
* * * * * * * *
* * * * * * * *
* * * * * * * *
* * * * * * * *
* * * * * * * *

e 1
1
1!

1
2!

1
3!
----- …+ + + +=

e
x

1
x
1!

x2

2!

x3

3!
----- …+ + + +=

188 Chapter 5 Control Statements: Part 1

cropland and other limited resources. There’s evidence that growth has been slowing in recent years
and that world population could peak some time this century, then start to decline.

For this exercise, research world population growth issues online. Be sure to investigate various
viewpoints. Get estimates for the current world population and its growth rate (the percentage by
which it is likely to increase this year). Write a program that calculates world population growth
each year for the next 75 years, using the simplifying assumption that the current growth rate will stay
constant. When displaying the results, the first column should display the year from year 1 to year
75. The second column should display the anticipated world population at the end of that year.
The third column should display the numerical increase in the world population that would occur
that year. Using your results, determine the year in which the population would be double what it is
today, if this year’s growth rate were to persist. [Hint: Use double variables because int variables can
store values only up to approximately two billion. Display the double values using the format F0.]

5.41 (Enforcing Privacy with Cryptography) The explosive growth of Internet communications
and data storage on Internet-connected computers has greatly increased privacy concerns. The field
of cryptography is concerned with coding data to make it difficult (and hopefully—with the most
advanced schemes—impossible) for unauthorized users to read. In this exercise you’ll investigate a
simple scheme for encrypting and decrypting data. A company that wants to send data over the In-
ternet has asked you to write a program that will encrypt it so that it may be transmitted more se-
curely. All the data is transmitted as four-digit integers. Your app should read a four-digit integer
entered by the user and encrypt it as follows: Replace each digit with the result of adding 7 to the
digit and getting the remainder after dividing the new value by 10. Then swap the first digit with
the third, and swap the second digit with the fourth. Then display the encrypted integer. Write a
separate app that inputs an encrypted four-digit integer and decrypts it (by reversing the encryption
scheme) to form the original number. Use the format specifier D4 to display the encrypted value in
case the number starts with a 0.

6Control Statements: Part 2

Who can control his fate?
—William Shakespeare

The used key is always bright.
—Benjamin Franklin

Every advantage in the past is
judged in the light of the final
issue.
—Demosthenes

O b j e c t i v e s
In this chapter you’ll:

� Learn the essentials of
counter-controlled repetition.

� Use the for and do…while
repetition statements.

� Use the switch multiple
selection statement.

� Use the break and
continue statements to
alter the flow of control.

� Use the logical operators to
form complex conditional
expressions.

190 Chapter 6 Control Statements: Part 2

6.1 Introduction
In this chapter, we introduce several of C#’s remaining control statements. (The foreach
statement is introduced in Chapter 8.) The control statements we study here and in
Chapter 5 are helpful in building and manipulating objects.

Through a series of short examples using while and for, we explore the essentials of
counter-controlled repetition. We create a version of class GradeBook that uses a switch
statement to count the number of A, B, C, D and F grade equivalents in a set of numeric
grades entered by the user. We introduce the break and continue program-control state-
ments. We discuss C#’s logical operators, which enable you to use more complex condi-
tional expressions in control statements. Finally, we summarize C#’s control statements
and the proven problem-solving techniques presented in this chapter and Chapter 5.

6.2 Essentials of Counter-Controlled Repetition
This section uses the while repetition statement to formalize the elements required to per-
form counter-controlled repetition. Counter-controlled repetition requires

1. a control variable (or loop counter)

2. the initial value of the control variable

3. the increment (or decrement) by which the control variable is modified each
time through the loop (also known as each iteration of the loop)

4. the loop-continuation condition that determines whether to continue looping.

To see these elements of counter-controlled repetition, consider the app of Fig. 6.1, which
uses a loop to display the numbers from 1 through 10.

6.1 Introduction
6.2 Essentials of Counter-Controlled

Repetition
6.3 for Repetition Statement
6.4 Examples Using the for Statement
6.5 do…while Repetition Statement

6.6 switch Multiple-Selection
Statement

6.7 break and continue Statements
6.8 Logical Operators
6.9 Structured-Programming Summary

6.10 Wrap-Up

Summary | Terminology | Self-Review Exercises | Answers to Self-Review Exercises | Exercises |
Making a Difference Exercises

1 // Fig. 6.1: WhileCounter.cs
2 // Counter-controlled repetition with the while repetition statement.
3 using System;
4
5 public class WhileCounter
6 {
7 public static void Main(string[] args)
8 {

Fig. 6.1 | Counter-controlled repetition with the while repetition statement. (Part 1 of 2.)

6.3 for Repetition Statement 191

In method Main (lines 7–18), the elements of counter-controlled repetition are
defined in lines 9, 11 and 14. Line 9 declares the control variable (counter) as an int,
reserves space for it in memory and sets its initial value to 1.

Line 13 in the while statement displays control variable counter’s value during each
iteration of the loop. Line 14 increments the control variable by 1 for each iteration of the
loop. The loop-continuation condition in the while (line 11) tests whether the value of the
control variable is less than or equal to 10 (the final value for which the condition is true).
The app performs the body of this while even when the control variable is 10. The loop ter-
minates when the control variable exceeds 10 (i.e., counter becomes 11).

The app in Fig. 6.1 can be made more concise by initializing counter to 0 in line 9 and
incrementing counter in the while condition with the prefix increment operator as follows:

This code saves a statement (and eliminates the need for braces around the loop’s body),
because the while condition performs the increment before testing the condition. (Recall
from Section 5.12 that the precedence of ++ is higher than that of <=.) Code written in
such a condensed fashion might be more difficult to read, debug, modify and maintain.

6.3 for Repetition Statement
Section 6.2 presented the essentials of counter-controlled repetition. The while statement
can be used to implement any counter-controlled loop. C# also provides the for repetition
statement, which specifies the elements of counter-controlled-repetition in a single line of

9
10
11 while () // loop-continuation condition
12 {
13 Console.Write("{0} ", counter);
14
15 } // end while
16
17 Console.WriteLine(); // output a newline
18 } // end Main
19 } // end class WhileCounter

1 2 3 4 5 6 7 8 9 10

Error-Prevention Tip 6.1
Because floating-point values may be approximate, controlling loops with floating-point
variables may result in imprecise counter values and inaccurate termination tests. Control
counting loops with integers.

while (++counter <= 10) // loop-continuation condition
Console.Write("{0} ", counter);

Software Engineering Observation 6.1
“Keep it simple” is good advice for most of the code you’ll write.

Fig. 6.1 | Counter-controlled repetition with the while repetition statement. (Part 2 of 2.)

int counter = 1; // declare and initialize control variable

counter <= 10

++counter; // increment control variable

192 Chapter 6 Control Statements: Part 2

code. In general, counter-controlled repetition should be implemented with a for state-
ment. Figure 6.2 reimplements the app in Fig. 6.1 using the for statement.

When the for statement (lines 11–12) begins executing, control variable counter is
declared and initialized to 1. (Recall from Section 6.2 that the first two elements of counter-
controlled repetition are the control variable and its initial value.) Next, the app checks the
loop-continuation condition, counter <= 10, which is between the two required semicolons.
The initial value of counter is 1, so the condition initially is true. Therefore, the body state-
ment (line 12) displays control variable counter’s value, which is 1. Next, the app incre-
ments counter in the expression ++counter, which appears to the right of the second
semicolon. Then the loop-continuation test is performed again to determine whether the
app should continue with the next iteration of the loop. At this point, the control-variable
value is 2, so the condition is still true—and the app performs the body statement again (i.e.,
the next iteration of the loop). This process continues until the numbers 1 through 10 have
been displayed and the counter’s value becomes 11, causing the loop-continuation test to
fail and repetition to terminate (after 10 repetitions of the loop body at line 12). Then the
app performs the first statement after the for—in this case, line 14.

Fig. 6.2 uses (in line 11) the loop-continuation condition counter <= 10. If you incor-
rectly specified counter < 10 as the condition, the loop would iterate only nine times—a
common logic error called an off-by-one error.

1 // Fig. 6.2: ForCounter.cs
2 // Counter-controlled repetition with the for repetition statement.
3 using System;
4
5 public class ForCounter
6 {
7 public static void Main(string[] args)
8 {
9

10
11
12
13
14 Console.WriteLine(); // output a newline
15 } // end Main
16 } // end class ForCounter

1 2 3 4 5 6 7 8 9 10

Fig. 6.2 | Counter-controlled repetition with the for repetition statement.

Error-Prevention Tip 6.2
Using the final value in the condition of a while or for statement with the <= relational
operator helps avoid off-by-one errors. For a loop that displays the values 1 to 10, the loop-
continuation condition should be counter <= 10, rather than counter < 10 (which causes
an off-by-one error) or counter < 11 (which is correct). Many programmers prefer so-
called zero-based counting, in which, to count 10 times, counter would be initialized to
zero and the loop-continuation test would be counter < 10.

// for statement header includes initialization,
// loop-continuation condition and increment
for (int counter = 1; counter <= 10; ++counter)

Console.Write("{0} ", counter);

6.3 for Repetition Statement 193

Figure 6.3 takes a closer look at the for statement in Fig. 6.2. The for’s first line
(including the keyword for and everything in parentheses after for)—line 11 in
Fig. 6.2—is sometimes called the for statement header, or simply the for header. The
for header “does it all”—it specifies each of the items needed for counter-controlled rep-
etition with a control variable. If there’s more than one statement in the body of the for,
braces are required to define the body of the loop.

The general format of the for statement is

where the initialization expression names the loop’s control variable and provides its initial
value, the loopContinuationCondition is the condition that determines whether looping
should continue and the increment modifies the control variable’s value (whether an incre-
ment or decrement), so that the loop-continuation condition eventually becomes false. The
two semicolons in the for header are required. We don’t include a semicolon after state-
ment, because the semicolon is already assumed to be included in the notion of a statement.

In most cases, the for statement can be represented with an equivalent while state-
ment as follows:

In Section 6.7, we discuss a case in which a for statement cannot be represented with a
while statement like the one above.

Typically, for statements are used for counter-controlled repetition, and while state-
ments are used for sentinel-controlled repetition. However, while and for can each be
used for either repetition type.

If the initialization expression in the for header declares the control variable (i.e., the
control variable’s type is specified before the variable name, as in Fig. 6.2), the control vari-
able can be used only in that for statement—it will not exist outside it. This restricted use
of the name of the control variable is known as the variable’s scope. The scope of a variable
defines where it can be used in an app. For example, a local variable can be used only in

Fig. 6.3 | for statement header components.

for (initialization; loopContinuationCondition; increment)
statement

initialization;

while (loopContinuationCondition)
{

statement
increment;

}

Initial value of
control variable Loop-continuation

condition

Increment of
control variable

for
keyword

Control
variable

Required
semicolon
separator

Required
semicolon
separator

for (int counter = 1; counter <= 10; ++counter)

194 Chapter 6 Control Statements: Part 2

the method that declares the variable and only from the point of declaration through the
end of the block in which the variable has been declared. Scope is discussed in detail in
Chapter 7, Methods: A Deeper Look.

All three expressions in a for header are optional. If the loopContinuationCondition is
omitted, C# assumes that it’s always true, thus creating an infinite loop. You can omit the
initialization expression if the app initializes the control variable before the loop—in this
case, the scope of the control variable will not be limited to the loop. You can omit the
increment expression if the app calculates the increment with statements in the loop’s body
or if no increment is needed. The increment expression in a for acts as if it were a stand-
alone statement at the end of the for’s body. Therefore, the expressions

are equivalent increment expressions in a for statement. Many programmers prefer coun-
ter++ because it’s concise and because a for loop evaluates its increment expression after
its body executes—so the postfix increment form seems more natural. In this case, the vari-
able being incremented does not appear in a larger expression, so the prefix and postfix
increment operators have the same effect.

The initialization, loop-continuation condition and increment portions of a for state-
ment can contain arithmetic expressions. For example, assume that x = 2 and y = 10; if x
and y are not modified in the body of the loop, then the statement

is equivalent to the statement

The increment of a for statement may also be negative, in which case it’s actually a decre-
ment, and the loop counts downward.

If the loop-continuation condition is initially false, the app does not execute the for
statement’s body. Instead, execution proceeds with the statement following the for.

Common Programming Error 6.1
When a for statement’s control variable is declared in the initialization section of the
for’s header, using the control variable after the for’s body is a compilation error.

counter = counter + 1

counter += 1

++counter
counter++

Performance Tip 6.1
There’s a slight performance advantage to using the prefix increment operator, but if you
choose the postfix increment operator because it seems more natural (as in a for header),
optimizing compilers will generate code that uses the more efficient form anyway.

Error-Prevention Tip 6.3
Infinite loops occur when the loop-continuation condition in a repetition statement never
becomes false. To prevent this situation in a counter-controlled loop, ensure that the con-
trol variable is incremented (or decremented) during each iteration of the loop. In a sen-
tinel-controlled loop, ensure that the sentinel value is eventually input.

for (int j = x; j <= 4 * x * y; j += y / x)

for (int j = 2; j <= 80; j += 5)

6.4 Examples Using the for Statement 195

Apps frequently display the control variable value or use it in calculations in the loop
body, but this use is not required. The control variable is commonly used to control rep-
etition without being mentioned in the body of the for.

Figure 6.4 shows the activity diagram of the for statement in Fig. 6.2. The diagram
makes it clear that initialization occurs only once before the loop-continuation test is eval-
uated the first time, and that incrementing occurs each time through the loop after the
body statement executes.

6.4 Examples Using the for Statement
The following examples show techniques for varying the control variable in a for state-
ment. In each case, we write the appropriate for header. Note the change in the relational
operator for loops that decrement the control variable.

a) Vary the control variable from 1 to 100 in increments of 1.

b) Vary the control variable from 100 to 1 in decrements of 1.

c) Vary the control variable from 7 to 77 in increments of 7.

Error-Prevention Tip 6.4
Although the value of the control variable can be changed in the body of a for loop, avoid
doing so, because this can lead to subtle errors.

Fig. 6.4 | UML activity diagram for the for statement in Fig. 6.2.

for (int i = 1; i <= 100; ++i)

for (int i = 100; i >= 1; --i)

for (int i = 7; i <= 77; i += 7)

Determine whether
looping should
continue Console.Write(“{0} ”, counter);

[counter > 10]

[counter <= 10]

int counter = 1

++counter

Display the
counter value

Initialize
control variable

Increment the
control variable

196 Chapter 6 Control Statements: Part 2

d) Vary the control variable from 20 to 2 in decrements of 2.

e) Vary the control variable over the sequence 2, 5, 8, 11, 14, 17, 20.

f) Vary the control variable over the sequence 99, 88, 77, 66, 55, 44, 33, 22, 11, 0.

App: Summing the Even Integers from 2 to 20
We now consider two sample apps that demonstrate simple uses of for. The app in
Fig. 6.5 uses a for statement to sum the even integers from 2 to 20 and store the result in
an int variable called total.

The initialization and increment expressions can be comma-separated lists that enable you
to use multiple initialization expressions or multiple increment expressions. For example, you
could merge the body of the for statement in lines 12–13 of Fig. 6.5 into the increment por-
tion of the for header by using a comma as follows:

We prefer not complicating for headers in this manner.

for (int i = 20; i >= 2; i -= 2)

for (int i = 2; i <= 20; i += 3)

for (int i = 99; i >= 0; i -= 11)

Common Programming Error 6.2
Not using the proper relational operator in the loop-continuation condition of a loop that
counts downward (e.g., using i <= 1 instead of i >= 1 in a loop counting down to 1) is a
logic error.

1 // Fig. 6.5: Sum.cs
2 // Summing integers with the for statement.
3 using System;
4
5 public class Sum
6 {
7 public static void Main(string[] args)
8 {
9

10
11 // total even integers from 2 through 20
12
13
14
15 Console.WriteLine("Sum is {0}", total); // display results
16 } // end Main
17 } // end class Sum

Sum is 110

Fig. 6.5 | Summing integers with the for statement.

for (int number = 2; number <= 20; total += number, number += 2)
; // empty statement

int total = 0; // initialize total

for (int number = 2; number <= 20; number += 2)
total += number;

6.4 Examples Using the for Statement 197

App: Compound-Interest Calculations
The next app uses the for statement to compute compound interest. Consider the follow-
ing problem:

A person invests $1,000 in a savings account yielding 5% interest, compounded
yearly. Assuming that all the interest is left on deposit, calculate and display the
amount of money in the account at the end of each year for 10 years. Use the following
formula to determine the amounts:

a = p (1 + r)n

where

p is the original amount invested (i.e., the principal)
r is the annual interest rate (e.g., use 0.05 for 5%)
n is the number of years
a is the amount on deposit at the end of the nth year.

This problem involves a loop that performs the indicated calculation for each of the
10 years the money remains on deposit. The solution is the app shown in Fig. 6.6. Lines
9–11 in method Main declare decimal variables amount and principal, and double vari-
able rate. Lines 10–11 also initialize principal to 1000 (i.e., $1000.00) and rate to 0.05.
C# treats real-number constants like 0.05 as type double. Similarly, C# treats whole-
number constants like 7 and 1000 as type int. When principal is initialized to 1000, the
value 1000 of type int is promoted to a decimal type implicitly—no cast is required.

1 // Fig. 6.6: Interest.cs
2 // Compound-interest calculations with for.
3 using System;
4
5 public class Interest
6 {
7 public static void Main(string[] args)
8 {
9 decimal amount; // amount on deposit at end of each year

10 decimal principal = 1000; // initial amount before interest
11 double rate = 0.05; // interest rate
12
13 // display headers
14 Console.WriteLine("Year{0,20}", "Amount on deposit");
15
16
17
18
19
20
21
22
23
24
25
26 } // end Main
27 } // end class Interest

Fig. 6.6 | Compound-interest calculations with for. (Part 1 of 2.)

// calculate amount on deposit for each of ten years
for (int year = 1; year <= 10; ++year)
{

// calculate new amount for specified year
amount = principal *

((decimal) Math.Pow(1.0 + rate, year));

// display the year and the amount
Console.WriteLine("{0,4}{1,20:C}", year, amount);

} // end for

198 Chapter 6 Control Statements: Part 2

Line 14 outputs the headers for the app’s two columns of output. The first column
displays the year, and the second displays the amount on deposit at the end of that year.
We use the format item {0,20} to output the string "Amount on deposit". The integer
20 after the comma indicates that the value output should be displayed with a field width
of 20—that is, WriteLine displays the value with at least 20 character positions. If the
value to be output is less than 20 character positions wide (17 characters in this example),
the value is right justified in the field by default (in this case the value is preceded by three
blanks). If the year value to be output were more than four character positions wide, the
field width would be extended to the right to accommodate the entire value—this would
push the amount field to the right, upsetting the neat columns of our tabular output. To
indicate that output should be left justified, simply use a negative field width.

The for statement (lines 17–25) executes its body 10 times, varying control variable
year from 1 to 10 in increments of 1. This loop terminates when control variable year
becomes 11. (year corresponds to n in the problem statement.)

Classes provide methods that perform common tasks on objects. In fact, most methods
must be called on a specific object. For example, to output a greeting in Fig. 4.2, we called
method DisplayMessage on the myGradeBook object. Many classes also provide methods
that perform common tasks and cannot be called on objects—they must be called using a
class name. Such methods are called static methods. For example, C# does not include
an exponentiation operator, so the designers of C#’s Math class defined staticmethod Pow
for raising a value to a power. You can call a static method by specifying the class name
followed by the member access (.) operator and the method name, as in

Console methods Write and WriteLine are static methods. In Chapter 7, you’ll learn
how to implement static methods in your own classes.

We use static method Pow of class Math to perform the compound interest calcula-
tion in Fig. 6.6. Math.Pow(x, y) calculates the value of x raised to the yth power. The
method receives two double arguments and returns a double value. Lines 20–21 perform
the calculation a = p (1 + r)n, where a is the amount, p is the principal, r is the rate and
n is the year. Notice that, in this calculation, we need to multiply a decimal value (prin-
cipal) by a double value (the return value of Math.Pow). C# will not implicitly convert
double to a decimal type, or vice versa, because of the possible loss of information in either
conversion, so line 21 contains a (decimal) cast operator that explicitly converts the
double return value of Math.Pow to a decimal.

Year Amount on deposit
1 $1,050.00
2 $1,102.50
3 $1,157.63
4 $1,215.51
5 $1,276.28
6 $1,340.10
7 $1,407.10
8 $1,477.46
9 $1,551.33
10 $1,628.89

ClassName.MethodName(arguments)

Fig. 6.6 | Compound-interest calculations with for. (Part 2 of 2.)

6.5 do…while Repetition Statement 199

After each calculation, line 24 outputs the year and the amount on deposit at the end
of that year. The year is output in a field width of four characters (as specified by {0,4}).
The amount is output as a currency value with the format item {1,20:C}. The number 20
in the format item indicates that the value should be output right justified with a field
width of 20 characters. The format specifier C indicates that the number should be for-
matted as currency.

Notice that we declared the variables amount and principal to be of type decimal
rather than double. Recall that we introduced type decimal for monetary calculations in
Section 4.11. We also use decimal in Fig. 6.6 for this purpose. You may be curious as to
why we do this. We’re dealing with fractional parts of dollars and thus need a type that
allows decimal points in its values. Unfortunately, floating-point numbers of type double
(or float) can cause trouble in monetary calculations. Two double dollar amounts stored
in the machine could be 14.234 (which would normally be rounded to 14.23 for display
purposes) and 18.673 (which would normally be rounded to 18.67 for display purposes).
When these amounts are added, they produce the internal sum 32.907, which would nor-
mally be rounded to 32.91 for display purposes. Thus, your output could appear as

but a person adding the individual numbers as displayed would expect the sum to be
32.90. You’ve been warned! For people who work with programming languages that do
not support a type for precise monetary calculations, Exercise 6.18 explores the use of in-
tegers to perform such calculations.

The body of the for statement contains the calculation 1.0 + rate, which appears as
an argument to the Math.Pow method. In fact, this calculation produces the same result
each time through the loop, so repeating the calculation in every iteration of the loop is
wasteful.

6.5 do…while Repetition Statement
The do…while repetition statement is similar to the while statement. In the while, the
app tests the loop-continuation condition at the beginning of the loop, before executing
the loop’s body. If the condition is false, the body never executes. The do…while state-
ment tests the loop-continuation condition after executing the loop’s body; therefore, the
body always executes at least once. When a do…while statement terminates, execution

14.23
+ 18.67

32.91

Error-Prevention Tip 6.5
Do not use variables of type double (or float) to perform precise monetary calculations;
use type decimal instead. The imprecision of floating-point numbers can cause errors that
will result in incorrect monetary values.

Performance Tip 6.2
In loops, avoid calculations for which the result never changes—such calculations should
typically be placed before the loop. Optimizing compilers will typically place such calcula-
tions outside loops in the compiled code.

200 Chapter 6 Control Statements: Part 2

continues with the next statement in sequence. Figure 6.7 uses a do…while (lines 11–15)
to output the numbers 1–10.

Line 9 declares and initializes control variable counter. Upon entering the do…while

statement, line 13 outputs counter’s value, and line 14 increments counter. Then the app
evaluates the loop-continuation test at the bottom of the loop (line 15). If the condition is
true, the loop continues from the first body statement (line 13). If the condition is false,
the loop terminates, and the app continues with the next statement after the loop.

Figure 6.8 contains the UML activity diagram for the do…while statement. This dia-
gram makes it clear that the loop-continuation condition is not evaluated until after the
loop performs the action state at least once. Compare this activity diagram with that of the
while statement (Fig. 5.4). It’s not necessary to use braces in the do…while repetition
statement if there’s only one statement in the body. However, most programmers include
the braces to avoid confusion between the while and do…while statements. For example,

is normally the first line of a while statement. A do…while statement with no braces
around a single-statement body appears as:

which can be confusing. A reader may misinterpret the last line—while(condition);—
as a while statement containing an empty statement (the semicolon by itself). To avoid
confusion, a do…while statement with one body statement can be written as follows:

1 // Fig. 6.7: DoWhileTest.cs
2 // do...while repetition statement.
3 using System;
4
5 public class DoWhileTest
6 {
7 public static void Main(string[] args)
8 {
9

10
11
12
13
14
15
16
17 Console.WriteLine(); // outputs a newline
18 } // end Main
19 } // end class DoWhileTest

1 2 3 4 5 6 7 8 9 10

Fig. 6.7 | do...while repetition statement.

while (condition)

do

statement
while (condition);

int counter = 1; // initialize counter

do

{
Console.Write("{0} ", counter);
++counter;

} while (counter <= 10); // end do...while

6.6 switch Multiple-Selection Statement 201

6.6 switch Multiple-Selection Statement
We discussed the if single-selection statement and the if…else double-selection state-
ment in Chapter 5. C# provides the switch multiple-selection statement to perform dif-
ferent actions based on the possible values of an expression. Each action is associated with
the value of a constant integral expression or a constant string expression that the variable
or expression on which the switch is based may assume. A constant integral expression is
any expression involving character and integer constants that evaluates to an integer val-
ue—i.e., values of type sbyte, byte, short, ushort, int, uint, long, ulong and char, or
a constant from an enum type (enum is discussed in Section 7.10). A constant string expres-
sion is any expression composed of string literals that always results in the same string.

GradeBook Class with switch Statement to Count A, B, C, D and F Grades.
Figure 6.9 contains an enhanced version of the GradeBook class introduced in Chapter 4
and further developed in Chapter 5. This version of the class not only calculates the average
of a set of numeric grades entered by the user, but uses a switch statement to determine
whether each grade is the equivalent of an A, B, C, D or F, then increments the appropriate
grade counter. The class also displays a summary of the number of students who received
each grade. Figure 6.10 shows sample input and output of the GradeBookTest app that uses
class GradeBook to process a set of grades.

do

{
statement

} while (condition);

Fig. 6.8 | do…while repetition statement UML activity diagram.

Determine whether
looping should
continue

[counter > 10]

[counter <= 10]

++counter

Display the
counter value

Increment the
control variable

Console.Write("{0} ", counter);

202 Chapter 6 Control Statements: Part 2

1 // Fig. 6.9: GradeBook.cs
2 // GradeBook class that uses a switch statement to count letter grades.
3 using System;
4
5 public class GradeBook
6 {
7
8
9

10
11
12
13
14
15 // automatic property CourseName
16 public string CourseName { get; set; }
17
18 // constructor initializes automatic property CourseName;
19 // int instance variables are initialized to 0 by default
20 public GradeBook(string name)
21 {
22 CourseName = name; // set CourseName to name
23 } // end constructor
24
25 // display a welcome message to the GradeBook user
26 public void DisplayMessage()
27 {
28 // CourseName gets the name of the course
29 Console.WriteLine("Welcome to the grade book for\n{0}!\n",
30 CourseName);
31 } // end method DisplayMessage
32
33 // input arbitrary number of grades from user
34 public void InputGrades()
35 {
36 int grade; // grade entered by user
37 string input; // text entered by the user
38
39 Console.WriteLine("{0}\n{1}",
40 "Enter the integer grades in the range 0-100.",
41 "Type <Ctrl> z and press Enter to terminate input:");
42
43 input = Console.ReadLine(); // read user input
44
45 // loop until user enters the end-of-file indicator (<Ctrl> z)
46 while (input != null)
47 {
48 grade = Convert.ToInt32(input); // read grade off user input
49 total += grade; // add grade to total
50 ++gradeCounter; // increment number of grades
51

Fig. 6.9 | GradeBook class that uses a switch statement to count letter grades. (Part 1 of 3.)

private int total; // sum of grades
private int gradeCounter; // number of grades entered
private int aCount; // count of A grades
private int bCount; // count of B grades
private int cCount; // count of C grades
private int dCount; // count of D grades
private int fCount; // count of F grades

6.6 switch Multiple-Selection Statement 203

52 // call method to increment appropriate counter
53 IncrementLetterGradeCounter(grade);
54
55 input = Console.ReadLine(); // read user input
56 } // end while
57 } // end method InputGrades
58
59 // add 1 to appropriate counter for specified grade
60 private void IncrementLetterGradeCounter(int grade)
61 {
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82 } // end method IncrementLetterGradeCounter
83
84 // display a report based on the grades entered by the user
85 public void DisplayGradeReport()
86 {
87 Console.WriteLine("\nGrade Report:");
88
89 // if user entered at least one grade...
90 if (gradeCounter != 0)
91 {
92 // calculate average of all grades entered
93 double average = (double) total / gradeCounter;
94
95 // output summary of results
96 Console.WriteLine("Total of the {0} grades entered is {1}",
97 gradeCounter, total);
98 Console.WriteLine("Class average is {0:F}", average);
99 Console.WriteLine("{0}A: {1}\nB: {2}\nC: {3}\nD: {4}\nF: {5}",
100 "Number of students who received each grade:\n",
101 aCount, // display number of A grades
102 bCount, // display number of B grades

Fig. 6.9 | GradeBook class that uses a switch statement to count letter grades. (Part 2 of 3.)

// determine which grade was entered
switch (grade / 10)
{

case 9: // grade was in the 90s
case 10: // grade was 100

++aCount; // increment aCount
break; // necessary to exit switch

case 8: // grade was between 80 and 89
++bCount; // increment bCount
break; // exit switch

case 7: // grade was between 70 and 79
++cCount; // increment cCount
break; // exit switch

case 6: // grade was between 60 and 69
++dCount; // increment dCount
break; // exit switch

default: // grade was less than 60
++fCount; // increment fCount
break; // exit switch

} // end switch

204 Chapter 6 Control Statements: Part 2

Instance Variables
Class GradeBook (Fig. 6.9) declares instance variables total (line 7) and gradeCounter

(line 8), which keep track of the sum of the grades entered by the user and the number of
grades entered, respectively. Lines 9–13 declare counter variables for each grade category.
Class GradeBook maintains total, gradeCounter and the five letter-grade counters as in-
stance variables so that they can be used or modified in any of the class’s methods.

Property CourseName, Method DisplayMessage and the Constructor
Like earlier versions of the class, class GradeBook declares automatic property CourseName
(line 16) and method DisplayMessage (lines 26–31) to display a welcome message to the
user. The class also contains a constructor (lines 20–23) that initializes the course name.
The constructor sets only the course name—the remaining seven instance variables are
ints and are initialized to 0 by default.

Methods InputGrades and DisplayGradeReport

Class GradeBook contains three additional methods—InputGrades, IncrementLetter-
GradeCounter and DisplayGradeReport. Method InputGrades (lines 34–57) reads an ar-
bitrary number of integer grades from the user using sentinel-controlled repetition and
updates instance variables total and gradeCounter. Method InputGrades calls method
IncrementLetterGradeCounter (lines 60–82) to update the appropriate letter-grade
counter for each grade entered. Class GradeBook also contains method DisplayGradeRe-
port (lines 85–109), which outputs a report containing the total of all grades entered, the
average of the grades and the number of students who received each letter grade. Let’s ex-
amine these methods in more detail.

Lines 36–37 in method InputGrades declare variables grade and input, which will
first store the user’s input as a string (in the variable input), then convert it to an int to
store in the variable grade. Lines 39–41 prompt the user to enter integer grades and to
type Ctrl + z, then press Enter to terminate the input. The notation Ctrl + z means to
simultaneously press both the Ctrl key and the z key when typing in a Command Prompt.
Ctrl + z is the Windows key sequence for typing the end-of-file indicator. This is one way
to inform an app that there’s no more data to input. If Ctrl + z is entered while the app is
awaiting input with a ReadLine method, null is returned. (The end-of-file indicator is a
system-dependent keystroke combination. On many non-Windows systems, end-of-file is
entered by typing Ctrl + d.) In Chapter 17, Files and Streams, we’ll see how the end-of-
file indicator is used when an app reads its input from a file. Windows typically displays

103 cCount, // display number of C grades
104 dCount, // display number of D grades
105 fCount); // display number of F grades
106 } // end if
107 else // no grades were entered, so output appropriate message
108 Console.WriteLine("No grades were entered");
109 } // end method DisplayGradeReport
110 } // end class GradeBook

Fig. 6.9 | GradeBook class that uses a switch statement to count letter grades. (Part 3 of 3.)

6.6 switch Multiple-Selection Statement 205

the characters ^Z in a Command Prompt when the end-of-file indicator is typed, as shown
in the output of Fig. 6.10.

Line 43 uses the ReadLine method to get the first line that the user entered and store
it in variable input. The while statement (lines 46–56) processes this user input. The con-
dition at line 46 checks whether the value of input is null. The Console class’s ReadLine
method returns null only if the user typed an end-of-file indicator. As long as the end-of-
file indicator has not been typed, input will not be null, and the condition will pass.

Line 48 converts the string in input to an int type. Line 49 adds grade to total.
Line 50 increments gradeCounter. The class’s DisplayGradeReport method uses these
variables to compute the average of the grades. Line 53 calls the class’s IncrementLetter-
GradeCounter method (declared in lines 60–82) to increment the appropriate letter-grade
counter, based on the numeric grade entered.

Method IncrementLetterGradeCounter

Method IncrementLetterGradeCounter contains a switch statement (lines 63–81) that de-
termines which counter to increment. In this example, we assume that the user enters a valid
grade in the range 0–100. A grade in the range 90–100 represents A, 80–89 represents B,
70–79 represents C, 60–69 represents D and 0–59 represents F. The switch statement con-
sists of a block that contains a sequence of case labels and an optional default label. These
are used in this example to determine which counter to increment based on the grade.

The switch Statement
When control reaches the switch statement, the app evaluates the expression in the paren-
theses (grade / 10) following keyword switch—this is called the switch expression. The
app attempts to match the value of the switch expression with one of the case labels. The
switch expression in line 63 performs integer division, which truncates the fractional part
of the result. Thus, when we divide any value in the range 0–100 by 10, the result is always
a value from 0 to 10. We use several of these values in our case labels. For example, if the
user enters the integer 85, the switch expression evaluates to int value 8. If a match occurs
between the switch expression and a case (case 8: at line 69), the app executes the state-
ments for that case. For the integer 8, line 70 increments bCount, because a grade in the
80s is a B. The break statement (line 71) causes program control to proceed with the first
statement after the switch—in this app, we reach the end of method IncrementLetter-
GradeCounter’s body, so control returns to line 55 in method InputGrades (the first line
after the call to IncrementLetterGradeCounter). This line uses the ReadLine method to
read the next line entered by the user and assign it to the variable input. Line 56 marks
the end of the body of the while statement that inputs grades (lines 46–56), so control
flows to the while’s condition (line 46) to determine whether the loop should continue
executing based on the value just assigned to the variable input.

Consecutive case Labels
The cases in our switch explicitly test for the values 10, 9, 8, 7 and 6. Note the case labels
at lines 65–66 that test for the values 9 and 10 (both of which represent the grade A). Listing
case labels consecutively in this manner with no statements between them enables the cases
to perform the same set of statements—when the switch expression evaluates to 9 or 10, the
statements in lines 67–68 execute. The switch statement does not provide a mechanism for
testing ranges of values, so every value to be tested must be listed in a separate case label.

206 Chapter 6 Control Statements: Part 2

Each case can have multiple statements. The switch statement differs from other control
statements in that it does not require braces around multiple statements in each case.

No “Fall Through” in the C# switch Statement
In C, C++, and many other programming languages that use the switch statement, the
break statement is not required at the end of a case. Without break statements, each time
a match occurs in the switch, the statements for that case and subsequent cases execute
until a break statement or the end of the switch is encountered. This is often referred to
as “falling through” to the statements in subsequent cases. This leads to logic errors when
you forget the break statement. C# is different from other programming languages—after
the statements in a case, you’re required to include a statement that terminates the case,
such as a break, a return or a throw; otherwise, a compilation error occurs (We discuss
the throw statement in Chapter 13, Exception Handling: A Deeper Look.)

The default Case
If no match occurs between the switch expression’s value and a case label, the statements
after the default label (lines 79–80) execute. We use the default label in this example to
process all switch-expression values that are less than 6—that is, all failing grades. If no
match occurs and the switch does not contain a default label, program control simply
continues with the first statement (if there’s one) after the switch statement.

GradeBookTest Class That Demonstrates Class GradeBook
Class GradeBookTest (Fig. 6.10) creates a GradeBook object (lines 10–11). Line 13 in-
vokes the object’s DisplayMessage method to output a welcome message to the user. Line
14 invokes the object’s InputGradesmethod to read a set of grades from the user and keep
track of the sum of all the grades entered and the number of grades. Recall that method
InputGrades also calls method IncrementLetterGradeCounter to keep track of the num-
ber of students who received each letter grade. Line 15 invokes method DisplayGradeRe-
port of class GradeBook, which outputs a report based on the grades entered. Line 90 of
class GradeBook (Fig. 6.9) determines whether the user entered at least one grade—this
avoids dividing by zero. If so, line 93 calculates the average of the grades. Lines 96–105
then output the total of all the grades, the class average and the number of students who
received each letter grade. If no grades were entered, line 108 outputs an appropriate mes-
sage. The output in Fig. 6.10 shows a sample grade report based on 9 grades.

1 // Fig. 6.10: GradeBookTest.cs
2 // Create GradeBook object, input grades and display grade report.
3
4 public class GradeBookTest
5 {
6 public static void Main(string[] args)
7 {
8 // create GradeBook object myGradeBook and
9 // pass course name to constructor

10 GradeBook myGradeBook = new GradeBook(
11 "CS101 Introduction to C# Programming");

Fig. 6.10 | Create GradeBook object, input grades and display grade report. (Part 1 of 2.)

6.6 switch Multiple-Selection Statement 207

Class GradeBookTest (Fig. 6.10) does not directly call GradeBook method Incre-

mentLetterGradeCounter (lines 60–82 of Fig. 6.9). This method is used exclusively by
method InputGrades of class GradeBook to update the appropriate letter-grade counter as
each new grade is entered by the user. Method IncrementLetterGradeCounter exists
solely to support the operations of class GradeBook’s other methods and thus is declared
private. Members of a class declared with access modifier private can be accessed only
by members of the class in which the private members are declared. When a private
member is a method, it’s commonly referred to as a utility method or helper method,
because it can be called only by other members of that class and is used to support the oper-
ation of those other members.

switch Statement UML Activity Diagram
Figure 6.11 shows the UML activity diagram for the general switch statement. Every set
of statements after a case label normally ends its execution with a break or return state-
ment to terminate the switch statement after processing the case. Typically, you’ll use
break statements. Figure 6.11 emphasizes this by including break statements in the activ-
ity diagram. The diagram makes it clear that the break statement at the end of a case
causes control to exit the switch statement immediately.

12
13 myGradeBook.DisplayMessage(); // display welcome message
14
15
16 } // end Main
17 } // end class GradeBookTest

Welcome to the grade book for
CS101 Introduction to C# Programming!

Enter the integer grades in the range 0-100.
Type <Ctrl> z and press Enter to terminate input:
99
92
45
100
57
63
76
14
92
^Z

Grade Report:
Total of the 9 grades entered is 638
Class average is 70.89
Number of students who received each grade:
A: 4
B: 0
C: 1
D: 1
F: 3

Fig. 6.10 | Create GradeBook object, input grades and display grade report. (Part 2 of 2.)

myGradeBook.InputGrades(); // read grades from user
myGradeBook.DisplayGradeReport(); // display report based on grades

208 Chapter 6 Control Statements: Part 2

When using the switch statement, remember that the expression after each case can
be only a constant integral expression or a constant string expression—that is, any combina-
tion of constants that evaluates to a constant value of an integral or string type. An integer
constant is simply an integer value (e.g., –7, 0 or 221). In addition, you can use character
constants—specific characters in single quotes, such as 'A', '7' or '$'—which represent
the integer values of characters. (Appendix C shows the integer values of the characters in
the ASCII character set, which is a popular subset of the Unicode character set used by
C#.) A string constant (or string literal) is a sequence of characters in double quotes,
such as "Welcome to C# Programming!". For strings, you can also use null.

The expression in each case also can be a constant—a value which does not change for
the entire app. Constants are declared with the keyword const (discussed in Chapter 7).
C# also has a feature called enumerations, which we also present in Chapter 7. Enumeration

Fig. 6.11 | switchmultiple-selection statement UML activity diagram with break statements.

Good Programming Practice 6.1
Although each case and the default label in a switch can occur in any order, place the
default label last for clarity.

.
.
.

default actions(s)

case a actions(s)

case b actions(s)

case z actions(s) break

break

break

case b

case z

case a

[false]

[true]

[true]

[true]

[false]

[false]

break

6.7 break and continue Statements 209

constants can also be used in case labels. In Chapter 12, we present a more elegant way to
implement switch logic—we use a technique called polymorphism to create apps that are
often clearer, easier to maintain and easier to extend than apps using switch logic.

6.7 break and continue Statements
In addition to selection and repetition statements, C# provides statements break and con-
tinue to alter the flow of control. The preceding section showed how break can be used
to terminate a switch statement’s execution. This section discusses how to use break to
terminate any repetition statement.

break Statement
The break statement, when executed in a while, for, do…while, switch, or foreach,
causes immediate exit from that statement. Execution typically continues with the first
statement after the control statement—you’ll see that there are other possibilities as you
learn about additional statement types in C#. Common uses of the break statement are to
escape early from a repetition statement or to skip the remainder of a switch (as in
Fig. 6.9). Figure 6.12 demonstrates a break statement exiting a for.

When the if nested at line 13 in the for statement (lines 11–17) determines that
count is 5, the break statement at line 14 executes. This terminates the for statement, and
the app proceeds to line 19 (immediately after the for statement), which displays a mes-
sage indicating the value of the control variable when the loop terminated. The loop fully
executes its body only four times instead of 10 because of the break.

1 // Fig. 6.12: BreakTest.cs
2 // break statement exiting a for statement.
3 using System;
4
5 public class BreakTest
6 {
7 public static void Main(string[] args)
8 {
9 int count; // control variable also used after loop terminates

10
11 for (count = 1; count <= 10; ++count) // loop 10 times
12 {
13 if (count == 5) // if count is 5,
14
15
16 Console.Write("{0} ", count);
17 } // end for
18
19 Console.WriteLine("\nBroke out of loop at count = {0}", count);
20 } // end Main
21 } // end class BreakTest

1 2 3 4
Broke out of loop at count = 5

Fig. 6.12 | break statement exiting a for statement.

break; // terminate loop

210 Chapter 6 Control Statements: Part 2

continue Statement
The continue statement, when executed in a while, for, do…while, or foreach, skips
the remaining statements in the loop body and proceeds with the next iteration of the
loop. In while and do…while statements, the app evaluates the loop-continuation test
immediately after the continue statement executes. In a for statement, the increment ex-
pression normally executes next, then the app evaluates the loop-continuation test.

Figure 6.13 uses the continue statement in a for to skip the statement at line 14
when the nested if (line 11) determines that the value of count is 5. When the continue
statement executes, program control continues with the increment of the control variable
in the for statement (line 9).

In Section 6.3, we stated that the while statement can be used in most cases in place of
for. One exception occurs when the increment expression in the while follows a continue
statement. In this case, the increment does not execute before the app evaluates the repeti-
tion-continuation condition, so the while does not execute in the same manner as the for.

1 // Fig. 6.13: ContinueTest.cs
2 // continue statement terminating an iteration of a for statement.
3 using System;
4
5 public class ContinueTest
6 {
7 public static void Main(string[] args)
8 {
9 for (int count = 1; count <= 10; ++count) // loop 10 times

10 {
11 if (count == 5) // if count is 5,
12
13
14 Console.Write("{0} ", count);
15 } // end for
16
17 Console.WriteLine("\nUsed continue to skip displaying 5");
18 } // end Main
19 } // end class ContinueTest

1 2 3 4 6 7 8 9 10
Used continue to skip displaying 5

Fig. 6.13 | continue statement terminating an iteration of a for statement.

Software Engineering Observation 6.2
Some programmers feel that break and continue statements violate structured
programming. Since the same effects are achievable with structured programming
techniques, these programmers prefer not to use break or continue statements.

Software Engineering Observation 6.3
There’s a tension between achieving quality software engineering and achieving the best-
performing software. Often, one of these goals is achieved at the expense of the other. For
all but the most performance-intensive situations, apply the following rule: First, make
your code simple and correct; then make it fast, but only if necessary.

continue; // skip remaining code in loop

6.8 Logical Operators 211

6.8 Logical Operators
The if, if…else, while, do…while and for statements each require a condition to de-
termine how to continue an app’s flow of control. So far, we’ve studied only simple con-
ditions, such as count <= 10, number != sentinelValue and total > 1000. Simple
conditions are expressed in terms of the relational operators >, <, >= and <=, and the equal-
ity operators == and !=. Each expression tests only one condition. To test multiple condi-
tions in the process of making a decision, we performed these tests in separate statements
or in nested if or if…else statements. Sometimes, control statements require more com-
plex conditions to determine an app’s flow of control.

C# provides logical operators to enable you to form more complex conditions by
combining simple conditions. The logical operators are && (conditional AND), || (condi-
tional OR), & (boolean logical AND), | (boolean logical inclusive OR), ^ (boolean logical
exclusive OR) and ! (logical negation).

Conditional AND (&&) Operator
Suppose that we wish to ensure at some point in an app that two conditions are both true
before we choose a certain path of execution. In this case, we can use the && (conditional
AND) operator, as follows:

This if statement contains two simple conditions. The condition gender == 'F' determines
whether a person is female. The condition age >= 65might be evaluated to determine wheth-
er a person is a senior citizen. The if statement considers the combined condition

which is true if and only if both simple conditions are true. If the combined condition is
true, the if statement’s body increments seniorFemales by 1. If either or both of the sim-
ple conditions are false, the app skips the increment. Some programmers find that the pre-
ceding combined condition is more readable when redundant parentheses are added, as in:

The table in Fig. 6.14 summarizes the && operator. The table shows all four possible
combinations of false and true values for expression1 and expression2. Such tables are
called truth tables. C# evaluates all expressions that include relational operators, equality
operators or logical operators to bool values—which are either true or false.

if (gender == 'F' && age >= 65)
++seniorFemales;

gender == 'F' && age >= 65

(gender == 'F') && (age >= 65)

expression1 expression2 expression1 && expression2

false false false

false true false

true false false

true true true

Fig. 6.14 | && (conditional AND) operator truth table.

212 Chapter 6 Control Statements: Part 2

Conditional OR (||) Operator
Now suppose we wish to ensure that either or both of two conditions are true before we
choose a certain path of execution. In this case, we use the || (conditional OR) operator,
as in the following app segment:

This statement also contains two simple conditions. The condition semesterAverage >=

90 is evaluated to determine whether the student deserves an A in the course because of a
solid performance throughout the semester. The condition finalExam >= 90 is evaluated
to determine whether the student deserves an A in the course because of an outstanding
performance on the final exam. The if statement then considers the combined condition

and awards the student an A if either or both of the simple conditions are true. The only
time the message "Student grade is A" is not displayed is when both of the simple condi-
tions are false. Figure 6.15 is a truth table for operator conditional OR (||). Operator &&
has a higher precedence than operator ||. Both operators associate from left to right.

Short-Circuit Evaluation of Complex Conditions
The parts of an expression containing && or || operators are evaluated only until it’s known
whether the condition is true or false. Thus, evaluation of the expression

stops immediately if gender is not equal to 'F' (i.e., at that point, it’s certain that the en-
tire expression is false) and continues only if gender is equal to 'F' (i.e., the entire ex-
pression could still be true if the condition age >= 65 is true). This feature of conditional
AND and conditional OR expressions is called short-circuit evaluation.

if ((semesterAverage >= 90) || (finalExam >= 90))
Console.WriteLine ("Student grade is A");

(semesterAverage >= 90) || (finalExam >= 90)

expression1 expression2 expression1 || expression2

false false false

false true true

true false true

true true true

Fig. 6.15 | || (conditional OR) operator truth table.

(gender == 'F') && (age >= 65)

Common Programming Error 6.3
In expressions using operator &&, a condition—which we refer to as the dependent condi-
tion—may require another condition to be true for the evaluation of the dependent condi-
tion to be meaningful. In this case, the dependent condition should be placed after the other
one, or an error might occur. For example, in the expression (i != 0) && (10 / i == 2), the
second condition must appear after the first condition, or a divide-by-zero error might occur.

6.8 Logical Operators 213

Boolean Logical AND (&) and Boolean Logical OR (|) Operators
The boolean logical AND (&) and boolean logical inclusive OR (|) operators work iden-
tically to the && (conditional AND) and || (conditional OR) operators, with one excep-
tion—the boolean logical operators always evaluate both of their operands (i.e., they do
not perform short-circuit evaluation). Therefore, the expression

evaluates age >= 65 regardless of whether gender is equal to 'F'. This is useful if the right
operand of the boolean logical AND or boolean logical inclusive OR operator has a required
side effect—such as, a modification of a variable’s value. For example, the expression

guarantees that the condition ++age >= 65 will be evaluated. Thus, the variable age is in-
cremented in the preceding expression, regardless of whether the overall expression is true
or false.

Boolean Logical Exclusive OR (^)
A complex condition containing the boolean logical exclusive OR (^) operator (also called
the logical XOR operator) is true if and only if one of its operands is true and the other is
false. If both operands are true or both are false, the entire condition is false.
Figure 6.16 is a truth table for the boolean logical exclusive OR operator (^). This operator
is also guaranteed to evaluate both of its operands.

Logical Negation (!) Operator
The ! (logical negation or not) operator enables you to “reverse” the meaning of a condi-
tion. Unlike the logical operators &&, ||, &, | and ^, which are binary operators that com-
bine two conditions, the logical negation operator is a unary operator that has only a single
condition as an operand. The logical negation operator is placed before a condition to
choose a path of execution if the original condition (without the logical negation operator)
is false, as in the code segment

(gender == 'F') & (age >= 65)

(birthday == true) | (++age >= 65)

Error-Prevention Tip 6.6
For clarity, avoid expressions with side effects in conditions. The side effects may appear
clever, but they can make it harder to understand code and can lead to subtle logic errors.

expression1 expression2 expression1 ^ expression2

false false false

false true true

true false true

true true false

Fig. 6.16 | ^ (boolean logical exclusive OR) operator truth table.

if (! (grade == sentinelValue))
Console.WriteLine("The next grade is {0}", grade);

214 Chapter 6 Control Statements: Part 2

which executes the WriteLine call only if grade is not equal to sentinelValue. The pa-
rentheses around the condition grade == sentinelValue are needed because the logical
negation operator has a higher precedence than the equality operator.

In most cases, you can avoid using logical negation by expressing the condition dif-
ferently with an appropriate relational or equality operator. For example, the previous
statement may also be written as follows:

This flexibility can help you express a condition in a more convenient manner. Figure 6.17
is a truth table for the logical negation operator.

Logical Operators Example
Figure 6.18 demonstrates the logical operators and boolean logical operators by producing
their truth tables. The output shows the expression that was evaluated and the bool result
of that expression. Lines 10–14 produce the truth table for && (conditional AND). Lines
17–21 produce the truth table for || (conditional OR). Lines 24–28 produce the truth
table for & (boolean logical AND). Lines 31–36 produce the truth table for | (boolean log-
ical inclusive OR). Lines 39–44 produce the truth table for ^ (boolean logical exclusive
OR). Lines 47–49 produce the truth table for ! (logical negation).

if (grade != sentinelValue)
Console.WriteLine("The next grade is {0}", grade);

expression !expression

false true

true false

Fig. 6.17 | ! (logical negation)
operator truth table.

1 // Fig. 6.18: LogicalOperators.cs
2 // Logical operators.
3 using System;
4
5 public class LogicalOperators
6 {
7 public static void Main(string[] args)
8 {
9 // create truth table for && (conditional AND) operator

10 Console.WriteLine("{0}\n{1}: {2}\n{3}: {4}\n{5}: {6}\n{7}: {8}\n",
11 "Conditional AND (&&)", "false && false", ,
12 "false && true", ,
13 "true && false", ,
14 "true && true",);
15
16 // create truth table for || (conditional OR) operator
17 Console.WriteLine("{0}\n{1}: {2}\n{3}: {4}\n{5}: {6}\n{7}: {8}\n",
18 "Conditional OR (||)", "false || false", ,

Fig. 6.18 | Logical operators. (Part 1 of 3.)

(false && false)
(false && true)
(true && false)
(true && true)

(false || false)

6.8 Logical Operators 215

19 "false || true", ,
20 "true || false", ,
21 "true || true",);
22
23 // create truth table for & (boolean logical AND) operator
24 Console.WriteLine("{0}\n{1}: {2}\n{3}: {4}\n{5}: {6}\n{7}: {8}\n",
25 "Boolean logical AND (&)", "false & false", ,
26 "false & true", ,
27 "true & false", ,
28 "true & true",);
29
30 // create truth table for | (boolean logical inclusive OR) operator
31 Console.WriteLine("{0}\n{1}: {2}\n{3}: {4}\n{5}: {6}\n{7}: {8}\n",
32 "Boolean logical inclusive OR (|)",
33 "false | false", ,
34 "false | true", ,
35 "true | false", ,
36 "true | true",);
37
38 // create truth table for ^ (boolean logical exclusive OR) operator
39 Console.WriteLine("{0}\n{1}: {2}\n{3}: {4}\n{5}: {6}\n{7}: {8}\n",
40 "Boolean logical exclusive OR (^)",
41 "false ^ false", ,
42 "false ^ true", ,
43 "true ^ false", ,
44 "true ^ true",);
45
46 // create truth table for ! (logical negation) operator
47 Console.WriteLine("{0}\n{1}: {2}\n{3}: {4}",
48 "Logical negation (!)", "!false", ,
49 "!true",);
50 } // end Main
51 } // end class LogicalOperators

Conditional AND (&&)
false && false: False
false && true: False
true && false: False
true && true: True

Conditional OR (||)
false || false: False
false || true: True
true || false: True
true || true: True

Boolean logical AND (&)
false & false: False
false & true: False
true & false: False
true & true: True

Fig. 6.18 | Logical operators. (Part 2 of 3.)

(false || true)
(true || false)
(true || true)

(false & false)
(false & true)
(true & false)
(true & true)

(false | false)
(false | true)
(true | false)
(true | true)

(false ^ false)
(false ^ true)
(true ^ false)
(true ^ true)

(!false)
(!true)

216 Chapter 6 Control Statements: Part 2

Figure 6.19 shows the precedence and associativity of the C# operators introduced so
far. The operators are shown from top to bottom in decreasing order of precedence.

6.9 Structured-Programming Summary
Just as architects design buildings by employing the collective wisdom of their profession,
so should programmers design apps. Our field is younger than architecture, and our col-
lective wisdom is considerably sparser. We’ve learned that structured programming pro-
duces apps that are easier than unstructured apps to understand, test, debug, modify and
even prove correct in a mathematical sense.

Figure 6.20 uses UML activity diagrams to summarize C#’s control statements. The
initial and final states indicate the single entry point and the single exit point of each control
statement. Arbitrarily connecting individual symbols in an activity diagram can lead to

Boolean logical inclusive OR (|)
false | false: False
false | true: True
true | false: True
true | true: True

Boolean logical exclusive OR (^)
false ^ false: False
false ^ true: True
true ^ false: True
true ^ true: False

Logical negation (!)
!false: True
!true: False

Operators Associativity Type

. new ++(postfix) --(postfix) left to right highest precedence
++ -- + - ! (type) right to left unary prefix
* / % left to right multiplicative
+ - left to right additive
< <= > >= left to right relational
== != left to right equality
& left to right boolean logical AND
^ left to right boolean logical exclusive OR
| left to right boolean logical inclusive OR
&& left to right conditional AND
|| left to right conditional OR
?: right to left conditional
= += -= *= /= %= right to left assignment

Fig. 6.19 | Precedence/associativity of the operators discussed so far.

Fig. 6.18 | Logical operators. (Part 3 of 3.)

6.9 Structured-Programming Summary 217

Fig. 6.20 | C#’s sequence, selection and repetition statements.

break
[true][false]

if…else statement
(double selection)

if statement
(single selection)

[true]

[false]

[false]

break
[true]

break
[true]

[false]

[false]

switch statement with breaks
(multiple selection)

Sequence Selection

Repetition

default processing

initialization

increment

.
.
.

.
.
.

[true]

[false]

for statement

[true]

[false]

while statement

[true]

[false]

do…while statement

break

[true]

218 Chapter 6 Control Statements: Part 2

unstructured apps. Therefore, a limited set of control statements can be combined in only
two simple ways to build structured apps.

For simplicity, only single-entry/single-exit control statements are used—there’s
only one way to enter and only one way to exit each control statement. Connecting control
statements in sequence to form structured apps is simple. The final state of one control
statement is connected to the initial state of the next—that is, the control statements are
placed one after another in an app in sequence. We call this control-statement stacking. The
rules for forming structured apps also allow for control statements to be nested.

Figure 6.21 shows the rules for forming structured apps. The rules assume that action
states may be used to indicate any action. The rules also assume that we begin with the
simplest activity diagram (Fig. 6.22) consisting of only an initial state, an action state, a
final state and transition arrows.

Applying the rules in Fig. 6.21 always results in a properly structured activity diagram
with a neat, building-block appearance. For example, repeatedly applying Rule 2 to the sim-
plest activity diagram results in an activity diagram containing many action states in sequence
(Fig. 6.23). Rule 2 generates a stack of control statements, so let us call Rule 2 the stacking
rule. [Note: The vertical dashed lines in Fig. 6.23 are not part of the UML—we use them to
separate the four activity diagrams that demonstrate the application of Rule 2 of Fig. 6.21.]

Rule 3 is called the nesting rule. Repeatedly applying Rule 3 to the simplest activity
diagram results in an activity diagram with neatly nested control statements. For example,
in Fig. 6.24, the action state in the simplest activity diagram is replaced with a double-
selection (if…else) statement. Then Rule 3 is applied again to the action states in the

Rules for forming structured apps

1 Begin with the simplest activity diagram (Fig. 6.22).

2 Any action state can be replaced by two action states in sequence.

3 Any action state can be replaced by any control statement (sequence
of action states, if, if…else, switch, while, do…while, for or
foreach, which we’ll see in Chapter 8).

4 Rules 2 and 3 can be applied as often as necessary in any order.

Fig. 6.21 | Rules for forming structured apps.

Fig. 6.22 | Simplest activity diagram.

action state

6.9 Structured-Programming Summary 219

double-selection statement, replacing each of these action states with a double-selection
statement. The dashed action-state symbols around each of the double-selection state-
ments represent the action state that was replaced. The dashed arrows and dashed action-
state symbols shown in Fig. 6.24 are not part of the UML—they’re used here to illustrate
that any action state can be replaced with any control statement.

Rule 4 generates larger, more involved and more deeply nested statements. The dia-
grams that emerge from applying the rules in Fig. 6.21 constitute the set of all possible
structured activity diagrams and hence the set of all possible structured apps. The beauty
of the structured approach is that we use only eight simple single-entry/single-exit control
statements (counting the foreach statement, which we introduce in Section 8.6) and
assemble them in only two simple ways.

If the rules in Fig. 6.21 are followed, an “unstructured” activity diagram (like the one
in Fig. 6.25) cannot be created. If you’re uncertain about whether a particular diagram is
structured, apply the rules of Fig. 6.21 in reverse to reduce the diagram to the simplest
activity diagram. If you can reduce it, the original diagram is structured; otherwise, it’s not.

Structured programming promotes simplicity. Research has shown that only three
forms of control are needed to implement any algorithm:

• sequence

• selection

• repetition

Sequence is trivial. Simply list the statements of the sequence in the order in which
they should execute. Selection is implemented in one of three ways:

Fig. 6.23 | Repeatedly applying the stacking rule (Rule 2) of Fig. 6.21 to the simplest activity
diagram.

action state action state

apply
Rule 2

apply
Rule 2

apply
Rule 2

action stateaction state

action state action state

action state
action state

.
.
.

220 Chapter 6 Control Statements: Part 2

• if statement (single selection)

• if…else statement (double selection)

• switch statement (multiple selection)

In fact, it’s straightforward to prove that the simple if statement is sufficient to provide
any form of selection—everything that can be done with the if…else statement and the
switch statement can be done by combining if statements (although perhaps not as clear-
ly and efficiently).

Fig. 6.24 | Repeatedly applying Rule 3 of Fig. 6.21 to the simplest activity diagram.

action stateaction state

[true][false]

[true][false]

[true][false][true][false]

action state

action stateaction state action stateaction state

apply
Rule 3

apply
Rule 3

apply
Rule 3

6.10 Wrap-Up 221

Repetition is implemented in one of four ways:

• while statement

• do…while

• for statement

• foreach statement

It’s straightforward to prove that the while statement is sufficient to provide any form of
repetition. Everything that can be done with the do…while, for and foreach statements
can be done with the while statement (although perhaps not as conveniently).

Combining these results illustrates that any form of control ever needed in a C# app
can be expressed in terms of

• sequence structure

• if statement (selection)

• while statement (repetition)

and that these can be combined in only two ways—stacking and nesting. Indeed, struc-
tured programming is the essence of simplicity.

6.10 Wrap-Up
Chapter 5 discussed the if, if…else and while control statements. In this chapter, we
discussed the for, do...while and switch control statements. (We’ll discuss the foreach
statement in Chapter 8.) You learned that any algorithm can be developed using combi-
nations of sequence (i.e., statements listed in the order in which they should execute), the
three selection statements—if, if…else and switch—and the four repetition state-
ments—while, do…while, for and foreach. You saw that the for and do…while state-
ments are simply more convenient ways to express certain types of repetition. Similarly,
we showed that the switch statement is a convenient notation for multiple selection, rath-
er than using nested if...else statements. We discussed how you can combine various
control statements by stacking and nesting them. We showed how to use the break and
continue statements to alter the flow of control in repetition statements. You learned
about the logical operators, which enable you to use more complex conditional expressions
in control statements. In Chapter 7, we examine methods in greater depth.

Fig. 6.25 | “Unstructured” activity diagram.

action state

action state

action state action state

222 Chapter 6 Control Statements: Part 2

Summary
Section 6.2 Essentials of Counter-Controlled Repetition
• Counter-controlled repetition requires a control variable, the initial value of the control variable,

the increment (or decrement) by which the control variable is modified each time through the
loop and the loop-continuation condition that determines whether looping should continue.

Section 6.3 for Repetition Statement
• The for header “does it all”—it specifies each of the items needed for counter-controlled repeti-

tion with a control variable. The general format of the for statement is

for (initialization; loopContinuationCondition; increment)
statement

where the initialization expression names the loop’s control variable and provides its initial value,
the loopContinuationCondition is the condition that determines whether looping should contin-
ue and the increment modifies the control variable’s value so that the loop-continuation condi-
tion eventually becomes false.

• Typically, for statements are used for counter-controlled repetition, and while statements for
sentinel-controlled repetition.

• The scope of a variable defines where it can be used in an app. For example, a local variable can
be used only in the method that declares the variable and only from the point of declaration
through the end of the block in which the variable is declared.

• The increment of a for statement may also be negative, in which case it’s a decrement, and the
loop counts downward.

• If the loop-continuation condition is initially false, the for statement’s body doesn’t execute.

Section 6.4 Examples Using the for Statement
• When a variable of type decimal is initialized to an int value, the value of type int is promoted

to a decimal type implicitly—no cast is required.

• In a format item, an integer n after a comma indicates that the value output should be displayed
with a field width of n—that is with at least n character positions.

• Values are right justified in a field by default. To indicate that values should be output left justi-
fied, simply use a negative field width.

• Methods that must be called using a class name are called static methods.

• C# does not include an exponentiation operator. Instead, Math.Pow(x, y) calculates the value of
x raised to the yth power. The method receives two double arguments and returns a double value.

• C# will not implicitly convert a double to a decimal type, or vice versa, because of the possible
loss of information in either conversion. To perform this conversion, a cast operator is required.

• Floating-point numbers of type double (or float) can cause trouble in monetary calculations;
use type decimal instead.

Section 6.5 do…while Repetition Statement
• The do…while statement tests the loop-continuation condition after executing the loop’s body;

therefore, the body always executes at least once.

• The do…while statement has the form:

do

{
statement

} while (condition);

Summary 223

Section 6.6 switch Multiple-Selection Statement
• The switch multiple-selection statement performs different actions based on the possible values

of an expression.

• Method Console.ReadLine returns null when the end-of-file key sequence is encountered.

• The switch statement consists of a block that contains a sequence of case labels and an optional
default label.

• The expression in parentheses following keyword switch is the switch expression. The app at-
tempts to match the value of the switch expression to a case label. If a match occurs, the app
executes the statements for that case.

• The switch statement does not provide a mechanism for testing ranges of values, so every value
to be tested must be listed in a separate case label.

• After the statements in a case execute, you’re required to include a statement that terminates the
case, such as a break or a return.

• If no match occurs between the switch expression’s value and a case label, the statements after
the default label execute. If no match occurs and the switch does not contain a default label,
program control typically continues with the first statement after the switch statement.

Section 6.7 break and continue Statements
• The break statement causes immediate exit from a while, for, do…while, switch or foreach

statement. Execution typically continues with the first statement after the control statement.

• The continue statement, when executed in a while, for, do…while or foreach, skips the re-
maining statements in the loop body and proceeds with the next iteration of the loop. In a for
statement, the increment is peformed before the loop-continuation condition is tested.

Section 6.8 Logical Operators
• Logical operators enable you to form more complex conditions by combining simple conditions.

The logical operators are && (conditional AND), || (conditional OR), & (boolean logical AND),
| (boolean logical inclusive OR), ^ (boolean logical exclusive OR) and ! (logical negation).

• The && (conditional AND) operator ensures that two conditions are both true before we choose
a certain path of execution.

• The || (conditional OR) operator ensures that either or both of two conditions are true before
we choose a certain path of execution.

• The parts of an expression containing && or || operators are evaluated only until it’s known
whether the condition is true or false. This feature of conditional AND and conditional OR
expressions is called short-circuit evaluation.

• The boolean logical AND (&) and boolean logical inclusive OR (|) operators work identically to
the && (conditional AND) and || (conditional OR) operators, but the boolean logical operators
always evaluate both of their operands (i.e., they do not perform short-circuit evaluation).

• A complex condition containing the boolean logical exclusive OR (^) operator is true if and only
if one of its operands is true and the other is false. If both operands are true or both are false,
the entire condition is false.

• The ! (logical negation) operator enables you to “reverse” the meaning of a condition. The log-
ical negation operator is placed before a condition to choose a path of execution if the original
condition is false. In most cases, you can avoid using logical negation by expressing the condi-
tion differently with an appropriate relational or equality operator.

224 Chapter 6 Control Statements: Part 2

Section 6.9 Structured-Programming Summary
• Any form of control ever needed in a C# app can be expressed in terms of sequence, the if state-

ment (selection) and the while statement (repetition). These can be combined in only two
ways—stacking and nesting.

Terminology
!, logical negation operator
&, boolean logical AND operator
&&, conditional AND operator
|, boolean logical OR operator
||, conditional OR operator
^, boolean logical exclusive OR operator
boolean logical AND (&)
boolean logical exclusive OR (^)
boolean logical inclusive OR (|)
break statement
case label in switch

character constant
conditional AND (&&)
conditional OR (||)
const keyword
constant
constant integral expression
constant string expression
continue statement
control variable
decrement a control variable
default label in switch

do…while repetition statement
end-of-file indicator
field width
for header
for repetition statement
for statement header
helper method

increment a control variable
initial value of a control variable
iteration of a loop
left justified
logical AND operator (&&)
logical negation (!)
logical operators
logical OR operator (||)
logical XOR operator (^)
loop-continuation condition
multiple-selection statement
nested control statements
nesting rule
off-by-one error
repetition statement
right justified
scope of a variable
short-circuit evaluation
side effect
simple condition
single-entry/single-exit control statements
stacked control statements
stacking rule
static method
switch expression
switch multiple-selection statement
truth table
utility method

Self-Review Exercises
6.1 Fill in the blanks in each of the following statements:

a) Typically, statements are used for counter-controlled repetition and
statements are used for sentinel-controlled repetition.

b) The do…while statement tests the loop-continuation condition executing the
loop’s body; therefore, the body always executes at least once.

c) The statement selects among multiple actions based on the possible values of
an integer variable or expression.

d) The statement, when executed in a repetition statement, skips the remaining
statements in the loop body and proceeds with the next iteration of the loop.

e) The operator can be used to ensure that two conditions are both true before
choosing a certain path of execution.

Self-Review Exercises 225

f) If the loop-continuation condition in a for header is initially , the for state-
ment’s body does not execute.

g) Methods that perform common tasks and cannot be called on objects are called
methods.

6.2 State whether each of the following is true or false. If false, explain why.
a) The default label is required in the switch selection statement.
b) The break statement is required in every case of a switch statement.
c) The expression ((x > y) && (a < b)) is true if either (x > y) is true or (a < b) is true.
d) An expression containing the || operator is true if either or both of its operands are true.
e) The integer after the comma (,) in a format item (e.g., {0,4}) indicates the field width

of the displayed string.
f) To test for a range of values in a switch statement, use a hyphen (–) between the start

and end values of the range in a case label.
g) Listing cases consecutively with no statements between them enables the cases to per-

form the same set of statements.

6.3 Write a C# statement or a set of C# statements to accomplish each of the following tasks:
a) Sum the odd integers between 1 and 99, using a for statement. Assume that the integer

variables sum and count have been declared.
b) Calculate the value of 2.5 raised to the power of 3, using the Pow method.
c) Display the integers from 1 to 20 using a while loop and the counter variable i. Assume

that the variable i has been declared, but not initialized. Display only five integers per
line. [Hint: Use the calculation i % 5. When the value of this expression is 0, display a
newline character; otherwise, display a tab character. Use the Console.WriteLine()

method to output the newline character, and use the Console.Write('\t') method to
output the tab character.]

d) Repeat part (c), using a for statement.

6.4 Find the error in each of the following code segments and explain how to correct it:
a) i = 1;

while (i <= 10);

++i;

}

b) for (k = 0.1; k != 1.0; k += 0.1)

Console.WriteLine(k);

c) switch (n)

{

case 1:

Console.WriteLine("The number is 1");

case 2:

Console.WriteLine("The number is 2");

break;

default:

Console.WriteLine("The number is not 1 or 2");

break;

} // end switch

d) The following code should display the values 1 to 10:
n = 1;

while (n < 10)

Console.WriteLine(n++);

226 Chapter 6 Control Statements: Part 2

Answers to Self-Review Exercises
6.1 a) for, while. b) after. c) switch. d) continue. e) && (conditional AND) or & (boolean
logical AND). f) false. g) static.

6.2 a) False. The default label is optional. If no default action is needed, then there’s no need
for a default label. b) False. You could terminate the case with other statements, such as a return.
c) False. Both of the relational expressions must be true for this entire expression to be true when
using the && operator. d) True. e) True. f) False. The switch statement does not provide a mech-
anism for testing ranges of values, so you must list every value to test in a separate case label. g) True.

6.3 a) sum = 0;

for (count = 1; count <= 99; count += 2)

sum += count;

b) double result = Math.Pow(2.5, 3);
c) i = 1;

while (i <= 20)

{

Console.Write(i);

if (i % 5 == 0)

Console.WriteLine();

else

Console.Write('\t');

++i;

} // end while

d) for (i = 1; i <= 20; ++i)

{

Console.Write(i);

if (i % 5 == 0)

Console.WriteLine();

else

Console.Write('\t');

} // end for

6.4 a) Error: The semicolon after the while header causes an infinite loop, and there’s a
missing left brace for the body of the while statement.
Correction: Remove the semicolon and add a { before the loop’s body.

b) Error: Using a floating-point number to control a for statement may not work, because
floating-point numbers are represented only approximately by most computers.
Correction: Use an integer, and perform the proper calculation in order to get the values
you desire:

for (k = 1; k < 10; ++k)
Console.WriteLine((double) k / 10);

c) Error: case 1 cannot fall through into case 2.
Correction: Terminate the case in some way, such as adding a break statement at the
end of the statements for the first case.

d) Error: The wrong operator is used in the while repetition-continuation condition.
Correction: Use <= rather than <, or change 10 to 11.

Exercises 227

Exercises
6.5 Describe the four basic elements of counter-controlled repetition.

6.6 Compare and contrast the while and for repetition statements.

6.7 Discuss a situation in which it would be more appropriate to use a do…while statement
than a while statement. Explain why.

6.8 Compare and contrast the break and continue statements.

6.9 Find and correct the error(s) in each of the following segments of code:
a) For (i = 100, i >= 1, ++i)

Console.WriteLine(i);

b) The following code should display whether integer value is odd or even:

switch (value % 2)
{

case 0:
Console.WriteLine("Even integer");

case 1:
Console.WriteLine("Odd integer");

} // end switch

c) The following code should output the odd integers from 19 to 1:

for (int i = 19; i >= 1; i += 2)
Console.WriteLine(i);

d) The following code should output the even integers from 2 to 100:

counter = 2;

do

{
Console.WriteLine(counter);
counter += 2;

} While (counter < 100);

6.10 (What Does This Code Do?) What does the following app do?

6.11 (Find the Smallest Value) Write an app that finds the smallest of several integers. Assume
that the first value read specifies the number of values to input from the user.

6.12 (Product of Odd Integers) Write an app that calculates the product of the odd integers from
1 to 7.

1 // Exercise 6.10 Solution: Printing.cs
2 using System;
3
4 public class Printing
5 {
6 public static void Main(string[] args)
7 {
8 for (int i = 1; i <= 10; ++i)
9 {

10 for (int j = 1; j <= 5; ++j)
11 Console.Write('@');
12
13 Console.WriteLine();
14 } // end outer for
15 } // end Main
16 } // end class Printing

228 Chapter 6 Control Statements: Part 2

6.13 (Factorials) Factorials are used frequently in probability problems. The factorial of a positive
integer n (written n! and pronounced “n factorial”) is equal to the product of the positive integers
from 1 to n. Write an app that evaluates the factorials of the integers from 1 to 5. Display the results
in tabular format. What difficulty might prevent you from calculating the factorial of 20?

6.14 (Modified Compound Interest Program) Modify the compound-interest app (Fig. 6.6) to
repeat its steps for interest rates of 5, 6, 7, 8, 9 and 10%. Use a for loop to vary the rate.

6.15 (Displaying Triangles) Write an app that displays the following patterns separately, one be-
low the other. Use for loops to generate the patterns. All asterisks (*) should be displayed by a single
statement of the form Console.Write('*'); which causes the asterisks to display side by side. A
statement of the form Console.WriteLine(); can be used to move to the next line. A statement of
the form Console.Write(' '); can be used to display a space for the last two patterns. There
should be no other output statements in the app. [Hint: The last two patterns require that each line
begin with an appropriate number of blank spaces.]

6.16 (Displaying a Bar Chart) One interesting application of computers is to display graphs and
bar charts. Write an app that reads three numbers between 1 and 30. For each number that’s read,
your app should display the same number of adjacent asterisks. For example, if your app reads the
number 7, it should display *******.

6.17 (Calculating Sales) A website sells three products whose retail prices are as follows: product
1, $2.98; product 2, $4.50; and product 3, $9.98. Write an app that reads a series of pairs of num-
bers as follows:

a) product number
b) quantity sold

Your app should use a switch statement to determine the retail price for each product. It should
calculate and display the total retail value of all products sold. Use a sentinel-controlled loop to
determine when the app should stop looping and display the final results.

6.18 (Modified Compound Interest Program) In the future, you may work with other program-
ming languages that do not have a type like decimal which supports precise monetary calculations.
In those languages, you should perform such calculations using integers. Modify the app in Fig. 6.6
to use only integers to calculate the compound interest. Treat all monetary amounts as integral
numbers of pennies. Then break the result into its dollars and cents portions by using the division
and remainder operations, respectively. Insert a period between the dollars and the cents portions
when you display the results.

6.19 Assume that i = 1, j = 2, k = 3 and m = 2. What does each of the following statements display?
a) Console.WriteLine(i == 1);

b) Console.WriteLine(j == 3);

c) Console.WriteLine((i >= 1) && (j < 4));

d) Console.WriteLine((m <= 99) & (k < m));

(a) (b) (c) (d)
* ********** ********** *
** ********* ********* **
*** ******** ******** ***
**** ******* ******* ****
***** ****** ****** *****
****** ***** ***** ******
******* **** **** *******
******** *** *** ********
********* ** ** *********
********** * * **********

Exercises 229

e) Console.WriteLine((j >= i) || (k == m));

f) Console.WriteLine((k + m < j) | (3 - j >= k));

g) Console.WriteLine(!(k > m));

6.20 (Calculating the Value of π) Calculate the value of π from the infinite series

Display a table that shows the value of π approximated by computing one term of this series, by
two terms, by three terms, and so on. How many terms of this series do you have to use before you
first get 3.14? 3.141? 3.1415? 3.14159?

6.21 (Pythagorean Triples) A right triangle can have sides whose lengths are all integers. The set
of three integer values for the lengths of the sides of a right triangle is called a Pythagorean triple
(en.wikipedia.org/wiki/Pythagorean_triple). The lengths of the three sides must satisfy the re-
lationship that the sum of the squares of two of the sides is equal to the square of the hypotenuse.
Write an app to find all Pythagorean triples for side1, side2 and the hypotenuse, all no larger than
500. Use a triple-nested for loop that tries all possibilities. This method is an example of “brute-
force” computing. You’ll learn in more advanced computer science courses that there are many in-
teresting problems for which there’s no known algorithmic approach other than using sheer brute
force.

6.22 (Modified Triangle Program) Modify Exercise 6.15 to combine your code from the four
separate triangles of asterisks such that all four patterns display side by side. Make clever use of nest-
ed for loops.

6.23 (Displaying a Diamond) Write an app that displays the following diamond shape. You may
use output statements that display a single asterisk (*), a single space or a single newline character.
Maximize your use of repetition (with nested for statements) and minimize the number of output
statements.

6.24 (Modified Diamond Program) Modify the app you wrote in Exercise 6.23 to read an odd
number in the range 1 to 19 to specify the number of rows in the diamond. Your app should then
display a diamond of the appropriate size.

6.25 (Structured Equivalent of break Statement) A criticism of the break statement and the
continue statement (in a loop) is that each is unstructured. Actually, break and continue statements
can always be replaced by structured statements, although doing so can be awkward. Describe in
general how you would remove any break statement from a loop in an app and replace it with a
structured equivalent. [Hint: The break statement exits a loop from the body of the loop. The other
way to exit is by failing the loop-continuation test. Consider using in the loop-continuation test a
second test that indicates “early exit because of a ‘break’ condition.”] Use the technique you develop
here to remove the break statement from the app in Fig. 6.12.

*

*

π 4
4
3
---–

4
5

4
7
---–

4
9

4
11
------– …+ + +=

230 Chapter 6 Control Statements: Part 2

6.26 (What Does This Code Do?) What does the following code segment do?

for (int i = 1; i <= 5; ++i)
{

for (int j = 1; j <= 3; ++j)
{

for (int k = 1; k <= 4; ++k)
Console.Write('*');

Console.WriteLine();
} // end middle for

Console.WriteLine();
} // end outer for

6.27 (Structured Equivalent of continue Statement) Describe in general how you would re-
move any continue statement from a loop in an app and replace it with some structured equivalent.
Use the technique you develop here to remove the continue statement from the app in Fig. 6.13.

Making a Difference Exercises
6.28 (Global Warming Facts Quiz) The controversial issue of global warming has been widely
publicized by the film An Inconvenient Truth, featuring former Vice President Al Gore. Mr. Gore
and a U.N. network of scientists, the Intergovernmental Panel on Climate Change, shared the 2007
Nobel Peace Prize in recognition of “their efforts to build up and disseminate greater knowledge
about man-made climate change.” Research both sides of the global warming issue online (you
might want to search for phrases like “global warming skeptics”). Create a five-question multiple-
choice quiz on global warming, each question having four possible answers (numbered 1–4). Be ob-
jective and try to fairly represent both sides of the issue. Next, write an app that administers the quiz,
calculates the number of correct answers (zero through five) and returns a message to the user. If the
user correctly answers five questions, display “Excellent”; if four, display “Very good”; if three or
fewer, display “Time to brush up on your knowledge of global warming,” and include a list of some
of the websites where you found your facts.

6.29 (Tax Plan Alternatives; The “FairTax”) There are many proposals to make taxation fairer.
Check out the FairTax initiative in the United States at

www.fairtax.org/site/PageServer?pagename=calculator

Research how the proposed FairTax works. One suggestion is to eliminate income taxes and most
other taxes in favor of a 23% consumption tax on all products and services that you buy. Some
FairTax opponents question the 23% figure and say that because of the way the tax is calculated, it
would be more accurate to say the rate is 30%—check this carefully. Write a program that prompts
the user to enter expenses in various expense categories they have (e.g., housing, food, clothing,
transportation, education, health care, vacations), then displays the estimated FairTax that person
would pay.

www.fairtax.org/site/PageServer?pagename=calculator

7Methods: A Deeper Look

E pluribus unum.
(One composed of many.)
—Virgil

O! call back yesterday, bid time
return.
—William Shakespeare

Call me Ishmael.
—Herman Melville

Answer me in one word.
—William Shakespeare

There is a point at which
methods devour themselves.
—Frantz Fanon

O b j e c t i v e s
In this chapter you’ll:
� Learn how staticmethods

and variables are associated
with classes rather than
objects.

� Learn how the method call/
return mechanism is
supported by the method-call
stack.

� Use random-number
generation to implement
game-playing apps.

� Learn how the visibility of
declarations is limited to
specific parts of apps.

� Create overloaded methods.
� Use optional and named

parameters.
� Use recursive methods.
� Pass method arguments by

value and by reference.

232 Chapter 7 Methods: A Deeper Look

7.1 Introduction
Most computer apps that solve real-world problems are much larger than the apps present-
ed in this book’s first few chapters. Experience has shown that the best way to develop and
maintain a large app is to construct it from small, simple pieces. This technique is called
divide and conquer. We introduced methods in Chapter 4. In this chapter we study meth-
ods in more depth. We emphasize how to declare and use methods to facilitate the design,
implementation, operation and maintenance of large apps.

You’ll see that it’s possible for certain methods, called static methods, to be called
without the need for an object of the class to exist. You’ll learn how to declare a method
with more than one parameter. You’ll also learn how C# is able to keep track of which
method is currently executing, how value-type and reference-type arguments are passed to
methods, how local variables of methods are maintained in memory and how a method
knows where to return after it completes execution.

We discuss simulation techniques with random-number generation and develop a
version of the casino dice game called craps that uses most of the programming techniques
you’ve learned to this point in the book. In addition, you’ll learn to declare constant
values. You’ll also learn to write recursive methods—methods that call themselves.

Many of the classes you’ll use or create will have more than one method of the same
name. This technique, called method overloading, is used to implement methods that per-
form similar tasks but with different types and/or different numbers of arguments.

7.2 Packaging Code in C#
Common ways of packaging code are properties, methods, classes and namespaces. C#
apps are written by combining new properties, methods and classes that you write with
predefined properties, methods and classes available in the .NET Framework Class Library
and in various other class libraries. Related classes are often grouped into namespaces and

7.1 Introduction
7.2 Packaging Code in C#
7.3 static Methods, static Variables

and Class Math
7.4 Declaring Methods with Multiple

Parameters
7.5 Notes on Declaring and Using Methods
7.6 Method-Call Stack and Activation

Records
7.7 Argument Promotion and Casting
7.8 The .NET Framework Class Library
7.9 Case Study: Random-Number

Generation

7.9.1 Scaling and Shifting Random
Numbers

7.9.2 Random-Number Repeatability for
Testing and Debugging

7.10 Case Study: A Game of Chance;
Introducing Enumerations

7.11 Scope of Declarations
7.12 Method Overloading
7.13 Optional Parameters
7.14 Named Parameters
7.15 Recursion
7.16 Passing Arguments: Pass-by-Value

vs. Pass-by-Reference
7.17 Wrap-Up

Summary | Terminology | Self-Review Exercises | Answers to Self-Review Exercises | Exercises |
Making a Difference Exercises

7.2 Packaging Code in C# 233

compiled into class libraries so that they can be reused in other apps. You’ll learn how to
create your own namespaces and class libraries in Chapter 15. The Framework Class Li-
brary provides many predefined classes that contain methods for performing common
mathematical calculations, string manipulations, character manipulations, input/output
operations, database operations, networking operations, file processing, error checking,
web-app development and more.

Modularizing Programs
Methods (called functions or procedures in other programming languages) allow you to
modularize an app by separating its tasks into self-contained units. You’ve declared meth-
ods in every app you’ve written. These methods are sometimes referred to as user-defined
methods. The actual statements in the method bodies are written only once, can be reused
from several locations in an app and are hidden from other methods.

There are several motivations for modularizing an app by means of methods. One is
the “divide-and-conquer” approach, which makes app development more manageable by
constructing apps from small, simple pieces. Another is software reusability—existing
methods can be used as building blocks to create new apps. Often, you can create apps
mostly by reusing existing methods rather than by building customized code. For example,
in earlier apps, we did not have to define how to read data values from the keyboard—the
Framework Class Library provides these capabilities in class Console. A third motivation
is to avoid repeating code. Dividing an app into meaningful methods makes the app easier
to debug and maintain.

Calling Methods
As you know, a method is invoked by a method call, and when the called method completes
its task, it returns a result or simply returns control to the caller. The code that calls a meth-
od is also sometimes known as the client code—that is, any statement that calls the ob-
ject’s method from outside the object is a client of the method. An analogy to the method-
call-and-return structure is the hierarchical form of management (Figure 7.1). A boss (the
caller) asks a worker (the called method) to perform a task and report back (i.e., return) the
results after completing the task. The boss method does not know how the worker method
performs its designated tasks. The worker may also call other worker methods, unbeknown
to the boss. This hiding of implementation details promotes good software engineering.
Figure 7.1 shows the boss method communicating with several worker methods in a hier-
archical manner. The boss method divides the responsibilities among the various worker
methods. Note that worker1 also acts as a “boss method” to worker4 and worker5.

Software Engineering Observation 7.1
Don’t try to “reinvent the wheel.” When possible, reuse Framework Class Library classes
and methods (msdn.microsoft.com/en-us/library/ms229335.aspx). This reduces app
development time, avoids introducing programming errors and contributes to good app
performance.

Software Engineering Observation 7.2
To promote software reusability, every method should be limited to performing a single,
well-defined task, and the name of the method should express that task effectively. Such
methods make apps easier to write, debug, maintain and modify.

234 Chapter 7 Methods: A Deeper Look

7.3 static Methods, static Variables and Class Math
Although most methods execute on specific objects in response to method calls, this is not
always the case. Sometimes a method performs a task that does not depend on the contents
of any object. Such a method applies to the class in which it’s declared as a whole and is
known as a static method. It’s not uncommon for a class to contain a group of static
methods to perform common tasks. For example, recall that we used static method Pow
of class Math to raise a value to a power in Fig. 6.6. To declare a method as static, place
the keyword static before the return type in the method’s declaration. You call any stat-
ic method by specifying the name of the class in which the method is declared, followed
by the member access (.) operator and the method name, as in

We use various methods of the Math class here to present the concept of static
methods. Class Math (from the System namespace) provides a collection of methods that
enable you to perform common mathematical calculations. For example, you can calculate
the square root of 900.0 with the static method call

The preceding expression evaluates to 30.0. Method Sqrt takes an argument of type dou-
ble and returns a result of type double. To output the value of the preceding method call
in the console window, you might write the statement

In this statement, the value that Sqrt returns becomes the argument to method Write-

Line. We did not create a Math object before calling method Sqrt. Also, all of Math’s meth-
ods are static—therefore, each is called by preceding the name of the method with the
class name Math and the member access (.) operator. Similarly, Console method Write-

Line is a static method of class Console, so we invoke the method by preceding its name
with the class name Console and the member access (.) operator.

Method arguments may be constants, variables or expressions. If c = 13.0, d = 3.0 and
f = 4.0, then the statement

Fig. 7.1 | Hierarchical boss-method/worker-method relationship.

ClassName.MethodName(arguments)

Math.Sqrt(900.0)

Console.WriteLine(Math.Sqrt(900.0));

Console.WriteLine(Math.Sqrt(c + d * f));

boss

worker2 worker3worker1

worker5worker4

7.3 static Methods, static Variables and Class Math 235

calculates and displays the square root of 13.0 + 3.0 * 4.0 = 25.0—namely, 5.0.
Figure 7.2 summarizes several Math class methods. In the figure, x and y are of type double.

Math Class Constants PI and E

Class Math also declares two static double constants that represent commonly used math-
ematical values: Math.PI and Math.E. The constant Math.PI (3.14159265358979323846)
is the ratio of a circle’s circumference to its diameter. Math.E (2.7182818284590452354)
is the base value for natural logarithms (calculated with static Math method Log). These
constants are declared in class Math with the modifiers public and const. Making them
public allows other programmers to use these variables in their own classes. A constant is
declared with the keyword const—its value cannot be changed after the constant is de-
clared. Both PI and E are declared const. Because these constants are static, you can access
them via the class name Math and the member access (.) operator, just like class Math’s
methods.

Recall from Section 4.5 that when each object of a class maintains its own copy of an
attribute, the variable that represents the attribute is also known as an instance variable—
each object (instance) of the class has a separate instance of the variable. There are also vari-
ables for which each object of a class does not have a separate instance of the variable.
That’s the case with static variables. When objects of a class containing static variables

Method Description Example

Abs(x) absolute value of x Abs(23.7) is 23.7
Abs(0.0) is 0.0
Abs(-23.7) is 23.7

Ceiling(x) rounds x to the smallest integer not
less than x

Ceiling(9.2) is 10.0
Ceiling(-9.8) is -9.0

Cos(x) trigonometric cosine of x (x in radians) Cos(0.0) is 1.0

Exp(x) exponential method ex Exp(1.0) is 2.71828
Exp(2.0) is 7.38906

Floor(x) rounds x to the largest integer not greater
than x

Floor(9.2) is 9.0
Floor(-9.8) is -10.0

Log(x) natural logarithm of x (base e) Log(Math.E) is 1.0
Log(Math.E * Math.E) is 2.0

Max(x, y) larger value of x and y Max(2.3, 12.7) is 12.7
Max(-2.3, -12.7) is -2.3

Min(x, y) smaller value of x and y Min(2.3, 12.7) is 2.3
Min(-2.3, -12.7) is -12.7

Pow(x, y) x raised to the power y (i.e., xy) Pow(2.0, 7.0) is 128.0
Pow(9.0, 0.5) is 3.0

Sin(x) trigonometric sine of x (x in radians) Sin(0.0) is 0.0

Sqrt(x) square root of x Sqrt(900.0) is 30.0

Tan(x) trigonometric tangent of x (x in radians) Tan(0.0) is 0.0

Fig. 7.2 | Math class methods.

236 Chapter 7 Methods: A Deeper Look

are created, all the objects of that class share one copy of the class’s static variables.
Together the static variables and instance variables represent the fields of a class.

Why Is Method Main Declared static?
Why must Main be declared static? During app startup, when no objects of the class have
been created, the Main method must be called to begin program execution. Main is some-
times called the app’s entry point. Declaring Main as static allows the execution environ-
ment to invoke Main without creating an instance of the class. Method Main is often
declared with the header:

When you execute your app from the command line, you type the app name, as in

In the preceding command, argument1 and argument2 are the command-line arguments
to the app that specify a list of strings (separated by spaces) the execution environment
will pass to the Mainmethod of your app. Such arguments might be used to specify options
(e.g., a file name) to run the app. As you’ll learn in Chapter 8, your app can access its com-
mand-line arguments (via the args parameter) and use them to customize the app.

Additional Comments about Method Main

Apps that do not take command-line arguments may omit the string[] args parameter.
The public keyword may also be omitted. In addition, you can declare Main with return
type int (instead of void) to enable Main to return an error code. A Main method declared
with any one of these headers can be used as the app’s entry point—but you can declare
only one Main method in each class.

Most earlier examples had one class that contained only Main, and some examples had
a second class that was used by Main to create and manipulate objects. Actually, any class can
contain a Main method. In fact, each of our two-class examples could have been imple-
mented as one class. For example, in the app in Figs. 6.9 and 6.10, method Main (lines 6–16
of Fig. 6.10) could have been taken as is and placed in class GradeBook (Fig. 6.9). The app
results would have been identical to those of the two-class version. You can place a Main
method in every class you declare. Some programmers take advantage of this to build a small
test app into each class they declare. However, if you declare more than one Main method
among the classes of your project, you’ll need to indicate to the IDE which one you would
like to be the app’s entry point. You can do this by selecting PROJECT > [ProjectName] Prop-
erties... (where [ProjectName] is the name of your project) and selecting the class containing
the Main method that should be the entry point from the Startup object list box.

7.4 Declaring Methods with Multiple Parameters
We now consider how to write your own methods with multiple parameters. The app in
Fig. 7.3 uses a user-defined method called Maximum to determine and return the largest of

Common Programming Error 7.1
Every constant declared in a class, but not inside a method of the class is implicitly static,
so it’s a syntax error to declare such a constant with keyword static explicitly.

public static void Main(string args[])

AppName argument1 argument2 …

7.4 Declaring Methods with Multiple Parameters 237

three double values. When the app begins execution, the Main method (lines 8–22) exe-
cutes. Line 18 calls method Maximum (declared in lines 25–38) to determine and return the
largest of the three double values. At the end of this section, we’ll discuss the use of oper-
ator + in line 21.

1 // Fig. 7.3: MaximumFinder.cs
2 // User-defined method Maximum.
3 using System;
4
5 public class MaximumFinder
6 {
7 // obtain three floating-point values and determine maximum value
8 public static void Main(string[] args)
9 {

10 // prompt for and input three floating-point values
11 Console.WriteLine("Enter three floating-point values,\n" +
12 " pressing 'Enter' after each one: ");
13 double number1 = Convert.ToDouble(Console.ReadLine());
14 double number2 = Convert.ToDouble(Console.ReadLine());
15 double number3 = Convert.ToDouble(Console.ReadLine());
16
17 // determine the maximum value
18 ;
19
20 // display maximum value
21 Console.WriteLine();
22 } // end Main
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39 } // end class MaximumFinder

Enter three floating-point values,
pressing 'Enter' after each one:

2.22
3.33
1.11
Maximum is: 3.33

Fig. 7.3 | User-defined method Maximum.

double result = Maximum(number1, number2, number3)

"Maximum is: " + result

// returns the maximum of its three double parameters
public static double Maximum(double x, double y, double z)
{

double maximumValue = x; // assume x is the largest to start

// determine whether y is greater than maximumValue
if (y > maximumValue)

maximumValue = y;

// determine whether z is greater than maximumValue
if (z > maximumValue)

maximumValue = z;

return maximumValue;
} // end method Maximum

238 Chapter 7 Methods: A Deeper Look

The public and static Keywords
Method Maximum’s declaration begins with keyword public to indicate that the method is
“available to the public”—it can be called from methods of other classes. The keyword
static enables the Main method (another static method) to call Maximum as shown in
line 18 without qualifying the method name with the class name MaximumFinder—static

methods in the same class can call each other directly. Any other class that uses Maximum
must fully qualify the method name with the class name.

Method Maximum

Consider the declaration of method Maximum (lines 25–38). Line 25 indicates that the
method returns a double value, that the method’s name is Maximum and that the method
requires three double parameters (x, y and z) to accomplish its task. When a method has
more than one parameter, the parameters are specified as a comma-separated list. When
Maximum is called in line 18, the parameter x is initialized with the value of the argument
number1, the parameter y is initialized with the value of the argument number2 and the
parameter z is initialized with the value of the argument number3. There must be one
argument in the method call for each required parameter (sometimes called a formal
parameter) in the method declaration. Also, each argument must be consistent with the
type of the corresponding parameter. For example, a parameter of type double can receive
values like 7.35 (a double), 22 (an int) or –0.03456 (a double), but not strings like
"hello". Section 7.7 discusses the argument types that can be provided in a method call
for each parameter of a simple type.

Logic of Determining the Maximum Value
To determine the maximum value, we begin with the assumption that parameter x con-
tains the largest value, so line 27 declares local variable maximumValue and initializes it with
the value of parameter x. Of course, it’s possible that parameter y or z contains the largest
value, so we must compare each of these values with maximumValue. The if statement at
lines 30–31 determines whether y is greater than maximumValue. If so, line 31 assigns y to
maximumValue. The if statement at lines 34–35 determines whether z is greater than max-
imumValue. If so, line 35 assigns z to maximumValue. At this point, the largest of the three
values resides in maximumValue, so line 37 returns that value to line 18. When program
control returns to the point in the app where Maximum was called, Maximum’s parameters x,
y and z are no longer accessible. Methods can return at most one value; the returned value
can be a value type that contains one or more values (implemented as a struct) or a ref-
erence to an object that contains one or more values.

When to Declare Variables as Fields of a Class
Variable result is a local variable in method Main because it’s declared in the block that
represents the method’s body. Variables should be declared as fields of a class (i.e., as either
instance variables or static variables of the class) only if they’re required for use in more
than one method of the class or if the app should save their values between calls to a given
method.

Common Programming Error 7.2
Declaring method parameters of the same type as double x, y instead of double x,

double y is a syntax error—a type is required for each parameter in the parameter list.

7.4 Declaring Methods with Multiple Parameters 239

Implementing Method Maximum by Reusing Method Math.Max

Recall from Fig. 7.2 that class Math has a Max method that can determine the larger of two
values. The entire body of our maximum method could also be implemented with nested
calls to Math.Max, as follows:

The leftmost call to Math.Max specifies arguments x and Math.Max(y, z). Before any
method can be called, the .NET runtime evaluates all its arguments to determine their val-
ues. If an argument is a method call, the method call must be performed to determine its
return value. So, in the preceding statement, Math.Max(y, z) is evaluated first to deter-
mine the maximum of y and z. Then the result is passed as the second argument to the
other call to Math.Max, which returns the larger of its two arguments. Using Math.Max in
this manner is a good example of software reuse—we find the largest of three values by re-
using Math.Max, which finds the larger of two values. Note how concise this code is com-
pared to lines 27–37 of Fig. 7.3.

Assembling Strings with String Concatenation
C# allows string objects to be created by assembling smaller strings into larger strings
using operator + (or the compound assignment operator +=). This is known as string con-
catenation. When both operands of operator + are string objects, operator + creates a new
string object in which a copy of the characters of the right operand is placed at the end of a
copy of the characters in the left operand. For example, the expression "hello " + "there"

creates the string "hello there" without disturbing the original strings.
In line 21 of Fig. 7.3, the expression "Maximum is: " + result uses operator + with

operands of types string and double. Every value of a simple type in C# has a string
representation. When one of the + operator’s operands is a string, the other is implicitly
converted to a string, then the two are concatenated. In line 21, the double value is implic-
itly converted to its string representation and placed at the end of the string "Maximum
is: ". If there are any trailing zeros in a double value, these will be discarded when the
number is converted to a string. Thus, the number 9.3500 would be represented as 9.35
in the resulting string.

Anything Can Be Converted to a string

For values of simple types used in string concatenation, the values are converted to
strings. If a bool is concatenated with a string, the bool is converted to the string
"True" or "False" (each is capitalized). All objects have a ToString method that returns
a string representation of the object. When an object is concatenated with a string, the
object’s ToString method is called implicitly to obtain the string representation of the
object. If the object is null, an empty string is written.

Outputting strings with Format Items
Line 21 of Fig. 7.3 could also be written using string formatting as

As with string concatenation, using a format item to substitute an object into a string
implicitly calls the object’s ToString method to obtain the object’s string representation.
You’ll learn more about method ToString in Chapter 8.

return Math.Max(x, Math.Max(y, z));

Console.WriteLine("Maximum is: {0}", result);

240 Chapter 7 Methods: A Deeper Look

Breaking a Large string Literal into Smaller strings
When a large string literal is typed into an app’s source code, you can break that string
into several smaller strings and place them on multiple lines for readability. The strings
can be reassembled using either string concatenation or string formatting. We discuss the
details of strings in Chapter 16.

7.5 Notes on Declaring and Using Methods
You’ve seen three ways to call a method:

1. Using a method name by itself to call a method of the same class—such as
Maximum(number1, number2, number3) in line 18 of Fig. 7.3.

2. Using a variable that contains a reference to an object, followed by the member
access (.) operator and the method name to call a non-static method of the ref-
erenced object—such as the method call in line 13 of Fig. 6.10, myGrade-
Book.DisplayMessage(), which calls a method of class GradeBook from the Main
method of GradeBookTest.

3. Using the class name and the member access (.) operator to call a staticmethod
of a class—such as Convert.ToDouble(Console.ReadLine()) in lines 13–15 of
Fig. 7.3 or Math.Sqrt(900.0) in Section 7.3.

There are three ways to return control to the statement that calls a method. If the
method’s return type is void (that is, it does not return a result), control returns when the
method-ending right brace is reached or when the statement

is executed. If the method returns a result, the statement

evaluates the expression, then returns the result (and control) to the caller.

Common Programming Error 7.3
It’s a syntax error to break a string literal across multiple lines in an app. If a string does
not fit on one line, split the string into several smaller strings and use concatenation to
form the desired string.C# also provides so-called verbatim string literals, which are pre-
ceded by the @ character. Such literals can be split over multiple lines and the characters in
the literal, including whitespace, are processed exactly as they appear in the literal.

Common Programming Error 7.4
Confusing the + operator used for string concatenation with the + operator used for addi-
tion can lead to strange results. The + operator is left-associative. For example, if integer
variable y has the value 5, the expression "y + 2 = " + y + 2 results in the string "y + 2 =
52", not "y + 2 = 7", because first the value of y (5) is concatenated with the string "y +
2 = ", then the value 2 is concatenated with the new larger string "y + 2 = 5". The expres-
sion "y + 2 = " + (y + 2) produces the desired result "y + 2 = 7".

return;

return expression;

Common Programming Error 7.5
Declaring a method outside the body of a class declaration or inside the body of another
method is a syntax error.

7.6 Method-Call Stack and Activation Records 241

A static method can call only other static methods of the same class directly (i.e.,
using the method name by itself) and can manipulate only static variables in the same
class directly. To access the class’s non-static members, a static method must use a ref-
erence to an object of the class. Recall that static methods relate to a class as a whole,
whereas non-static methods are associated with a specific instance (object) of the class
and may manipulate the instance variables of that object. Many objects of a class, each
with its own copies of the instance variables, may exist at the same time. Suppose a static
method were to invoke a non-static method directly. How would the method know
which object’s instance variables to manipulate? What would happen if no objects of the
class existed at the time the non-static method was invoked? Thus, C# does not allow a
static method to access non-static members of the same class directly.

7.6 Method-Call Stack and Activation Records
To understand how C# performs method calls, we first need to consider a data structure
(i.e., collection of related data items) known as a stack (we discuss data structures in more
detail in Chapters 18–21). You can think of a stack as analogous to a pile of dishes. When
a dish is placed on the pile, it’s normally placed at the top (referred to as pushing the dish
onto the stack). Similarly, when a dish is removed from the pile, it’s always removed from
the top (referred to as popping the dish off the stack). Stacks are known as last-in, first-
out (LIFO) data structures—the last item pushed (inserted) on the stack is the first item
popped off (removed from) the stack.

When an app calls a method, the called method must know how to return to its caller,
so the return address of the calling method is pushed onto the program-execution stack
(sometimes referred to as the method-call stack). If a series of method calls occurs, the suc-
cessive return addresses are pushed onto the stack in last-in, first-out order so that each
method can return to its caller.

The program-execution stack also contains the memory for the local variables used in
each invocation of a method during an app’s execution. This data, stored as a portion of
the program-execution stack, is known as the activation record or stack frame of the
method call. When a method call is made, the activation record for it is pushed onto the
program-execution stack. When the method returns to its caller, the activation record for
this method call is popped off the stack, and those local variables are no longer known to
the app. If a local variable holding a reference to an object is the only variable in the app
with a reference to that object, when the activation record containing that local variable is
popped off the stack, the object can no longer be accessed by the app and will eventually

Common Programming Error 7.6
Redeclaring a method parameter as a local variable in the method’s body is a compilation
error.

Common Programming Error 7.7
Forgetting to return a value from a method that should return one is a compilation error.
If a return type other than void is specified, the method must use a return statement to
return a value and that value must be consistent with the method’s return type. Returning
a value from a method whose return type has been declared void is a compilation error.

242 Chapter 7 Methods: A Deeper Look

be deleted from memory during “garbage collection.” We’ll discuss garbage collection in
Section 10.8.

Of course, the amount of memory in a computer is finite, so only a certain amount
of memory can be used to store activation records on the program-execution stack. If more
method calls occur than can have their activation records stored on the program-execution
stack, a fatal error known as a stack overflow occurs.

7.7 Argument Promotion and Casting
Another important feature of method calls is argument promotion—implicitly converting
an argument’s value to the type that the method expects to receive (if possible) in its cor-
responding parameter. For example, an app can call Math method Sqrt with an integer ar-
gument even though the method expects to receive a double argument. The statement

correctly evaluates Math.Sqrt(4) and displays the value 2.0. Sqrt’s parameter list causes
C# to convert the int value 4 to the double value 4.0 before passing the value to Sqrt.
Such conversions may lead to compilation errors if C#’s promotion rules are not satisfied.
The promotion rules specify which conversions are allowed—that is, which conversions
can be performed without losing data. In the Sqrt example above, an int is converted to a
double without changing its value. However, converting a double to an int truncates the
fractional part of the double value—thus, part of the value is lost. Also, double variables
can hold values much larger (and much smaller) than int variables, so assigning a double
to an int can cause a loss of information when the double value doesn’t fit in the int.
Converting large integer types to small integer types (e.g., long to int) can also result in
changed values.

Promotion Rules
The promotion rules apply to expressions containing values of two or more simple types
and to simple-type values passed as arguments to methods. Each value is promoted to the
appropriate type in the expression. (Actually, the expression uses a temporary copy of each
value—the types of the original values remain unchanged.) Figure 7.4 lists the simple
types alphabetically and the types to which each can be promoted. Values of all simple
types can also be implicitly converted to type object. We demonstrate such implicit con-
versions in Chapter 19, Data Structures.

Console.WriteLine(Math.Sqrt(4));

Type Conversion types

bool no possible implicit conversions to other simple types

byte ushort, short, uint, int, ulong, long, decimal, float or double

char ushort, int, uint, long, ulong, decimal, float or double

decimal no possible implicit conversions to other simple types

double no possible implicit conversions to other simple types

Fig. 7.4 | Implicit conversions between simple types. (Part 1 of 2.)

7.8 The .NET Framework Class Library 243

Sometimes Explicit Casts Are Required
By default, C# does not allow you to implicitly convert values between simple types if the
target type cannot represent the value of the original type (e.g., the int value 2000000 can-
not be represented as a short, and any floating-point number with digits after its decimal
point cannot be represented in an integer type such as long, int or short). Therefore, to
prevent a compilation error in cases where information may be lost due to an implicit con-
version between simple types, the compiler requires you to use a cast operator to force the
conversion. This enables you to “take control” from the compiler. You essentially say, “I
know this conversion might cause loss of information, but for my purposes here, that’s
fine.” Suppose you create a method Square that calculates the square of an integer and
thus requires an int argument. To call Square with the whole part of a double argument
named doubleValue, you’d write Square((int) doubleValue). This method call explic-
itly casts (converts) the value of doubleValue to an integer for use in method Square.
Thus, if doubleValue’s value is 4.5, the method receives the value 4 and returns 16, not
20.25 (which does, unfortunately, result in the loss of information).

7.8 The .NET Framework Class Library
Many predefined classes are grouped into categories of related classes called namespaces.
Together, these namespaces are referred to as the .NET Framework Class Library.

Throughout the text, using directives allow us to use library classes from the Frame-
work Class Library without specifying their fully qualified names. For example, an app
includes the declaration

in order to use the class names from the System namespace without fully qualifying their
names. This allows you to use the unqualified class name Console, rather than the fully

float double

int long, decimal, float or double

long decimal, float or double

sbyte short, int, long, decimal, float or double

short int, long, decimal, float or double

uint ulong, long, decimal, float or double

ulong decimal, float or double

ushort uint, int, ulong, long, decimal, float or double

Common Programming Error 7.8
Converting a simple-type value to a value of another simple type may change the value if
the promotion is not allowed. For example, converting a floating-point value to an inte-
gral value may introduce truncation errors (loss of the fractional part) in the result.

using System;

Type Conversion types

Fig. 7.4 | Implicit conversions between simple types. (Part 2 of 2.)

244 Chapter 7 Methods: A Deeper Look

qualified class name System.Console, in your code. A strength of C# is the large number
of classes in the namespaces of the .NET Framework Class Library. Some key Framework
Class Library namespaces are described in Fig. 7.5, which represents only a small portion
of the reusable classes in the .NET Framework Class Library.

The .NET Framework Class Library also contains namespaces for complex graphics,
advanced graphical user interfaces, printing, advanced networking, security, database pro-
cessing, multimedia, accessibility (for people with disabilities) and many other capabili-
ties—over 200 namespaces in all.

Namespace Description

System.Windows.Forms Contains the classes required to create and manipulate GUIs.
(Various classes in this namespace are discussed in
Chapter 14, Graphical User Interfaces with Windows Forms:
Part 1, and Chapter 15, Graphical User Interfaces with Win-
dows Forms: Part 2.)

System.Windows.Controls

System.Windows.Input

System.Windows.Media

System.Windows.Shapes

Contain the classes of the Windows Presentation Foundation
for GUIs, 2-D and 3-D graphics, multimedia and animation.
(See Chapter 32, GUI with Windows Presentation Founda-
tion and Chapter 33, WPF Graphics and Multimedia.)

System.Linq Contains the classes that support Language Integrated Query
(LINQ). (See Chapter 9, Introduction to LINQ and the List
Collection, and several other chapters throughout the book.)

System.Data.Entity Contains the classes for manipulating data in databases (i.e.,
organized collections of data), including support for LINQ
to Entities. (See Chapter 22, Databases and LINQ.)

System.IO Contains the classes that enable programs to input and out-
put data. (See Chapter 17, Files and Streams.)

System.Web Contains the classes used for creating and maintaining web
apps, which are accessible over the Internet. (See Chapter 23,
Web App Development with ASP.NET.)

System.Xml Contains the classes for creating and manipulating XML
data. Data can be read from or written to XML files. (See
Chapter 24, XML and LINQ to XML.)

System.Xml.Linq Contains the classes that support Language Integrated Query
(LINQ) for XML documents. (See Chapter 24, XML and
LINQ to XML, and several other chapters throughout the
book.)

System.Collections

System.Collections.Generic

Contain the classes that define data structures for maintain-
ing collections of data. (See Chapter 21, Collections.)

System.Text Contains classes that enable programs to manipulate characters
and strings. (See Chapter 16, Strings and Characters: A Deeper
Look.)

Fig. 7.5 | .NET Framework Class Library namespaces (a subset).

7.9 Case Study: Random-Number Generation 245

Locating Additional Information About a .NET Class’s Methods
You can locate additional information about a .NET class’s methods in the .NET Framework
Class Library reference (msdn.microsoft.com/en-us/library/ms229335.aspx). When you
visit this site, you’ll see an alphabetical listing of all the namespaces in the Framework Class
Library. Locate the namespace and click its link to see an alphabetical listing of all its classes,
with a brief description of each. Click a class’s link to see a more complete description of the
class. Click the Methods link in the left-hand column to see a listing of the class’s methods.

7.9 Case Study: Random-Number Generation
In this and the next section, we develop a nicely structured game-playing app with multi-
ple methods. The app uses most of the control statements presented thus far in the book
and introduces several new programming concepts.

There’s something in the air of a casino that invigorates people—from the high rollers
at the plush mahogany-and-felt craps tables to the quarter poppers at the one-armed ban-
dits. It’s the element of chance, the possibility that luck will convert a pocketful of money
into a mountain of wealth. The element of chance can be introduced in an app via an
object of class Random (of namespace System). Objects of class Random can produce random
byte, int and double values. In the next several examples, we use objects of class Random
to produce random numbers.

Creating a Random Number Generator Object
A new random-number generator object can be created as follows:

The random-number generator object can then be used to generate random byte, int and
double values—we discuss only random int values here.

Generating a Random Integer
Consider the following statement:

Method Next of class Random generates a random int value in the range 0 to
+2,147,483,646, inclusive. If the Next method truly produces values at random, then every
value in that range should have an equal chance (or probability) of being chosen each time
method Next is called. The values returned by Next are actually pseudorandom numbers—
a sequence of values produced by a complex mathematical calculation. The calculation uses
the current time of day (which, of course, changes constantly) to seed the random-number
generator such that each execution of an app yields a different sequence of random values.

Scaling the Range of Random Numbers Produced
The range of values produced directly by method Next often differs from the range of val-
ues required in a particular C# app. For example, an app that simulates coin tossing might

Good Programming Practice 7.1
The online .NET Framework documentation is easy to search and provides many details
about each class. As you learn each class in this book, you should review the class in the
online documentation for additional information.

Random randomNumbers = new Random();

int randomValue = randomNumbers.Next();

246 Chapter 7 Methods: A Deeper Look

require only 0 for “heads” and 1 for “tails.” An app that simulates the rolling of a six-sided
die might require random integers in the range 1–6. A video game that randomly predicts
the next type of spaceship (out of four possibilities) that will fly across the horizon might
require random integers in the range 1–4. For cases like these, class Random provides other
versions of method Next. One receives an int argument and returns a value from 0 up to,
but not including, the argument’s value. For example, you might use the statement

which returns 0, 1, 2, 3, 4 or 5. The argument 6—called the scaling factor—represents the
number of unique values that Next should produce (in this case, six—0, 1, 2, 3, 4 and 5).
This manipulation is called scaling the range of values produced by Random method Next.

Shifting the Range of Random Numbers Produced
Suppose we wanted to simulate a six-sided die that has the numbers 1–6 on its faces, not
0–5. Scaling the range of values alone is not enough. So we shift the range of numbers pro-
duced. We could do this by adding a shifting value—in this case 1—to the result of meth-
od Next, as in

The shifting value (1) specifies the first value in the desired set of random integers. The
preceding statement assigns to face a random integer in the range 1–6.

Combining Shifting and Scaling
The third alternative of method Next provides a more intuitive way to express both shift-
ing and scaling. This method receives two int arguments and returns a value from the first
argument’s value up to, but not including, the second argument’s value. We could use this
method to write a statement equivalent to our previous statement, as in

Rolling a Six-Sided Die
To demonstrate random numbers, let’s develop an app that simulates 20 rolls of a six-sided
die and displays each roll’s value. Figure 7.6 shows two sample outputs, which confirm
that the results of the preceding calculation are integers in the range 1–6 and that each run
of the app can produce a different sequence of random numbers. The using directive (line
3) enables us to use class Random without fully qualifying its name. Line 9 creates the Ran-
dom object randomNumbers to produce random values. Line 16 executes 20 times in a loop
to roll the die. The if statement (lines 21–22) starts a new line of output after every five
numbers, so the results will be presented on multiple lines.

int randomValue = randomNumbers.Next(6);

face = 1 + randomNumbers.Next(6);

face = randomNumbers.Next(1, 7);

1 // Fig. 7.6: RandomIntegers.cs
2 // Shifted and scaled random integers.
3 using System;
4
5 public class RandomIntegers
6 {

Fig. 7.6 | Shifted and scaled random integers. (Part 1 of 2.)

7.9 Case Study: Random-Number Generation 247

Rolling a Six-Sided Die 6,000,000 Times
To show that the numbers produced by Next occur with approximately equal likelihood,
let’s simulate 6,000,000 rolls of a die (Fig. 7.7). Each integer from 1 to 6 should appear
approximately 1,000,000 times.

7 public static void Main(string[] args)
8 {
9

10 int face; // stores each random integer generated
11
12 // loop 20 times
13 for (int counter = 1; counter <= 20; counter++)
14 {
15
16
17
18 Console.Write("{0} ", face); // display generated value
19
20 // if counter is divisible by 5, start a new line of output
21 if (counter % 5 == 0)
22 Console.WriteLine();
23 } // end for
24 } // end Main
25 } // end class RandomIntegers

3 3 3 1 1
2 1 2 4 2
2 3 6 2 5
3 4 6 6 1

6 2 5 1 3
5 2 1 6 5
4 1 6 1 3
3 1 4 3 4

1 // Fig. 7.7: RollDie.cs
2 // Roll a six-sided die 6,000,000 times.
3 using System;
4
5 public class RollDie
6 {
7 public static void Main(string[] args)
8 {
9 Random randomNumbers = new Random(); // random-number generator

10
11 int frequency1 = 0; // count of 1s rolled
12 int frequency2 = 0; // count of 2s rolled

Fig. 7.7 | Roll a six-sided die 6,000,000 times. (Part 1 of 3.)

Fig. 7.6 | Shifted and scaled random integers. (Part 2 of 2.)

Random randomNumbers = new Random(); // random-number generator

// pick random integer from 1 to 6
face = randomNumbers.Next(1, 7);

248 Chapter 7 Methods: A Deeper Look

13 int frequency3 = 0; // count of 3s rolled
14 int frequency4 = 0; // count of 4s rolled
15 int frequency5 = 0; // count of 5s rolled
16 int frequency6 = 0; // count of 6s rolled
17
18 int face; // stores most recently rolled value
19
20 // summarize results of 6,000,000 rolls of a die
21 for (int roll = 1; roll <= 6000000; ++roll)
22 {
23
24
25 // determine roll value 1-6 and increment appropriate counter
26 switch ()
27 {
28 case 1:
29 ++frequency1; // increment the 1s counter
30 break;
31 case 2:
32 ++frequency2; // increment the 2s counter
33 break;
34 case 3:
35 ++frequency3; // increment the 3s counter
36 break;
37 case 4:
38 ++frequency4; // increment the 4s counter
39 break;
40 case 5:
41 ++frequency5; // increment the 5s counter
42 break;
43 case 6:
44 ++frequency6; // increment the 6s counter
45 break;
46 } // end switch
47 } // end for
48
49 Console.WriteLine("Face\tFrequency"); // output headers
50 Console.WriteLine(
51 "1\t{0}\n2\t{1}\n3\t{2}\n4\t{3}\n5\t{4}\n6\t{5}", frequency1,
52 frequency2, frequency3, frequency4, frequency5, frequency6);
53 } // end Main
54 } // end class RollDie

Face Frequency
1 999147
2 1001249
3 999929
4 1000301
5 1000294
6 999080

Fig. 7.7 | Roll a six-sided die 6,000,000 times. (Part 2 of 3.)

face = randomNumbers.Next(1, 7); // number from 1 to 6

face

7.9 Case Study: Random-Number Generation 249

As the two sample outputs show, the values produced by method Next enable the app
to realistically simulate rolling a six-sided die. The app uses nested control statements (the
switch is nested inside the for) to determine the number of times each side of the die
occurred. The for statement (lines 21–47) iterates 6,000,000 times. During each itera-
tion, line 23 produces a random value from 1 to 6. This face value is then used as the
switch expression (line 26) in the switch statement (lines 26–46). Based on the face
value, the switch statement increments one of the six counter variables during each itera-
tion of the loop. (In Section 8.4, we show an elegant way to replace the entire switch state-
ment in this app with a single statement.) The switch statement has no default label
because we have a case label for every possible die value that the expression in line 23 can
produce. Run the app several times and observe the results. You’ll see that every time you
execute this app, it produces different results.

7.9.1 Scaling and Shifting Random Numbers
Previously, we demonstrated the statement

which simulates the rolling of a six-sided die. This statement always assigns to variable
face an integer in the range 1 ≤ face < 7. The width of this range (i.e., the number of
consecutive integers in the range) is 6, and the starting number in the range is 1. Referring
to the preceding statement, we see that the width of the range is determined by the differ-
ence between the two integers passed to Random method Next, and the starting number of
the range is the value of the first argument. We can generalize this result as

where shiftingValue specifies the first number in the desired range of consecutive integers
and scalingFactor specifies how many numbers are in the range.

It’s also possible to choose integers at random from sets of values other than ranges of
consecutive integers. For this purpose, it’s simpler to use the version of the Next method
that takes only one argument. For example, to obtain a random value from the sequence
2, 5, 8, 11 and 14, you could use the statement

In this case, randomNumberGenerator.Next(5) produces values in the range 0–4. Each
value produced is multiplied by 3 to produce a number in the sequence 0, 3, 6, 9 and 12.

Face Frequency
1 1000538
2 1002700
3 1000294
4 997662
5 999507
6 999299

face = randomNumbers.Next(1, 7);

number = randomNumbers.Next(shiftingValue, shiftingValue + scalingFactor);

number = 2 + 3 * randomNumbers.Next(5);

Fig. 7.7 | Roll a six-sided die 6,000,000 times. (Part 3 of 3.)

250 Chapter 7 Methods: A Deeper Look

We then add 2 to that value to shift the range of values and obtain a value from the se-
quence 2, 5, 8, 11 and 14. We can generalize this result as

where shiftingValue specifies the first number in the desired range of values, difference-
BetweenValues represents the difference between consecutive numbers in the sequence and
scalingFactor specifies how many numbers are in the range.

7.9.2 Random-Number Repeatability for Testing and Debugging
As we mentioned earlier in this section, the methods of class Random actually generate
pseudorandom numbers based on complex mathematical calculations. Repeatedly calling
any of Random’s methods produces a sequence of numbers that appears to be random. The
calculation that produces the pseudorandom numbers uses the time of day as a seed value
to change the sequence’s starting point. Each new Random object seeds itself with a value
based on the computer system’s clock at the time the object is created, enabling each exe-
cution of an app to produce a different sequence of random numbers.

When debugging an app, it’s sometimes useful to repeat the same sequence of pseu-
dorandom numbers during each execution of the app. This repeatability enables you to
prove that your app is working for a specific sequence of random numbers before you test
the app with different sequences of random numbers. When repeatability is important,
you can create a Random object as follows:

The seedValue argument (type int) seeds the random-number calculation. If the same
seedValue is used every time, the Random object produces the same sequence of random
numbers.

7.10 Case Study: A Game of Chance; Introducing
Enumerations
One popular game of chance is the dice game known as “craps,” which is played in casinos
and back alleys throughout the world. The rules of the game are straightforward:

You roll two dice. Each die has six faces, which contain one, two, three, four, five and
six spots, respectively. After the dice have come to rest, the sum of the spots on the two
upward faces is calculated. If the sum is 7 or 11 on the first throw, you win. If the sum
is 2, 3 or 12 on the first throw (called “craps”), you lose (i.e., “the house” wins). If the
sum is 4, 5, 6, 8, 9 or 10 on the first throw, that sum becomes your “point.” To win,
you must continue rolling the dice until you “make your point” (i.e., roll that same
point value). You lose by rolling a 7 before making your point.

The app in Fig. 7.8 simulates the game of craps, using methods to define the logic of the
game. The Main method (lines 24–70) calls the static RollDice method (lines 73–85) as
needed to roll the two dice and compute their sum. The four sample outputs show win-
ning on the first roll, losing on the first roll, winning on a subsequent roll and losing on a
subsequent roll, respectively. Variable randomNumbers (line 8) is declared static so it can
be created once during the program’s execution and used in method RollDice.

number = shiftingValue +
differenceBetweenValues * randomNumbers.Next(scalingFactor);

Random randomNumbers = new Random(seedValue);

7.10 Case Study: A Game of Chance; Introducing Enumerations 251

1 // Fig. 7.8: Craps.cs
2 // Craps class simulates the dice game craps.
3 using System;
4
5 public class Craps
6 {
7 // create random-number generator for use in method RollDice
8 private static Random randomNumbers = new Random();
9

10
11
12
13 // enumeration with constants that represent common rolls of the dice
14
15
16
17
18
19
20
21
22
23 // plays one game of craps
24 public static void Main(string[] args)
25 {
26 // gameStatus can contain CONTINUE, WON or LOST
27 Status gameStatus = Status.CONTINUE;
28 int myPoint = 0; // point if no win or loss on first roll
29
30
31
32 // determine game status and point based on first roll
33 switch ()
34 {
35
36
37
38 break;
39
40
41
42
43 break;
44
45
46
47
48 break;
49 } // end switch
50
51 // while game is not complete
52 while () // game not WON or LOST
53 {

Fig. 7.8 | Craps class simulates the dice game craps. (Part 1 of 3.)

// enumeration with constants that represent the game status
private enum Status { CONTINUE, WON, LOST }

private enum DiceNames
{

SNAKE_EYES = 2,
TREY = 3,
SEVEN = 7,
YO_LEVEN = 11,
BOX_CARS = 12

}

int sumOfDice = RollDice(); // first roll of the dice

(DiceNames) sumOfDice

case DiceNames.SEVEN: // win with 7 on first roll
case DiceNames.YO_LEVEN: // win with 11 on first roll

gameStatus = Status.WON;

case DiceNames.SNAKE_EYES: // lose with 2 on first roll
case DiceNames.TREY: // lose with 3 on first roll
case DiceNames.BOX_CARS: // lose with 12 on first roll

gameStatus = Status.LOST;

default: // did not win or lose, so remember point
gameStatus = Status.CONTINUE; // game is not over
myPoint = sumOfDice; // remember the point
Console.WriteLine("Point is {0}", myPoint);

gameStatus == Status.CONTINUE

252 Chapter 7 Methods: A Deeper Look

54
55
56 // determine game status
57 if (sumOfDice == myPoint) // win by making point
58
59 else

60 // lose by rolling 7 before point
61 if ()
62
63 } // end while
64
65 // display won or lost message
66 if ()
67 Console.WriteLine("Player wins");
68 else

69 Console.WriteLine("Player loses");
70 } // end Main
71
72 // roll dice, calculate sum and display results
73
74 {
75 // pick random die values
76 int die1 = randomNumbers.Next(1, 7); // first die roll
77 int die2 = randomNumbers.Next(1, 7); // second die roll
78
79 int sum = die1 + die2; // sum of die values
80
81 // display results of this roll
82 Console.WriteLine("Player rolled {0} + {1} = {2}",
83 die1, die2, sum);
84
85 } // end method RollDice
86 } // end class Craps

Player rolled 2 + 5 = 7
Player wins

Player rolled 2 + 1 = 3
Player loses

Player rolled 2 + 4 = 6
Point is 6
Player rolled 3 + 1 = 4
Player rolled 5 + 5 = 10
Player rolled 6 + 1 = 7
Player loses

Fig. 7.8 | Craps class simulates the dice game craps. (Part 2 of 3.)

sumOfDice = RollDice(); // roll dice again

gameStatus = Status.WON;

sumOfDice == (int) DiceNames.SEVEN

gameStatus = Status.LOST;

gameStatus == Status.WON

public static int RollDice()

return sum; // return sum of dice

7.10 Case Study: A Game of Chance; Introducing Enumerations 253

Method RollDice

In the rules of the game, the player must roll two dice on the first roll and must do the same
on all subsequent rolls. We declare method RollDice (lines 73–85) to roll the dice and com-
pute and display their sum. Method RollDice is declared once, but it’s called from two plac-
es (lines 30 and 54) in method Main, which contains the logic for one complete game of
craps. Method RollDice takes no arguments, so it has an empty parameter list. Each time
it’s called, RollDice returns the sum of the dice, so the return type int is indicated in the
method header (line 73). Although lines 76 and 77 look the same (except for the die names),
they do not necessarily produce the same result. Each of these statements produces a random
value in the range 1–6. Variable randomNumbers (used in lines 76 and 77) is not declared in
the method. Rather it’s declared as a private static variable of the class and initialized in
line 8. This enables us to create one Random object that’s reused in each call to RollDice.

Method Main’s Local Variables
The game is reasonably involved. The player may win or lose on the first roll or may win
or lose on any subsequent roll. Method Main (lines 24–70) uses local variable gameStatus
(line 27) to keep track of the overall game status, local variable myPoint (line 28) to store
the “point” if the player does not win or lose on the first roll and local variable sumOfDice
(line 30) to maintain the sum of the dice for the most recent roll. Variable myPoint is ini-
tialized to 0 to ensure that the app will compile. If you do not initialize myPoint, the com-
piler issues an error, because myPoint is not assigned a value in every case of the switch
statement—thus, the app could try to use myPoint before it’s definitely assigned a value.
By contrast, gameStatus does not require initialization because it’s assigned a value in ev-
ery branch of the switch statement—thus, it’s guaranteed to be initialized before it’s used.
However, as good programming practice, we initialize it anyway.

enum Type Status
Local variable gameStatus is declared to be of a new type called Status, which we declared
in line 11. Type Status is declared as a private member of class Craps, because Status
will be used only in that class. Status is a user-defined type called an enumeration, which
declares a set of constants represented by identifiers. An enumeration is introduced by the
keyword enum and a type name (in this case, Status). As with a class, braces ({ and }) de-

Player rolled 4 + 6 = 10
Point is 10
Player rolled 1 + 3 = 4
Player rolled 1 + 3 = 4
Player rolled 2 + 3 = 5
Player rolled 4 + 4 = 8
Player rolled 6 + 6 = 12
Player rolled 4 + 4 = 8
Player rolled 4 + 5 = 9
Player rolled 2 + 6 = 8
Player rolled 6 + 6 = 12
Player rolled 6 + 4 = 10
Player wins

Fig. 7.8 | Craps class simulates the dice game craps. (Part 3 of 3.)

254 Chapter 7 Methods: A Deeper Look

limit the body of an enum declaration. Inside the braces is a comma-separated list of enu-
meration constants. The enum constant names must be unique, but the value associated
with each constant need not be.

Variables of type Status should be assigned only one of the three constants declared in
the enumeration. When the game is won, the app sets local variable gameStatus to
Status.WON (lines 37 and 58). When the game is lost, the app sets local variable gameStatus
to Status.LOST (lines 42 and 62). Otherwise, the app sets local variable gameStatus to
Status.CONTINUE (line 45) to indicate that the dice must be rolled again.

The First Roll
Line 30 in method Main calls RollDice, which picks two random values from 1 to 6, dis-
plays the value of the first die, the value of the second die and the sum of the dice, and
returns the sum of the dice. Method Main next enters the switch statement at lines 33–
49, which uses the sumOfDice value from line 30 to determine whether the game has been
won or lost, or whether it should continue with another roll.

DiceNames Enumeration
The sums of the dice that would result in a win or loss on the first roll are declared in the
DiceNames enumeration in lines 14–21. These are used in the cases of the switch state-
ment. The identifier names use casino parlance for these sums. Notice that in the Dice-
Names enumeration, a value is explicitly assigned to each identifier name. When the enum
is declared, each constant in the enum declaration is a constant value of type int. If you do
not assign a value to an identifier in the enum declaration, the compiler will do so. If the
first enum constant is unassigned, the compiler gives it the value 0. If any other enum con-
stant is unassigned, the compiler gives it a value one higher than that of the preceding enum
constant. For example, in the Status enumeration, the compiler implicitly assigns 0 to
Status.WON, 1 to Status.CONTINUE and 2 to Status.LOST.

Underlying Type of an enum

You could also declare an enum’s underlying type to be byte, sbyte, short, ushort, int,
uint, long or ulong by writing

where typeName represents one of the integral simple types.

Comparing an Integral Type to an enum Constant
If you need to compare a simple integral type value to the underlying value of an enumer-
ation constant, you must use a cast operator to make the two types match. In the switch
statement at lines 33–49, we use the cast operator to convert the int value in sumOfDice

to type DiceNames and compare it to each of the constants in DiceNames. Lines 35–36 de-

Good Programming Practice 7.2
Using enumeration constants (like Status.WON, Status.LOST and Status.CONTINUE)
rather than literal integer values (such as 0, 1 and 2) can make code easier to read and
maintain.

private enum MyEnum : typeName { Constant1, Constant2, ... }

7.11 Scope of Declarations 255

termine whether the player won on the first roll with SEVEN (7) or YO_LEVEN (11). Lines
39–41 determine whether the player lost on the first roll with SNAKE_EYES (2), TREY (3) or
BOX_CARS (12). After the first roll, if the game is not over, the default case (lines 44–48)
saves sumOfDice in myPoint (line 46) and displays the point (line 47).

Additional Rolls of the Dice
If we’re still trying to “make our point” (i.e., the game is continuing from a prior roll), the
loop in lines 52–63 executes. Line 54 rolls the dice again. If sumOfDice matches myPoint
in line 57, line 58 sets gameStatus to Status.WON, and the loop terminates because the
game is complete. In line 61, we use the cast operator (int) to obtain the underlying val-
ue of DiceNames.SEVEN so that we can compare it to sumOfDice. If sumOfDice is equal to
SEVEN (7), line 62 sets gameStatus to Status.LOST, and the loop terminates because the
game is over. When the game completes, lines 66–69 display a message indicating whether
the player won or lost, and the app terminates.

Summary of the Craps Example
Note the use of the various program-control mechanisms we’ve discussed. The Craps class
uses two methods—Main and RollDice (called twice from Main)—and the switch, while,
if…else and nested if control statements. Also, notice that we use multiple case labels
in the switch statement to execute the same statements for sums of SEVEN and YO_LEVEN
(lines 35–36) and for sums of SNAKE_EYES, TREY and BOX_CARS (lines 39–41). To easily
create a switch statement with all possible values for an enum type, you can use the switch
code snippet. Type switch in the C# code then press Tab twice. If you specify a variable
of an enum type in the switch statement’s expression and press Enter, a case for each enum
constant will be generated automatically.

7.11 Scope of Declarations
You’ve seen declarations of C# entities, such as classes, methods, properties, variables and
parameters. Declarations introduce names that can be used to refer to such C# entities.
The scope of a declaration is the portion of the app that can refer to the declared entity by
its unqualified name. Such an entity is said to be “in scope” for that portion of the app.
This section introduces several important scope issues. The basic scope rules are as follows:

1. The scope of a parameter declaration is the body of the method in which the dec-
laration appears.

2. The scope of a local-variable declaration is from the point at which the declara-
tion appears to the end of the block containing the declaration.

3. The scope of a local-variable declaration that appears in the initialization section
of a for statement’s header is the body of the for statement and the other expres-
sions in the header.

4. The scope of a method, property or field of a class is the entire body of the class.
This enables non-static methods and properties of a class to use any of the
class’s fields, methods and properties, regardless of the order in which they’re de-
clared. Similarly, staticmethods and properties can use any of the staticmem-
bers of the class.

256 Chapter 7 Methods: A Deeper Look

Any block may contain variable declarations. If a local variable or parameter in a method
has the same name as a field, the field is hidden until the block terminates. A compilation
error occurs if a nested block in a method contains a variable with the same name as a local
variable in an outer block of the method. In Chapter 10, we discuss how to access hidden
fields. The app in Fig. 7.9 demonstrates scoping issues with fields and local variables.

Error-Prevention Tip 7.1
Use different names for fields and local variables to help prevent subtle logic errors that
occur when a method is called and a local variable of the method hides a field of the same
name in the class.

1 // Fig. 7.9: Scope.cs
2 // Scope class demonstrates static and local variable scopes.
3 using System;
4
5 public class Scope
6 {
7
8
9

10 // Main creates and initializes local variable x
11 // and calls methods UseLocalVariable and UseStaticVariable
12 public static void Main(string[] args)
13 {
14
15
16 Console.WriteLine("local x in method Main is {0}", x);
17
18 // UseLocalVariable has its own local x
19 UseLocalVariable();
20
21 // UseStaticVariable uses class Scope's static variable x
22 UseStaticVariable();
23
24 // UseLocalVariable reinitializes its own local x
25 UseLocalVariable();
26
27 // class Scope's static variable x retains its value
28 UseStaticVariable();
29
30 Console.WriteLine("\nlocal x in method Main is {0}", x);
31 } // end Main
32
33 // create and initialize local variable x during each call
34 public static void UseLocalVariable()
35 {
36
37
38 Console.WriteLine(
39 "\nlocal x on entering method UseLocalVariable is {0}", x);
40

Fig. 7.9 | Scope class demonstrates static and local variable scopes. (Part 1 of 2.)

// static variable that’s accessible to all methods of this class
private static int x = 1;

int x = 5; // method's local variable x hides static variable x

int x = 25; // initialized each time UseLocalVariable is called

++x; // modifies this method's local variable x

7.11 Scope of Declarations 257

Line 8 declares and initializes the static variable x to 1. This static variable is
hidden in any block (or method) that declares local variable named x. Method Main (lines
12–31) declares local variable x (line 14) and initializes it to 5. This local variable’s value
is output to show that static variable x (whose value is 1) is hidden in method Main. The
app declares two other methods—UseLocalVariable (lines 34–43) and UseStaticVari-
able (lines 46–53)—that each take no arguments and do not return results. Method Main
calls each method twice (lines 19–28). Method UseLocalVariable declares local variable
x (line 36). When UseLocalVariable is first called (line 19), it creates local variable x and
initializes it to 25 (line 36), outputs the value of x (lines 38–39), increments x (line 40)
and outputs the value of x again (lines 41–42). When UseLocalVariable is called a second
time (line 25), it re-creates local variable x and reinitializes it to 25, so the output of each
UseLocalVariable call is identical.

Method UseStaticVariable does not declare any local variables. Therefore, when it
refers to x, static variable x (line 8) of the class is used. When method UseStaticVari-
able is first called (line 22), it outputs the value (1) of static variable x (lines 48–49),
multiplies the static variable x by 10 (line 50) and outputs the value (10) of static vari-
able x again (lines 51–52) before returning. The next time method UseStaticVariable is
called (line 28), the static variable has its modified value, 10, so the method outputs 10,

41 Console.WriteLine(
42 "local x before exiting method UseLocalVariable is {0}", x);
43 } // end method UseLocalVariable
44
45 // modify class Scope's static variable x during each call
46 public static void UseStaticVariable()
47 {
48 Console.WriteLine("\nstatic variable x on entering {0} is {1}",
49 "method UseStaticVariable", x);
50
51 Console.WriteLine("static variable x before exiting {0} is {1}",
52 "method UseStaticVariable", x);
53 } // end method UseStaticVariable
54 } // end class Scope

local x in method Main is 5

local x on entering method UseLocalVariable is 25
local x before exiting method UseLocalVariable is 26

static variable x on entering method UseStaticVariable is 1
static variable x before exiting method UseStaticVariable is 10

local x on entering method UseLocalVariable is 25
local x before exiting method UseLocalVariable is 26

static variable x on entering method UseStaticVariable is 10
static variable x before exiting method UseStaticVariable is 100

local x in method Main is 5

Fig. 7.9 | Scope class demonstrates static and local variable scopes. (Part 2 of 2.)

x *= 10; // modifies class Scope's static variable x

258 Chapter 7 Methods: A Deeper Look

then 100. Finally, in method Main, the app outputs the value of local variable x again (line
30) to show that none of the method calls modified Main’s local variable x, because the
methods all referred to variables named x in other scopes.

7.12 Method Overloading
Methods of the same name can be declared in the same class, as long as they have different
sets of parameters (determined by the number, types and order of the parameters). This
is called method overloading. When an overloaded method is called, the C# compiler se-
lects the appropriate method by examining the number, types and order of the arguments
in the call. Method overloading is commonly used to create several methods with the same
name that perform the same or similar tasks, but on different types or different numbers of
arguments. For example, Math methods Min and Max (summarized in Section 7.3) are
overloaded with 11 versions. These find the minimum and maximum, respectively, of two
values of each of the 11 numeric simple types. Our next example demonstrates declaring
and invoking overloaded methods. You’ll see examples of overloaded constructors in
Chapter 10.

Declaring Overloaded Methods
In class MethodOverload (Fig. 7.10), we include two overloaded versions of a method
called Square—one that calculates the square of an int (and returns an int) and one that
calculates the square of a double (and returns a double). Although these methods have the
same name and similar parameter lists and bodies, you can think of them simply as differ-
ent methods. It may help to think of the method names as “Square of int” and “Square
of double,” respectively.

1 // Fig. 7.10: MethodOverload.cs
2 // Overloaded method declarations.
3 using System;
4
5 public class MethodOverload
6 {
7 // test overloaded square methods
8 public static void Main(string[] args)
9 {

10 Console.WriteLine("Square of integer 7 is {0}",);
11 Console.WriteLine("Square of double 7.5 is {0}",);
12 } // end Main
13
14
15
16
17
18
19
20
21

Fig. 7.10 | Overloaded method declarations. (Part 1 of 2.)

Square(7)
Square(7.5)

// square method with int argument
public static int Square(int intValue)
{

Console.WriteLine("Called square with int argument: {0}",
intValue);

return intValue * intValue;
} // end method Square with int argument

7.12 Method Overloading 259

Line 10 in Main invokes method Square with the argument 7. Literal integer values
are treated as type int, so the method call in line 10 invokes the version of Square at lines
15–20 that specifies an int parameter. Similarly, line 11 invokes method Square with the
argument 7.5. Literal real-number values are treated as type double, so the method call in
line 11 invokes the version of Square at lines 23–28 that specifies a double parameter.
Each method first outputs a line of text to prove that the proper method was called in each
case.

Notice that the overloaded methods in Fig. 7.10 perform the same calculation, but
with two different types. C#’s generics feature provides a mechanism for writing a single
“generic method” that can perform the same tasks as an entire set of overloaded methods.
We discuss generic methods in Chapter 20.

Distinguishing Between Overloaded Methods
The compiler distinguishes overloaded methods by their signature—a combination of the
method’s name and the number, types and order of its parameters. The signature also in-
cludes the way those parameters are passed, which can be modified by the ref and out key-
words (discussed in Section 7.16). If the compiler looked only at method names during
compilation, the code in Fig. 7.10 would be ambiguous—the compiler would not know
how to distinguish between the Square methods (lines 15–20 and 23–28). Internally, the
compiler uses signatures to determine whether a class’s methods are unique in that class.

For example, in Fig. 7.10, the compiler will use the method signatures to distinguish
between the “Square of int” method (the Square method that specifies an int parameter)
and the “Square of double” method (the Square method that specifies a double param-
eter). If Method1’s declaration begins as

then that method will have a different signature than the method declared beginning with

The order of the parameter types is important—the compiler considers the preceding two
Method1 headers to be distinct.

22
23
24
25
26
27
28
29 } // end class MethodOverload

Called square with int argument: 7
Square of integer 7 is 49
Called square with double argument: 7.5
Square of double 7.5 is 56.25

void Method1(int a, float b)

void Method1(float a, int b)

Fig. 7.10 | Overloaded method declarations. (Part 2 of 2.)

// square method with double argument
public static double Square(double doubleValue)
{

Console.WriteLine("Called square with double argument: {0}",
doubleValue);

return doubleValue * doubleValue;
} // end method Square with double argument

260 Chapter 7 Methods: A Deeper Look

Return Types of Overloaded Methods
In discussing the logical names of methods used by the compiler, we did not mention the
return types of the methods. This is because method calls cannot be distinguished by re-
turn type. The app in Fig. 7.11 illustrates the compiler errors generated when two meth-
ods have the same signature but different return types. Overloaded methods can have the
same or different return types if the methods have different parameter lists. Also, overloaded
methods need not have the same number of parameters.

7.13 Optional Parameters
Methods can have optional parameters that allow the calling method to vary the number
of arguments to pass. An optional parameter specifies a default value that’s assigned to the
parameter if the optional argument is omitted.

You can create methods with one or more optional parameters. All optional parameters
must be placed to the right of the method’s non-optional parameters—that is, at the end of the
parameter list.

Common Programming Error 7.9
Declaring overloaded methods with identical parameter lists is a compilation error re-
gardless of whether the return types are different.

1 // Fig. 7.11: MethodOverload.cs
2 // Overloaded methods with identical signatures
3 // cause compilation errors, even if return types are different.
4 public class MethodOverloadError
5 {
6 // declaration of method Square with int argument
7 public int Square(int x)
8 {
9 return x * x;

10 } // end method Square
11
12 // second declaration of method Square with int argument
13 // causes compilation error even though return types are different
14 public double Square(int y)
15 {
16 return y * y;
17 } // end method Square
18 } // end class MethodOverloadError

Fig. 7.11 | Overloaded methods with identical signatures cause compilation errors, even if
return types are different.

Common Programming Error 7.10
Declaring a non-optional parameter to the right of an optional one is a compilation error.

7.13 Optional Parameters 261

When a parameter has a default value, the caller has the option of passing that partic-
ular argument. For example, the method header

specifies an optional second parameter. Any call to Power must pass at least an argument
for the parameter baseValue, or a compilation error occurs. Optionally, a second argu-
ment (for the exponentValue parameter) can be passed to Power. Consider the following
calls to Power:

The first call generates a compilation error because this method requires a minimum of
one argument. The second call is valid because one argument (10) is being passed—the
optional exponentValue is not specified in the method call. The last call is also valid—10

is passed as the required argument and 3 is passed as the optional argument.
In the call that passes only one argument (10), parameter exponentValue defaults to

2, which is the default value specified in the method’s header. Each optional parameter
must specify a default value by using an equal (=) sign followed by the value. For example,
the header for Power sets 2 as exponentValue’s default value.

Figure 7.12 demonstrates an optional parameter. The program calculates the result of
raising a base value to an exponent. Method Power (lines 15–23) specifies that its second
parameter is optional. In method DisplayPowers, lines 10–11 call method Power. Line 10
calls the method without the optional second argument. In this case, the compiler provides
the second argument, 2, using the default value of the optional argument, which is not vis-
ible to you in the call.

public int Power(int baseValue, int exponentValue = 2)

Power()
Power(10)
Power(10, 3)

1 // Fig. 7.12: Power.vb
2 // Optional argument demonstration with method Power.
3 using System;
4
5 class CalculatePowers
6 {
7 // call Power with and without optional arguments
8 public static void Main(string[] args)
9 {

10 Console.WriteLine("Power(10) = {0}",) ;
11 Console.WriteLine("Power(2, 10) = {0}",);
12 } // end Main
13
14 // use iteration to calculate power
15 public int Power(int baseValue,)
16 {
17 int result = 1; // initialize total
18
19 for (int i = 1; i <= exponentValue; i++)
20 result *= baseValue;
21

Fig. 7.12 | Optional argument demonstration with method Power. (Part 1 of 2.)

Power(10)
Power(2, 10)

int exponentValue = 2

262 Chapter 7 Methods: A Deeper Look

7.14 Named Parameters
Normally, when calling a method that has optional parameters, the argument values—in
order—are assigned to the parameters from left to right in the parameter list. Consider a
Time class that stores the time of day in 24-hour clock format as int values representing
the hour (0–23), minute (0–59) and second (0–59). Such a class might provide a SetTime
method with optional parameters like

In the preceding method header, all three of SetTime’s parameters are optional. Assuming
that we have a Time object named t, we can call SetTime as follows:

In the first call, no arguments are specified, so the compiler assigns 0 to each parameter.
In the second call, the compiler assigns the argument, 12, to the first parameter, hour, and
assigns default values of 0 to the minute and second parameters. In the third call, the com-
piler assigns the two arguments, 12 and 30, to the parameters hour and minute, respective-
ly, and assigns the default value 0 to the parameter second. In the last call, the compiler
assigns the three arguments, 12, 30 and 22, to the parameters hour, minute and second,
respectively.

What if you wanted to specify only arguments for the hour and second? You might
think that you could call the method as follows:

Unlike some programming languages, C# doesn’t allow you to skip an argument as shown
in the preceding statement. C# provides a feature called named parameters, which enable
you to call methods that receive optional parameters by providing only the optional argu-
ments you wish to specify. To do so, you explicitly specify the parameter’s name and val-
ue—separated by a colon (:)—in the argument list of the method call. For example, the
preceding statement can be implemented as follows:

In this case, the compiler assigns parameter hour the argument 12 and parameter second
the argument 22. The parameter minute is not specified, so the compiler assigns it the de-
fault value 0. It’s also possible to specify the arguments out of order when using named pa-
rameters. The arguments for the required parameters must always be supplied.

22 return result;
23 } // end method Power
24 } // end class CalculatePowers

Power(10) = 100
Power(2, 10) = 1024

public void SetTime(int hour = 0, int minute = 0, int second = 0)

t.SetTime(); // sets the time to 12:00:00 AM
t.SetTime(12); // sets the time to 12:00:00 PM
t.SetTime(12, 30); // sets the time to 12:30:00 PM
t.SetTime(12, 30, 22); // sets the time to 12:30:22 PM

t.SetTime(12, , 22); // COMPILATION ERROR

t.SetTime(hour: 12, second: 22); // sets the time to 12:00:22

Fig. 7.12 | Optional argument demonstration with method Power. (Part 2 of 2.)

7.15 Recursion 263

7.15 Recursion
The apps we’ve discussed thus far are generally structured as methods that call one another
in a disciplined, hierarchical manner. For some problems, however, it’s useful to have a
method call itself. A recursive method is a method that calls itself, either directly or indi-
rectly through another method.

We consider recursion conceptually first. Then we examine an app containing a recur-
sive method. Recursive problem-solving approaches have a number of elements in
common. When a recursive method is called to solve a problem, it actually is capable of
solving only the simplest case(s), or base case(s). If the method is called with a base case, it
returns a result. If the method is called with a more complex problem, it divides the
problem into two conceptual pieces: a piece that the method knows how to do and a piece
that it does not know how to do. To make recursion feasible, the latter piece must
resemble the original problem, but be a slightly simpler or slightly smaller version of it.
Because this new problem looks like the original problem, the method calls a fresh copy
(or several fresh copies) of itself to work on the smaller problem; this is referred to as a
recursive call and is also called the recursion step. The recursion step normally includes a
return statement, because its result will be combined with the portion of the problem the
method knew how to solve to form a result that will be passed back to the original caller.

The recursion step executes while the original call to the method is still active (i.e.,
while it has not finished executing). The recursion step can result in many more recursive
calls, as the method divides each new subproblem into two conceptual pieces. For the
recursion to terminate eventually, each time the method calls itself with a slightly simpler
version of the original problem, the sequence of smaller and smaller problems must con-
verge on the base case. At that point, the method recognizes the base case and returns a
result to the previous copy of the method. A sequence of returns ensues until the original
method call returns the result to the caller. This process sounds complex compared with
the conventional problem solving we’ve performed to this point.

Recursive Factorial Calculations
As an example of recursion concepts at work, let’s write a recursive app to perform a pop-
ular mathematical calculation. Consider the factorial of a nonnegative integer n, written
n! (and pronounced “n factorial”), which is the product

1! is equal to 1 and 0! is defined to be 1. For example, 5! is the product 5 · 4 · 3 · 2 · 1,
which is equal to 120.

The factorial of an integer, number, greater than or equal to 0 can be calculated itera-
tively (nonrecursively) using the for statement as follows:

A recursive declaration of the factorial method is arrived at by observing the following
relationship:

For example, 5! is clearly equal to 5 · 4!, as is shown by the following equations:

n · (n – 1) · (n – 2) · … · 1

factorial = 1;

for (int counter = number; counter >= 1; --counter)
factorial *= counter;

n! = n · (n – 1)!

264 Chapter 7 Methods: A Deeper Look

The evaluation of 5! would proceed as shown in Fig. 7.13. Figure 7.13(a) shows how
the succession of recursive calls proceeds until 1! is evaluated to be 1, which terminates the
recursion. Figure 7.13(b) shows the values returned from each recursive call to its caller
until the value is calculated and returned.

Figure 7.14 uses recursion to calculate and display the factorials of the integers from
0 to 10. The recursive method Factorial (lines 16–24) first tests to determine whether a
terminating condition (line 19) is true. If number is less than or equal to 1 (the base case),
Factorial returns 1, no further recursion is necessary and the method returns. If number
is greater than 1, line 23 expresses the problem as the product of number and a recursive
call to Factorial evaluating the factorial of number - 1, which is a slightly simpler problem
than the original calculation, Factorial(number).

5! = 5 · 4 · 3 · 2 · 1
5! = 5 · (4 · 3 · 2 · 1)
5! = 5 · (4!)

Fig. 7.13 | Recursive evaluation of 5!.

1 // Fig. 7.14: FactorialTest.cs
2 // Recursive Factorial method.
3 using System;
4
5 public class FactorialTest
6 {
7 public static void Main(string[] args)
8 {

Fig. 7.14 | Recursive Factorial method. (Part 1 of 2.)

(a) Sequence of recursive calls.

5 * 4!

4 * 3!

3 * 2!

2 * 1!

5!

1

(b) Values returned from each recursive call.

Final value = 120

5! = 5 * 24 = 120 is returned

4! = 4 * 6 = 24 is returned

3! = 3 * 2 = 6 is returned

2! = 2 * 1 = 2 is returned

1 returned

5 * 4!

4 * 3!

3 * 2!

2 * 1!

5!

1

7.15 Recursion 265

Method Factorial (lines 16–24) receives a parameter of type long and returns a
result of type long. As you can see in Fig. 7.14, factorial values become large quickly. We
chose type long (which can represent relatively large integers) so that the app could calcu-
late factorials greater than 20!. Unfortunately, the Factorial method produces large
values so quickly that factorial values soon exceed even the maximum value that can be
stored in a long variable. Due to the restrictions on the integral types, variables of type
float, double or decimalmight ultimately be needed to calculate factorials of larger num-
bers. This situation points to a weakness in many programming languages—the languages
are not easily extended to handle the unique requirements of various apps. As you know,
C# allows you to create a type that supports arbitrarily large integers if you wish. For
example, you could create a HugeInteger class (which we ask you to do in Exercise 10.10)
that would enable an app to calculate the factorials of arbitrarily large numbers. You can
also use the new type BigInteger from the .NET Framework’s class library.

9 // calculate the factorials of 0 through 10
10 for (long counter = 0; counter <= 10; ++counter)
11 Console.WriteLine("{0}! = {1}",
12 counter,);
13 } // end Main
14
15 // recursive declaration of method Factorial
16 public static long Factorial(long number)
17 {
18 // base case
19 if (number <= 1)
20 return 1;
21 // recursion step
22 else

23 return number * Factorial(number - 1);
24 } // end method Factorial
25 } // end class FactorialTest

0! = 1
1! = 1
2! = 2
3! = 6
4! = 24
5! = 120
6! = 720
7! = 5040
8! = 40320
9! = 362880
10! = 3628800

Common Programming Error 7.11
Either omitting the base case or writing the recursion step incorrectly so that it does not
converge on the base case will cause infinite recursion, eventually exhausting memory.
This error is analogous to the problem of an infinite loop in an iterative (nonrecursive)
solution.

Fig. 7.14 | Recursive Factorial method. (Part 2 of 2.)

Factorial(counter)

266 Chapter 7 Methods: A Deeper Look

7.16 Passing Arguments: Pass-by-Value vs. Pass-by-
Reference
Two ways to pass arguments to functions in many programming languages are pass-by-
value and pass-by-reference. When an argument is passed by value (the default in C#), a
copy of its value is made and passed to the called function. Changes to the copy do not
affect the original variable’s value in the caller. This prevents the accidental side effects that
so greatly hinder the development of correct and reliable software systems. Each argument
that’s been passed in the programs in this chapter so far has been passed by value. When
an argument is passed by reference, the caller gives the method the ability to access and
modify the caller’s original variable.

To pass an object by reference into a method, simply provide as an argument in the
method call the variable that refers to the object. Then, in the method body, reference the
object using the parameter name. The parameter refers to the original object in memory,
so the called method can access the original object directly.

Previously, we discussed the difference between value types and reference types. A major
difference between them is that value-type variables store values, so specifying a value-type
variable in a method call passes a copy of that variable’s value to the method. Reference-type
variables store references to objects, so specifying a reference-type variable as an argument
passes the method a copy of the actual reference that refers to the object. Even though the
reference itself is passed by value, the method can still use the reference it receives to
interact with—and possibly modify—the original object. Similarly, when returning infor-
mation from a method via a return statement, the method returns a copy of the value
stored in a value-type variable or a copy of the reference stored in a reference-type variable.
When a reference is returned, the calling method can use that reference to interact with
the referenced object.

ref and out Parameters
What if you would like to pass a variable by reference so the called method can modify the
variable’s value? To do this, C# provides keywords ref and out. Applying the ref keyword
to a parameter declaration allows you to pass a variable to a method by reference—the
called method will be able to modify the original variable in the caller. The ref keyword
is used for variables that already have been initialized in the calling method. When a meth-
od call contains an uninitialized variable as an argument to a ref parameter, the compiler
generates an error. Preceding a parameter with keyword out creates an output parameter.
This indicates to the compiler that the argument will be passed into the called method by
reference and that the called method will assign a value to the original variable in the caller.
If the method does not assign a value to the output parameter in every possible path of ex-
ecution, the compiler generates an error. This also prevents the compiler from generating
an error message for an uninitialized variable that’s passed as an argument to a method. A
method can return only one value to its caller via a return statement, but can return many
values by specifying multiple output (ref and/or out) parameters.

Software Engineering Observation 7.3
Pass-by-reference can weaken security, because the called function can corrupt the caller’s
data.

7.16 Passing Arguments: Pass-by-Value vs. Pass-by-Reference 267

You can also pass a reference-type variable by reference, which allows you to modify
it so that it refers to a new object. Passing a reference by reference is a tricky but powerful
technique that we discuss in Section 8.8.

Demonstrating ref, out and Value Parameters
The app in Fig. 7.15 uses the ref and out keywords to manipulate integer values. The
class contains three methods that calculate the square of an integer. Method SquareRef

(lines 37–40) multiplies its parameter x by itself and assigns the new value to x. Square-
Ref’s parameter is declared as ref int, which indicates that the argument passed to this
method must be an integer that’s passed by reference. Because the argument is passed by
reference, the assignment at line 39 modifies the original argument’s value in the caller.

Method SquareOut (lines 44–48) assigns its parameter the value 6 (line 46), then
squares that value. SquareOut’s parameter is declared as out int, which indicates that the
argument passed to this method must be an integer that’s passed by reference and that the
argument does not need to be initialized in advance.

1 // Fig. 7.15: ReferenceAndOutputParameters.cs
2 // Reference, output and value parameters.
3 using System;
4
5 class ReferenceAndOutputParameters
6 {
7 // call methods with reference, output and value parameters
8 public static void Main(string[] args)
9 {

10 int y = 5; // initialize y to 5
11 int z; // declares z, but does not initialize it
12
13 // display original values of y and z
14 Console.WriteLine("Original value of y: {0}", y);
15 Console.WriteLine("Original value of z: uninitialized\n");
16
17
18
19
20
21 // display values of y and z after they’re modified by
22 // methods SquareRef and SquareOut, respectively
23 Console.WriteLine("Value of y after SquareRef: {0}", y);
24 Console.WriteLine("Value of z after SquareOut: {0}\n", z);
25
26 // pass y and z by value
27
28
29
30 // display values of y and z after they’re passed to method Square
31 // to demonstrate that arguments passed by value are not modified
32 Console.WriteLine("Value of y after Square: {0}", y);
33 Console.WriteLine("Value of z after Square: {0}", z);
34 } // end Main

Fig. 7.15 | Reference, output and value parameters. (Part 1 of 2.)

// pass y and z by reference
SquareRef(ref y); // must use keyword ref
SquareOut(out z); // must use keyword out

Square(y);
Square(z);

268 Chapter 7 Methods: A Deeper Look

Method Square (lines 52–55) multiplies its parameter x by itself and assigns the new
value to x. When this method is called, a copy of the argument is passed to the parameter
x. Thus, even though parameter x is modified in the method, the original value in the
caller is not modified.

Method Main (lines 8–34) invokes methods SquareRef, SquareOut and Square. We
begin by initializing variable y to 5 and declaring, but not initializing, variable z. Lines 18–
19 call methods SquareRef and SquareOut. Notice that when you pass a variable to a
method with a reference parameter, you must precede the argument with the same key-
word (ref or out) that was used to declare the reference parameter. Lines 23–24 display
the values of y and z after the calls to SquareRef and SquareOut. Notice that y has been
changed to 25 and z has been set to 36.

Lines 27–28 call method Square with y and z as arguments. In this case, both vari-
ables are passed by value—only copies of their values are passed to Square. As a result, the
values of y and z remain 25 and 36, respectively. Lines 32–33 output the values of y and
z to show that they were not modified.

35
36 // uses reference parameter x to modify caller's variable
37 static void SquareRef()
38 {
39 x = x * x; // squares value of caller's variable
40 } // end method SquareRef
41
42 // uses output parameter x to assign a value
43 // to an uninitialized variable
44 static void SquareOut()
45 {
46 x = 6; // assigns a value to caller's variable
47 x = x * x; // squares value of caller's variable
48 } // end method SquareOut
49
50 // parameter x receives a copy of the value passed as an argument,
51 // so this method cannot modify the caller's variable
52 static void Square()
53 {
54 x = x * x;
55 } // end method Square
56 } // end class ReferenceAndOutputParameters

Original value of y: 5
Original value of z: uninitialized

Value of y after SquareRef: 25
Value of z after SquareOut: 36

Value of y after Square: 25
Value of z after Square: 36

Fig. 7.15 | Reference, output and value parameters. (Part 2 of 2.)

ref int x

out int x

int x

7.17 Wrap-Up 269

7.17 Wrap-Up
In this chapter, we discussed the difference between non-static and staticmethods, and
we showed how to call static methods by preceding the method name with the name of
the class in which it appears and the member access (.) operator. You saw that the Math
class in the .NET Framework Class Library provides many static methods to perform
mathematical calculations. We presented several commonly used Framework Class Li-
brary namespaces. You learned how to use operator + to perform string concatenations.
You also learned how to declare constant values in two ways—with the const keyword and
with enum types. We demonstrated simulation techniques and used class Random to gener-
ate sets of random numbers. We discussed the scope of fields and local variables in a class.
You saw how to overload methods in a class by providing methods with the same name
but different signatures. You learned how to use optional and named parameters. We dis-
cussed how recursive methods call themselves, breaking larger problems into smaller sub-
problems until eventually the original problem is solved. You learned the differences
between value types and reference types with respect to how they’re passed to methods,
and how to use the ref and out keywords to pass arguments by reference.

In Chapter 8, you’ll learn how to maintain lists and tables of data in arrays. You’ll see
a more elegant implementation of the app that rolls a die 6,000,000 times and two
enhanced versions of our GradeBook case study. You’ll also learn how to access an app’s
command-line arguments that are passed to method Main when a console app begins exe-
cution.

Common Programming Error 7.12
The ref and out arguments in a method call must match the parameters specified in the
method declaration; otherwise, a compilation error occurs.

Software Engineering Observation 7.4
By default, C# does not allow you to choose whether to pass each argument by value or by
reference. Value types are passed by value. Objects are not passed to methods; rather, ref-
erences to objects are passed to methods. The references themselves are passed by value.
When a method receives a reference to an object, the method can manipulate the object
directly, but the reference value cannot be changed to refer to a new object. In Section 8.8,
you’ll see that references also can be passed by reference.

Summary
Section 7.1 Introduction
• Experience has shown that the best way to develop and maintain a large app is to construct it

from small, simple pieces. This technique is called divide and conquer.

Section 7.2 Packaging Code in C#
• Three common ways of packaging code are methods, classes and namespaces.

• Methods allow you to modularize an app by separating its tasks into self-contained units.

• Dividing an app into meaningful methods makes it easier to debug and maintain.

270 Chapter 7 Methods: A Deeper Look

Section 7.3 static Methods, static Variables and Class Math
• You can call any static method by specifying the name of the class in which it’s declared, fol-

lowed by the member access (.) operator and the method name, as in

ClassName.MethodName(arguments)

• Method arguments may be constants, variables or expressions.

• A constant is declared with the keyword const—its value cannot be changed after the constant
is declared.

• Math.PI (3.14159265358979323846) is the ratio of a circle’s circumference to its diameter.
Math.E (2.7182818284590452354) is the base value for natural logarithms.

• When each object of a class maintains its own copy of an attribute, each object (instance) of the
class has a separate instance of the variable. When objects of a class containing static variables
are created, all objects of that class share one copy of the class’s static variables.

• Together the static variables and instance variables represent the fields of a class.

• When you execute an app, you can specify command-line arguments. The execution environ-
ment will pass these arguments as strings to the Main method of your app.

• If you declare more than one Main method among all the classes of your project, you’ll need to
indicate which one you would like to be the app’s entry point. You can do this by clicking the
menu PROJECT > [ProjectName] Properties... and selecting the class containing the Main method
that should be the entry point from the Startup object list box.

Section 7.4 Declaring Methods with Multiple Parameters
• Multiple parameters are specified as a comma-separated list.

• When a method is called, each parameter is initialized with the value of the corresponding argu-
ment. There must be one argument in the method call for each required parameter in the method
declaration. Each argument must be consistent with the type of the corresponding parameter.

• When program control returns to the point in the app where a method was called, the method’s
parameters are no longer accessible.

• Methods can return at most one value; the returned value can be a value type that contains many
values (implemented as a struct) or a reference to an object that contains many values.

• C# allows string objects to be created by assembling smaller strings into larger strings using
operator +. This is known as string concatenation.

• Every value of a simple type in C# has a string representation. When one of the + operator’s
operands is a string, the other is implicitly converted to a string, then the two are concatenated.

• All objects have a ToString method that returns a string representation of the object. When an
object is concatenated with a string, the object’s ToString method is implicitly called to obtain
the string representation of the object.

Section 7.5 Notes on Declaring and Using Methods
• You’ve seen three ways to call a method—using a method name by itself to call another method

of the same class; using a variable that contains a reference to an object, followed by the member
access (.) operator and the method name to call a non-static method of the referenced object;
and using the class name and the member access (.) operator to call a static method of a class.

• A static method can call only other static methods of the same class directly and can manip-
ulate only static variables in the same class directly.

• There are three ways to return control to the statement that calls a method. If the method doesn’t
return a result, control returns when the method-ending right brace is reached or the statement

Summary 271

return;

is executed. If the method returns a result, the statement

return expression;

evaluates the expression, then returns the result to the caller.

Section 7.6 Method-Call Stack and Activation Records
• Stacks are known as last-in, first-out (LIFO) data structures—the last item pushed (inserted) on

the stack is the first item popped off (removed from) the stack.

• When an app calls a method, the called method must know how to return to its caller, so the
return address of the calling method is pushed onto the program-execution stack. If a series of
method calls occurs, the successive return addresses are pushed onto the stack in last-in, first-out
order so that each method can return to its caller.

• The program-execution stack also contains the memory for the local variables used in each invo-
cation of a method during an app’s execution. This data, stored as a portion of the program-ex-
ecution stack, is known as the activation record or stack frame of the method call.

• If a local variable holding a reference to an object is the only variable in the app with a reference
to that object, when the activation record containing that local variable is popped off the stack,
the object will eventually be deleted from memory during “garbage collection.”

• The amount of memory in a computer is finite. If more method calls occur than can have their ac-
tivation records stored on the program-execution stack, a fatal error called a stack overflow occurs.

Section 7.7 Argument Promotion and Casting
• Another important feature of method calls is argument promotion—implicitly converting an ar-

gument’s value to the type that the method expects to receive in its corresponding parameter.

• The argument-promotion rules apply to expressions containing values of two or more simple
types and to simple-type values passed as arguments to methods.

• In cases where information may be lost due to conversion between simple types, the compiler
requires you to use a cast operator to explicitly force the conversion.

Section 7.8 The .NET Framework Class Library
• Many predefined classes are grouped into categories of related classes called namespaces. Togeth-

er, these namespaces are referred to as the .NET Framework Class Library.

Section 7.9 Case Study: Random-Number Generation
• Random method Next generates a random int value in the range 0 to +2,147,483,646, inclusive.

• Class Random provides other versions of method Next. One receives an int and returns a value
from 0 up to, but not including, the argument’s value. The other receives two ints and returns
a value from the first argument’s value up to, but not including, the second argument’s value.

• The methods of class Random actually generate pseudorandom numbers based on complex math-
ematical calculations. The calculation that produces the pseudorandom numbers uses the time
of day as a seed value to change the sequence’s starting point.

• If the same seed value is used every time, the Random object produces the same sequence of ran-
dom numbers. Class Random’s constructor can receive the seed value as an argument.

Section 7.10 Case Study: A Game of Chance; Introducing Enumerations
• An enumeration is introduced by the keyword enum and a type name. Braces delimit the body of

an enum declaration. Inside the braces is a comma-separated list of enumeration constants.

272 Chapter 7 Methods: A Deeper Look

• Variables of an enum type should be assigned only constants of that enum type.

• When an enum is declared, each constant in the enum declaration is a constant value of type int.
If you do not assign a value to an identifier in the enum declaration, the compiler will do so. If
the first enum constant is unassigned, the compiler gives it the value 0. If any other enum constant
is unassigned, the compiler gives it a value equal to one more than the value of the preceding enum
constant. The enum constant names must be unique, but their underlying values need not be.

• If you need to compare a simple integral type value to the underlying value of an enumeration
constant, you must use a cast operator to make the two types match.

Section 7.11 Scope of Declarations
• The scope of a declaration is the portion of the app that can refer to the declared entity by its

unqualified name.

• The scope of a parameter declaration is the body of the method in which the declaration appears.

• A local variable’s scope is from the point at which the declaration appears to the end of that block.

• The scope of a local-variable declaration that appears in the initialization section of a for state-
ment’s header is the body of the for statement and the other expressions in the header.

• The scope of a method, property or field of a class is the entire body of the class.

• Any block may contain variable declarations. If a local variable or parameter in a method has the
same name as a field, the field is hidden until the block terminates execution.

Section 7.12 Method Overloading
• Methods of the same name can be declared in the same class, as long as they have different sets

of parameters. This is called method overloading. When an overloaded method is called, the C#
compiler selects the appropriate method by examining the number, types and order of the argu-
ments in the call.

• The compiler distinguishes overloaded methods by their signature—a combination of the meth-
od’s name and the number, types and order of its parameters. The signature also includes the way
those parameters are passed, which can be modified by the ref and out keywords.

• The compiler will generate an error when two methods have the same signature but different re-
turn types. Overloaded methods can have the same or different return types if the methods have
different parameter lists.

Section 7.13 Optional Parameters
• Methods can have optional parameters, which allow the calling method to vary the number of

arguments to pass. An optional parameter specifies a default value that’s assigned to the param-
eter if the optional argument is omitted.

• Methods can have one or more optional parameters. All optional parameters must be placed to
the right of the method’s non-optional parameters.

• When a parameter has a default value, the caller has the option of passing that particular argument.

Section 7.14 Named Parameters
• Normally, when calling a method that has optional parameters, the argument values—in order—

are assigned to the parameters from left to right in the parameter list.

• C# provides a feature called named parameters, which enable you to call methods that receive
optional parameters by providing only the optional arguments you wish to specify. To do so, you
explicitly specify the parameter’s name and value—separated by a colon (:)—in the argument
list of the method call.

Terminology 273

Section 7.15 Recursion
• A recursive method calls itself, either directly or indirectly through another method.

• When a recursive method is called to solve a problem, the method actually is capable of solving
only the simplest case(s), or base case(s). If the method is called with a base case, the method re-
turns a result.

• If the method is called with a more complex problem, the method divides the problem into two
conceptual pieces: a piece that the method knows how to do and a piece that it does not know
how to do. Because this new problem looks like the original problem, the method calls a fresh
copy of itself to work on the smaller problem; this procedure is referred to as a recursive call and
is also called the recursion step.

• A recursive declaration of the factorial method is arrived at by observing the relationship:

n! = n · (n – 1)!

Section 7.16 Passing Arguments: Pass-by-Value vs. Pass-by-Reference
• Two ways to pass arguments to functions in many programming languages are pass-by-value and

pass-by-reference.

• When an argument is passed by value (the default), a copy of the argument’s value is passed to
the called function. Changes to the copy do not affect the original variable’s value in the caller.

• When an argument is passed by reference, the caller gives the method the ability to access and
modify the caller’s original data directly.

• Value-type variables store values, so specifying a value-type variable in a method call passes a copy
of that variable’s value to the method. Reference-type variables store references to objects, so
specifying a reference-type variable as an argument passes the method a copy of the actual refer-
ence that refers to the object.

• When returning information from a method via a return statement, the method returns a copy
of the value stored in a value-type variable or a copy of the reference stored in a reference-type
variable.

• C# provides the keywords ref and out to pass variables by reference.

• A ref parameter indicates that an argument will be passed to the method by reference—the
called method will be able to modify the original variable in the caller.

• An out parameter indicates that a possibly uninitialized variable will be passed into the method
by reference and that the called method will assign a value to the original variable in the caller.

• A method can return only one value to its caller via a return statement, but can return many val-
ues by specifying multiple output (ref and/or out) parameters.

• When a variable is passed to a method with a reference parameter, you must precede the variable
with the same keyword (ref or out) that was used to declare the reference parameter.

Terminology
activation record
argument promotion
base case in recursion
block
command-line argument
const keyword
constant
default value

divide-and-conquer approach
element of chance
entry point of an app
enum keyword
enumeration
enumeration constant
field of a class
formal parameter

274 Chapter 7 Methods: A Deeper Look

hierarchical boss-method/worker-method
relationship

implicit conversion
infinite recursion
last-in, first-out (LIFO) data structure
local variable
Math.PI constant
Math.E constant
method-call stack
method overloading
modularizing an app with methods
named parameter
namespace
Next method of class Random
optional parameter
out keyword
output parameter
overloaded method
parameter list
pass by reference
pass by value
pop data from a stack
program-execution stack
promotion rules

push data onto a stack
pseudorandom number
Random class
random numbers
ref keyword
recursion
recursion step
recursive call
recursive method
reusable software components
scaling factor (with random numbers)
scope of a declaration
seed value (with random numbers)
shift a range (with random numbers)
shifting value (with random numbers)
signature of a method
simulation
simple type promotions
stack
stack frame
stack overflow
string concatenation
unqualified class name
user-defined method

Self-Review Exercises
7.1 Fill in the blanks in each of the following statements:

a) A method is invoked with a(n) .
b) A variable known only within the method in which it’s declared is called a(n) .
c) The statement in a called method can be used to pass the value of an expres-

sion back to the calling method.
d) The keyword indicates that a method does not return a value.
e) Data can be added to or removed from only the of a stack.
f) Stacks are known as data structures—the last item pushed (inserted) on the

stack is the first item popped off (removed from) the stack.
g) The three ways to return control from a called method to a caller are ,

and .
h) An object of class produces pseudorandom numbers.
i) The program-execution stack contains the memory for local variables on each invoca-

tion of a method during an app’s execution. This data, stored as a portion of the pro-
gram-execution stack, is known as the or of the method call.

j) If there are more method calls than can be stored on the program execution stack, an
error known as a(n) occurs.

k) The of a declaration is the portion of an app that can refer to the entity in the
declaration by its unqualified name.

l) It’s possible to have several methods with the same name that each operate on different
types or numbers of arguments. This feature is called method .

m) The program-execution stack is also referred to as the stack.
n) A method that calls itself either directly or indirectly is a(n) method.

Self-Review Exercises 275

o) A recursive method typically has two components: one that provides a means for the
recursion to terminate by testing for a(n) case and one that expresses the prob-
lem as a recursive call for a slightly simpler problem than does the original call.

7.2 For the class Craps in Fig. 7.8, state the scope of each of the following entities:
a) the variable randomNumbers.
b) the variable die1.
c) the method RollDice.
d) the method Main.
e) the variable sumOfDice.

7.3 Write an app that tests whether the examples of the Math class method calls shown in
Fig. 7.2 actually produce the indicated results.

7.4 Give the method header for each of the following methods:
a) Method Hypotenuse, which takes two double-precision, floating-point arguments

side1 and side2 and returns a double-precision, floating-point result.
b) Method Smallest, which takes three integers x, y and z and returns an integer.
c) Method Instructions, which does not take any arguments and does not return a value.

[Note: Such methods are commonly used to display instructions to a user.]
d) Method IntToDouble, which takes integer argument number and returns a double value.

7.5 Find the error in each of the following code segments. Explain how to correct the error.
a) void G()

{

Console.WriteLine("Inside method G");

void H()

{

Console.WriteLine("Inside method H");

}

}

b) int Sum(int x, int y)

{

int result;

result = x + y;

}

c) void F(float a);

{

float a;

Console.WriteLine(a);

}

d) void Product()

{

int a = 6, b = 5, c = 4, result;

result = a * b * c;

Console.WriteLine("Result is " + result);

return result;

}

7.6 Write a complete C# app to prompt the user for the double radius of a sphere, and call
method SphereVolume to calculate and display the volume of the sphere. Use the following state-
ment to calculate the volume:

double volume = (4.0 / 3.0) * Math.PI * Math.Pow(radius, 3)

276 Chapter 7 Methods: A Deeper Look

Answers to Self-Review Exercises
7.1 a) method call. b) local variable. c) return. d) void. e) top. f) last-in-first-out (LIFO).
g) return; or return expression; or encountering the closing right brace of a method. h) Random.
i) activation record, stack frame. j) stack overflow. k) scope. l) overloading. m) method call.
n) recursive. o) base.

7.2 a) class body. b) block that defines method RollDice’s body. c) class body. d) class body.
e) block that defines method Main’s body.

7.3 The following solution demonstrates the Math class methods in Fig. 7.2:

1 // Exercise 7.3 Solution: MathTest.cs
2 // Testing the Math class methods.
3 using System;
4
5 public class MathTest
6 {
7 public static void Main(string[] args)
8 {
9 Console.WriteLine("Math.Abs(23.7) = {0}", Math.Abs(23.7));

10 Console.WriteLine("Math.Abs(0.0) = {0}", Math.Abs(0.0));
11 Console.WriteLine("Math.Abs(-23.7) = {0}", Math.Abs(-23.7));
12 Console.WriteLine("Math.Ceiling(9.2) = {0}",
13 Math.Ceiling(9.2));
14 Console.WriteLine("Math.Ceiling(-9.8) = {0}",
15 Math.Ceiling(-9.8));
16 Console.WriteLine("Math.Cos(0.0) = {0}", Math.Cos(0.0));
17 Console.WriteLine("Math.Exp(1.0) = {0}", Math.Exp(1.0));
18 Console.WriteLine("Math.Exp(2.0) = {0}", Math.Exp(2.0));
19 Console.WriteLine("Math.Floor(9.2) = {0}", Math.Floor(9.2));
20 Console.WriteLine("Math.Floor(-9.8) = {0}",
21 Math.Floor(-9.8));
22 Console.WriteLine("Math.Log(Math.E) = {0}",
23 Math.Log(Math.E));
24 Console.WriteLine("Math.Log(Math.E * Math.E) = {0}",
25 Math.Log(Math.E * Math.E));
26 Console.WriteLine("Math.Max(2.3, 12.7) = {0}",
27 Math.Max(2.3, 12.7));
28 Console.WriteLine("Math.Max(-2.3, -12.7) = {0}",
29 Math.Max(-2.3, -12.7));
30 Console.WriteLine("Math.Min(2.3, 12.7) = {0}",
31 Math.Min(2.3, 12.7));
32 Console.WriteLine("Math.Min(-2.3, -12.7) = {0}",
33 Math.Min(-2.3, -12.7));
34 Console.WriteLine("Math.Pow(2.0, 7.0) = {0}",
35 Math.Pow(2.0, 7.0));
36 Console.WriteLine("Math.Pow(9.0, 0.5) = {0}",
37 Math.Pow(9.0, 0.5));
38 Console.WriteLine("Math.Sin(0.0) = {0}", Math.Sin(0.0));
39 Console.WriteLine("Math.Sqrt(900.0) = {0}",
40 Math.Sqrt(900.0));
41 Console.WriteLine("Math.Tan(0.0) = {0}", Math.Tan(0.0));
42 } // end Main
43 } // end class MathTest

Math.Abs(23.7) = 23.7
Math.Abs(0.0) = 0
Math.Abs(-23.7) = 23.7

Answers to Self-Review Exercises 277

7.4 a) double Hypotenuse(double side1, double side2)

b) int Smallest(int x, int y, int z)

c) void Instructions()

d) double IntToDouble(int number)

7.5 a) Error: Method H is declared within method G.
Correction: Move the declaration of H outside the declaration of G.

b) Error: The method is supposed to return an integer, but does not.
Correction: Delete variable result and place the statement

return x + y;

in the method, or add the following statement at the end of the method body:
return result;

c) Error: The semicolon after the right parenthesis of the parameter list is incorrect, and
the parameter a should not be redeclared in the method.
Correction: Delete the semicolon after the right parenthesis of the parameter list, and de-
lete the declaration float a;.

d) Error: The method returns a value when it’s not supposed to.
Correction: Change the return type from void to int.

7.6 The following solution calculates the volume of a sphere, using the radius entered by the user:

Math.Ceiling(9.2) = 10
Math.Ceiling(-9.8) = -9
Math.Cos(0.0) = 1
Math.Exp(1.0) = 2.71828182845905
Math.Exp(2.0) = 7.38905609893065
Math.Floor(9.2) = 9
Math.Floor(-9.8) = -10
Math.Log(Math.E) = 1
Math.Log(Math.E * Math.E) = 2
Math.Max(2.3, 12.7) = 12.7
Math.Max(-2.3, -12.7) = -2.3
Math.Min(2.3, 12.7) = 2.3
Math.Min(-2.3, -12.7) = -12.7
Math.Pow(2.0, 7.0) = 128
Math.Pow(9.0, 0.5) = 3
Math.Sin(0.0) = 0
Math.Sqrt(900.0) = 30
Math.Tan(0.0) = 0

1 // Exercise 7.6 Solution: Sphere.cs
2 // Calculate the volume of a sphere.
3 using System;
4
5 public class Sphere
6 {
7 // obtain radius from user and display volume of sphere
8 public static void Main(string[] args)
9 {

10 Console.Write("Enter radius of sphere: ");
11 double radius = Convert.ToDouble(Console.ReadLine());
12
13 Console.WriteLine("Volume is {0:F3}", SphereVolume(radius));
14 } // end Main
15
16 // calculate and return sphere volume
17 public static double SphereVolume(double radius)
18 {

278 Chapter 7 Methods: A Deeper Look

Exercises
7.7 What is the value of x after each of the following statements is executed?

a) x = Math.Abs(7.5);

b) x = Math.Floor(7.5);

c) x = Math.Abs(0.0);

d) x = Math.Ceiling(0.0);

e) x = Math.Abs(-6.4);

f) x = Math.Ceiling(-6.4);

g) x = Math.Ceiling(-Math.Abs(-8 + Math.Floor(-5.5)));

7.8 (Parking Charges) A parking garage charges a $2.00 minimum fee to park for up to three
hours. The garage charges an additional $0.50 per hour for each hour or part thereof in excess of three
hours. The maximum charge for any given 24-hour period is $10.00. Assume that no car parks for
longer than 24 hours at a time. Write an app that calculates and displays the parking charges for
each customer who parked in the garage yesterday. You should enter the hours parked for each cus-
tomer. The app should display the charge for the current customer and should calculate and display
the running total of yesterday’s receipts. The app should use method CalculateCharges to deter-
mine the charge for each customer.

7.9 (Rounding to Nearest Integer) An app of method Math.Floor is rounding a value to the
nearest integer. The statement

y = Math.Floor(x + 0.5);

will round the number x to the nearest integer and assign the result to y. Write an app that reads
double values and uses the preceding statement to round each of the numbers to the nearest inte-
ger. For each number processed, display both the original number and the rounded number.

7.10 (Rounding to a Specific Decimal Place) Math.Floor may be used to round a number to a
specific decimal place. The statement

y = Math.Floor(x * 10 + 0.5) / 10;

rounds x to the tenths position (i.e., the first position to the right of the decimal point). The state-
ment

y = Math.Floor(x * 100 + 0.5) / 100;

rounds x to the hundredths position (i.e., the second position to the right of the decimal point).
Write an app that defines four methods for rounding a number x in various ways:

a) RoundToInteger(number)

b) RoundToTenths(number)

c) RoundToHundredths(number)

d) RoundToThousandths(number)

For each value read, your app should display the original value, the number rounded to the nearest
integer, the number rounded to the nearest tenth, the number rounded to the nearest hundredth
and the number rounded to the nearest thousandth.

19 double volume = (4.0 / 3.0) * Math.PI * Math.Pow(radius, 3);
20 return volume;
21 } // end method SphereVolume
22 } // end class Sphere

Enter radius of sphere: 4
Volume is 268.083

Exercises 279

7.11 Answer each of the following questions:
a) What does it mean to choose numbers “at random”?
b) Why is the Random class useful for simulating games of chance?
c) Why is it often necessary to scale or shift the values produced by a Random object?
d) Why is computerized simulation of real-world situations a useful technique?

7.12 Write statements that assign random integers to the variable n in the following ranges. As-
sume Random randomNumbers = new Random() has been defined and use the two-parameter version
of the method Random.Next.

a) 1 ≤ n ≤2
b) 1 ≤ n ≤100
c) 0 ≤ n ≤9
d) 1000 ≤ n ≤1112
e) –1 ≤ n ≤1
f) –3 ≤ n ≤11

7.13 For each of the following sets of integers, write a single statement that will display a number
at random from the set. Assume Random randomNumbers = new Random() has been defined and use
the one-parameter version of method Random.Next.

a) 2, 4, 6, 8, 10.
b) 3, 5, 7, 9, 11.
c) 6, 10, 14, 18, 22.

7.14 (Exponentiation) Write a method IntegerPower(base, exponent) that returns the value
of

base exponent

For example, IntegerPower(3, 4) calculates 34 (or 3 * 3 * 3 * 3). Assume that exponent is a posi-
tive integer and that base is an integer. Method IntegerPower should use a for or while loop to
control the calculation. Do not use any Math-library methods. Incorporate this method into an app
that reads integer values for base and exponent and performs the calculation with the Inte-

gerPower method.

7.15 (Hypotenuse of a Right Triangle) Write method Hypotenuse that calculates the length of
the hypotenuse of a right triangle when the lengths of the other two sides are given. The method
should take two arguments of type double and return the hypotenuse as a double. Incorporate this
method into an app that reads values for side1 and side2 and performs the calculation with the
Hypotenuse method. Determine the length of the hypotenuse for each of the triangles in Fig. 7.16.

7.16 (Multiples) Write method Multiple that determines, for a pair of integers, whether the sec-
ond integer is a multiple of the first. The method should take two integer arguments and return true
if the second is a multiple of the first and false otherwise. Incorporate this method into an app that
inputs a series of pairs of integers (one pair at a time) and determines whether the second value in
each pair is a multiple of the first.

Triangle Side 1 Side 2

1 3.0 4.0

2 5.0 12.0

3 8.0 15.0

Fig. 7.16 | Values for the sides of triangles in Exercise 7.15.

280 Chapter 7 Methods: A Deeper Look

7.17 (Even or Odd) Write method IsEven that uses the remainder operator (%) to determine
whether an integer is even. The method should take an integer argument and return true if the in-
teger is even and false otherwise. Incorporate this method into an app that inputs a sequence of
integers (one at a time) and determines whether each is even or odd.

7.18 (Displaying a Square of Asterisks) Write method SquareOfAsterisks that displays a solid
square (the same number of rows and columns) of asterisks whose side length is specified in integer
parameter side. For example, if side is 4, the method should display

Incorporate this method into an app that reads an integer value for side from the user and outputs
the asterisks with the SquareOfAsterisks method.

7.19 (Displaying a Square of Any Character) Modify the method created in Exercise 7.18 to
form the square out of whatever character is contained in character parameter FillCharacter. Thus,
if side is 5 and FillCharacter is '#', the method should display

#####
#####
#####
#####
#####

[Hint: Use the expression Convert.ToChar(Console.Read()) to read a character from the user.]

7.20 (Circle Area) Write an app that prompts the user for the radius of a circle and uses method
CircleArea to calculate the area of the circle.

7.21 (Separating Digits) Write code segments that accomplish each of the following tasks:
a) Calculate the integer part of the quotient when integer a is divided by integer b.
b) Calculate the integer remainder when integer a is divided by integer b.
c) Use the app pieces developed in parts (a) and (b) to write a method DisplayDigits that

receives an integer between 1 and 99999 and displays it as a sequence of digits, separating
each pair of digits by two spaces. For example, the integer 4562 should appear as:
4 5 6 2.

d) Incorporate the method developed in part (c) into an app that inputs an integer and
calls DisplayDigits by passing the method the integer entered. Display the results.

7.22 (Temperature Conversions) Implement the following integer methods:
a) Method Celsius returns the Celsius equivalent of a Fahrenheit temperature, using the

calculation

c = 5.0 / 9.0 * (f - 32);

b) Method Fahrenheit returns the Fahrenheit equivalent of a Celsius temperature, using
the calculation

f = 9.0 / 5.0 * c + 32;

c) Use the methods from parts (a) and (b) to write an app that enables the user either to
enter a Fahrenheit temperature and display the Celsius equivalent or to enter a Celsius
temperature and display the Fahrenheit equivalent.

7.23 (Find the Minimum) Write a method Minimum3 that returns the smallest of three floating-
point numbers. Use the Math.Min method to implement Minimum3. Incorporate the method into an
app that reads three values from the user, determines the smallest value and displays the result.

Exercises 281

7.24 (Perfect Numbers) An integer number is said to be a perfect number if its factors, including
1 (but not the number itself), sum to the number. For example, 6 is a perfect number, because 6 =
1 + 2 + 3. Write method Perfect that determines whether parameter value is a perfect number. Use
this method in an app that determines and displays all the perfect numbers between 2 and 1000.
Display the factors of each perfect number to confirm that the number is indeed perfect.

7.25 (Prime Numbers) An integer is said to be prime if it’s greater than 1 and divisible by only 1
and itself. For example, 2, 3, 5 and 7 are prime, but 4, 6, 8 and 9 are not.

a) Write a method that determines whether a number is prime.
b) Use this method in an app that displays all the prime numbers less than 10,000.
c) Initially, you might think that n/2 is the upper limit for which you must test to see

whether a number is prime, but you need only go as high as the square root of n. Rewrite
the app, and run it both ways.

7.26 (Reversing Digits) Write a method that takes an integer value and returns the number with
its digits reversed. For example, given the number 7631, the method should return 1367. Incorpo-
rate the method into an app that reads a value from the user and displays the result.

7.27 (Greatest Common Divisor) The greatest common divisor (GCD) of two integers is the largest
integer that evenly divides each of the two numbers. Write method Gcd that returns the greatest
common divisor of two integers. Incorporate the method into an app that reads two values from the
user and displays the result.

7.28 (Converting Grade Averages to a Four-Point Scale) Write method QualityPoints that in-
puts a student’s average and returns 4 if the student's average is 90–100, 3 if the average is 80–89,
2 if the average is 70–79, 1 if the average is 60–69 and 0 if the average is lower than 60. Incorporate
the method into an app that reads a value from the user and displays the result.

7.29 (Coin Tossing) Write an app that simulates coin tossing. Let the app toss a coin each time
the user chooses the “Toss Coin” menu option. Count the number of times each side of the coin
appears. Display the results. The app should call a separate method Flip that takes no arguments
and returns false for tails and true for heads. [Note: If the app realistically simulates coin tossing,
each side of the coin should appear approximately half the time.]

7.30 (Guess the Number Game) Write an app that plays “guess the number” as follows: Your app
chooses the number to be guessed by selecting a random integer in the range 1 to 1000. The app
displays the prompt Guess a number between 1 and 1000. The player inputs a first guess. If the play-
er's guess is incorrect, your app should display Too high. Try again. or Too low. Try again. to help
the player “zero in” on the correct answer. The app should prompt the user for the next guess. When
the user enters the correct answer, display Congratulations. You guessed the number! and allow
the user to choose whether to play again. [Note: The guessing technique employed in this problem
is similar to a binary search, which is discussed in Chapter 18.]

7.31 (Enhanced Guess the Number Game) Modify the app of Exercise 7.30 to count the number
of guesses the player makes. If the number is 10 or fewer, display Either you know the secret or
you got lucky! If the player guesses the number in 10 tries, display Aha! You know the secret! If
the player makes more than 10 guesses, display You should be able to do better! Why should it
take no more than 10 guesses? Well, with each “good guess,” the player should be able to eliminate
half of the numbers. Now show why any number from 1 to 1000 can be guessed in 10 or fewer tries.

7.32 (Distance Between Two Points) Write method Distance to calculate the distance between
two points (x1, y1) and (x2, y2). All numbers and return values should be of type double. Incorpo-
rate this method into an app that enables the user to enter the coordinates of the points.

7.33 (Craps Game Modification) Modify the craps app of Fig. 7.8 to allow wagering. Initialize
variable balance to 1000 dollars. Prompt the player to enter a wager. Check that wager is less than

282 Chapter 7 Methods: A Deeper Look

or equal to balance, and if it’s not, have the user reenter wager until a valid wager is entered. After
a correct wager is entered, run one game of craps. If the player wins, increase balance by wager and
display the new balance. If the player loses, decrease balance by wager, display the new balance,
check whether balance has become zero and, if so, display the message "Sorry. You busted!"

7.34 (Binary, Octal and Hexadecimal) Write an app that displays a table of the binary, octal,
and hexadecimal equivalents of the decimal numbers in the range 1–256. If you’re not familiar with
these number systems, read Appendix D first.

7.35 (Recursive Power Calculation) Write recursive method Power(base, exponent) that, when
called, returns

base exponent

For example, Power(3, 4) = 3 * 3 * 3 * 3. Assume that exponent is an integer greater than or equal
to 1. The recursion step should use the relationship

base exponent = base · base exponent – 1

The terminating condition occurs when exponent is equal to 1, because

base1 = base

Incorporate this method into an app that enables the user to enter the base and exponent.

7.36 (Towers of Hanoi) Every budding computer scientist must grapple with certain classic
problems, and the Towers of Hanoi (see Fig. 7.17) is one of the most famous. Legend has it that in
a temple in the Far East, priests are attempting to move a stack of disks from one peg to another.
The initial stack has 64 disks threaded onto one peg and arranged from bottom to top by decreasing
size. The priests are attempting to move the stack from this peg to a second peg under the constraints
that exactly one disk is moved at a time and at no time may a larger disk be placed above a smaller
disk. A third peg is available for temporarily holding disks. Supposedly, the world will end when the
priests complete their task, so there’s little incentive for us to facilitate their efforts.

Let’s assume that the priests are attempting to move the disks from peg 1 to peg 3. We wish to
develop an algorithm that will display the precise sequence of peg-to-peg disk transfers.

If we were to approach this problem with conventional methods, we’d rapidly find ourselves
hopelessly knotted up in managing the disks. Instead, if we attack the problem with recursion in

Fig. 7.17 | The Towers of Hanoi for the case with four disks.

peg 1 peg 2 peg 3

Making a Difference Exercises 283

mind, it immediately becomes tractable. Moving n disks can be viewed in terms of moving only
n – 1 disks (hence the recursion) as follows:

a) Move n – 1 disks from peg 1 to peg 2, using peg 3 as a temporary holding area.
b) Move the last disk (the largest) from peg 1 to peg 3.
c) Move the n – 1 disks from peg 2 to peg 3, using peg 1 as a temporary holding area.

The process ends when the last task involves moving n = 1 disk (i.e., the base case). This task
is accomplished by simply moving the disk, without the need for a temporary holding area.

Write an app to solve the Towers of Hanoi problem. Allow the user to enter the number of
disks. Use a recursive Tower method with four parameters:

a) the number of disks to be moved,
b) the peg on which these disks are initially threaded,
c) the peg to which this stack of disks is to be moved, and
d) the peg to be used as a temporary holding area.

Your app should display the precise instructions it will take to move the disks from the start-
ing peg to the destination peg. For example, to move a stack of three disks from peg 1 to peg 3,
your app should display the following series of moves:

1 --> 3 (This notation means “Move one disk from peg 1 to peg 3.”)
1 --> 2
3 --> 2
1 --> 3
2 --> 1
2 --> 3
1 --> 3

7.37 (What Does This Code Do?) What does the following method do?

// Parameter b must be positive to prevent infinite recursion
public static int Mystery(int a, int b)
{

if (b == 1)
return a;

else

return a + Mystery(a, b - 1);
}

7.38 (Find the Error) Find the error in the following recursive method, and explain how to cor-
rect it:

public static int Sum(int n)
{

if (n == 0)
return 0;

else

return n + Sum(n);
}

Making a Difference Exercises
As computer costs decline, it becomes feasible for every student, regardless of economic circum-
stance, to have a computer and use it in school. This creates exciting possibilities for improving the
educational experience of all students worldwide as suggested by the next two exercises. [Note:
Check out initiatives such as the One Laptop Per Child Project (www.laptop.org). Also, research
“green” laptops—and note the key “going green” characteristics of these devices. Look into the
Electronic Product Environmental Assessment Tool (www.epeat.net) which can help you assess the
“greenness” of desktops, notebooks and monitors to help you decide which products to purchase.]

www.laptop.org
www.epeat.net

284 Chapter 7 Methods: A Deeper Look

7.39 (Computer-Assisted Instruction) The use of computers in education is referred to as com-
puter-assisted instruction (CAI). Write a program that will help an elementary school student learn
multiplication. Use a Random object to produce two positive one-digit integers. The program should
then prompt the user with a question, such as

How much is 6 times 7?

The student then inputs the answer. Next, the program checks the student’s answer. If it’s correct,
display the message "Very good!" and ask another multiplication question. If the answer is wrong,
display the message "No. Please try again." and let the student try the same question repeatedly
until the student gets it right. A separate function should be used to generate each new question.
This function should be called once when the app begins execution and each time the user answers
the question correctly.

7.40 (Computer-Assisted Instruction: Reducing Student Fatigue) One problem in CAI environ-
ments is student fatigue. This can be reduced by varying the computer’s responses to hold the stu-
dent’s attention. Modify the program of Exercise 7.39 so that various comments are displayed for
each answer. Possible responses to a correct answer:

Very good!
Excellent!
Nice work!
Keep up the good work!

Possible responses to an incorrect answer:

No. Please try again.
Wrong. Try once more.
Don't give up!
No. Keep trying.

Use random-number generation to choose a number from 1 to 4 that will be used to select
one of the four appropriate responses to each correct or incorrect answer. Use a switch statement to
issue the responses.

8Arrays; Introduction to
Exception Handling

Begin at the beginning, … and
go on till you come to the end:
then stop.
—Lewis Carroll

Now go, write it
before them in a table,
and note it in a book.
—Isaiah 30:8

To go beyond is as
wrong as to fall short.
—Confucius

O b j e c t i v e s
In this chapter you’ll:

� Use arrays to store data in
and retrieve data from lists
and tables of values.

� Declare arrays, initialize
arrays and refer to individual
elements of arrays.

� Use foreach to iterate
through arrays.

� Use exception handling to
process runtime problems.

� Use implicitly typed local
variables.

� Pass arrays to methods.

� Declare and manipulate
multidimensional arrays.

� Write methods that use
variable-length argument
lists.

� Read command-line
arguments into an app.

286 Chapter 8 Arrays; Introduction to Exception Handling

8.1 Introduction
This chapter introduces the important topic of data structures—collections of related data
items. Arrays are data structures consisting of related data items of the same type. Arrays
are fixed-length entities—they remain the same length once they’re created, although an
array variable may be reassigned such that it refers to a new array of a different length.

After discussing how arrays are declared, created and initialized, we present examples
that demonstrate several common array manipulations. We use arrays to simulate shuf-
fling and dealing playing cards. The chapter demonstrates C#’s last structured control
statement—the foreach repetition statement—which provides a concise notation for
accessing data in arrays (and other data structures, as you’ll see in Chapter 9 and later in
the book). We enhance the GradeBook case study using arrays to enable the class to store
a set of grades and analyze student grades from multiple exams.

8.2 Arrays
An array is a group of variables (called elements) containing values that all have the same
type. Recall that types are divided into two categories—value types and reference types. Ar-
rays are reference types. As you’ll see, what we typically think of as an array is actually a
reference to an array object. The elements of an array can be either value types or reference
types, including other arrays. To refer to a particular element in an array, we specify the
name of the reference to the array and the position number of the element in the array,
which is known as the element’s index.

Figure 8.1 shows a logical representation of an integer array called c containing
sample values. This array contains 12 elements. An app refers to any one of these elements
with an array-access expression that includes the name of the array, followed by the index
of the particular element in square brackets ([]). The first element in every array has index

8.1 Introduction
8.2 Arrays
8.3 Declaring and Creating Arrays
8.4 Examples Using Arrays

8.4.1 Creating and Initializing an Array
8.4.2 Using an Array Initializer
8.4.3 Calculating a Value to Store in Each

Array Element
8.4.4 Summing the Elements of an Array
8.4.5 Using Bar Charts to Display Array Data

Graphically
8.4.6 Using the Elements of an Array as

Counters
8.4.7 Using Arrays to Analyze Survey Results;

Introduction to Exception Handling
8.5 Case Study: Card Shuffling and Dealing

Simulation

8.6 foreach Statement
8.7 Passing Arrays and Array Elements

to Methods
8.8 Passing Arrays by Value and by

Reference
8.9 Case Study: GradeBook Using an

Array to Store Grades
8.10 Multidimensional Arrays
8.11 Case Study: GradeBook Using a

Rectangular Array
8.12 Variable-Length Argument Lists
8.13 Using Command-Line Arguments
8.14 Wrap-Up

Summary | Terminology | Self-Review Exercises | Answers to Self-Review Exercises | Exercises |
Special Section: Building Your Own Computer | Making a Difference Exercise

8.2 Arrays 287

zero and is sometimes called the zeroth element. Thus, the elements of array c are c[0],
c[1], c[2] and so on. The highest index in array c is 11, which is one less than the number
of elements in the array, because indices begin at 0. Array names follow the same conven-
tions as other variable names.

An index must be a nonnegative integer and can be an expression. For example, if we
assume that variable a is 5 and variable b is 6, then the statement

adds 2 to array element c[11]. An indexed array name is an array-access expression. Such
expressions can be used on the left side of an assignment (i.e., as an lvalue) to place a new
value into an array element. The array index must be a value of type int, uint, long or
ulong, or a value of a type that can be implicitly promoted to one of these types.

Let’s examine array c in Fig. 8.1 more closely. The name of the variable that references
the array is c. Every array instance knows its own length and provides access to this infor-
mation with the Length property. For example, the expression c.Length uses array c’s
Length property to determine the length of the array (that is, 12). The Length property of
an array cannot be changed, because it does not provide a set accessor. The array’s 12 ele-
ments are referred to as c[0], c[1], c[2], …, c[11]. Referring to elements outside of this
range, such as c[-1] or c[12], is a runtime error (as we’ll demonstrate in Fig. 8.8). The
value of c[0] is -45, the value of c[1] is 6, the value of c[2] is 0, the value of c[7] is 62
and the value of c[11] is 78. To calculate the sum of the values contained in the first three
elements of array c and store the result in variable sum, we would write

To divide the value of c[6] by 2 and assign the result to the variable x, we would write

Fig. 8.1 | A 12-element array.

c[a + b] += 2;

sum = c[0] + c[1] + c[2];

x = c[6] / 2;

-45

62

-3

1

6453

78

0

-89

1543

72

0

6

c[0]
Name of array variable (c)

Index (or subcript) of the
element in the array c

c[7]

c[8]

c[9]

c[10]

c[11]

c[6]

c[5]

c[4]

c[3]

c[2]

c[1]

288 Chapter 8 Arrays; Introduction to Exception Handling

8.3 Declaring and Creating Arrays
Arrays occupy space in memory. Since they’re objects, they’re typically created with key-
word new. To create an array object, you specify the type and the number of array elements
as part of an array-creation expression that uses keyword new. Such an expression returns
a reference that can be stored in an array variable. The following declaration and array-
creation expression create an array object containing 12 int elements and store the array’s
reference in variable c:

This expression can be used to create the array shown in Fig. 8.1 (but not the initial values
in the array—we’ll show how to initialize the elements of an array momentarily). This task
also can be performed as follows:

In the declaration, the square brackets following the type int indicate that c is a variable
that will refer to an array of ints (i.e., c will store a reference to an array object). In the
assignment statement, the array variable c receives the reference to a new array object of
12 int elements. The number of elements can also be specified as an expression that’s cal-
culated at execution time. When an array is created, each element of the array receives a
default value—0 for the numeric simple-type elements, false for bool elements and null
for references. As we’ll soon see, we can provide specific, nondefault initial element values
when we create an array.

An app can create several arrays in a single declaration. The following statement
reserves 100 elements for string array b and 27 elements for string array x:

In this statement, string[] applies to each variable. For readability and ease of comment-
ing, we prefer to split the preceding statement into two statements, as in:

An app can declare variables that will refer to arrays of value-type elements or refer-
ence-type elements. For example, every element of an int array is an int value, and every
element of a string array is a reference to a string object.

Resizing an Array
Though arrays are fixed-length entities, you can use the static Array method Resize,
which takes two arguments—the array to be resized and the new length—to create a new
array with the specified length. This method copies the contents of the old array into the
new array and sets the variable it receives as its first argument to reference the new array.
For example, consider the following statements:

int[] c = new int[12];

int[] c; // declare the array variable
c = new int[12]; // create the array; assign to array variable

Common Programming Error 8.1
In the declaration of a variable that will refer to an array, specifying the number of ele-
ments in the square brackets (e.g., int[12] c;) is a syntax error.

string[] b = new string[100], x = new string[27];

string[] b = new string[100]; // create string array b
string[] x = new string[27]; // create string array x

8.4 Examples Using Arrays 289

The variable newArray initially refers to a five-element array. The resize method sets
newArray to refer to a new 10-element array. If the new array is smaller than the old array,
any content that cannot fit into the new array is truncated without warning.

8.4 Examples Using Arrays
This section presents several examples that demonstrate declaring arrays, creating arrays,
initializing arrays and manipulating array elements.

8.4.1 Creating and Initializing an Array
The app of Fig. 8.2 uses keyword new to create an array of five int elements that are ini-
tially 0 (the default for int variables).

Line 9 declares array—a variable capable of referring to an array of int elements.
Line 12 creates the five-element array object and assigns its reference to variable array.
Line 14 outputs the column headings. The first column contains the index (0–4) of each
array element, and the second column contains the default value (0) of each array element
right justified in a field width of 8.

int[] newArray = new int[5];
Array.Resize(ref newArray, 10);

1 // Fig. 8.2: InitArray.cs
2 // Creating an array.
3 using System;
4
5 public class InitArray
6 {
7 public static void Main(string[] args)
8 {
9

10
11 // create the space for array and initialize to default zeros
12
13
14 Console.WriteLine("{0}{1,8}", "Index", "Value"); // headings
15
16
17
18
19 } // end Main
20 } // end class InitArray

Index Value
0 0
1 0
2 0
3 0
4 0

Fig. 8.2 | Creating an array.

int[] array; // declare array named array

array = new int[5]; // 5 int elements

// output each array element's value
for (int counter = 0; counter < array.Length; ++counter)

Console.WriteLine("{0,5}{1,8}", counter, array[counter]);

290 Chapter 8 Arrays; Introduction to Exception Handling

The for statement in lines 17–18 outputs the index number (represented by counter)
and the value (represented by array[counter]) of each array element. The loop-control
variable counter is initially 0—index values start at 0, so using zero-based counting allows
the loop to access every element of the array. The for statement’s loop-continuation con-
dition uses the property array.Length (line 17) to obtain the length of the array. In this
example, the length of the array is 5, so the loop continues executing as long as the value
of control variable counter is less than 5. The highest index value of a five-element array
is 4, so using the less-than operator in the loop-continuation condition guarantees that the
loop does not attempt to access an element beyond the end of the array (i.e., during the
final iteration of the loop, counter is 4). We’ll soon see what happens when an out-of-range
index is encountered at execution time.

8.4.2 Using an Array Initializer
An app can create an array and initialize its elements with an array initializer, which is a
comma-separated list of expressions (called an initializer list) enclosed in braces. In this
case, the array length is determined by the number of elements in the initializer list. For
example, the declaration

creates a five-element array with index values 0, 1, 2, 3 and 4. Element n[0] is initialized
to 10, n[1] is initialized to 20 and so on. This statement does not require new to create the
array object. When the compiler encounters an array initializer list, it counts the number
of initializers in the list to determine the array’s size, then sets up the appropriate new op-
eration “behind the scenes.” The app in Fig. 8.3 initializes an integer array with 10 values
(line 10) and displays the array in tabular format. The code for displaying the array ele-
ments (lines 15–16) is identical to that in Fig. 8.2 (lines 17–18).

int[] n = { 10, 20, 30, 40, 50 };

1 // Fig. 8.3: InitArray.cs
2 // Initializing the elements of an array with an array initializer.
3 using System;
4
5 public class InitArray
6 {
7 public static void Main(string[] args)
8 {
9

10
11
12 Console.WriteLine("{0}{1,8}", "Index", "Value"); // headings
13
14 // output each array element's value
15 for (int counter = 0; counter < array.Length; ++counter)
16 Console.WriteLine("{0,5}{1,8}", counter, array[counter]);
17 } // end Main
18 } // end class InitArray

Fig. 8.3 | Initializing the elements of an array with an array initializer. (Part 1 of 2.)

// initializer list specifies the value for each element
int[] array = { 32, 27, 64, 18, 95, 14, 90, 70, 60, 37 };

8.4 Examples Using Arrays 291

8.4.3 Calculating a Value to Store in Each Array Element
Some apps calculate the value to be stored in each array element. The app in Fig. 8.4 cre-
ates a 10-element array and assigns to each element one of the even integers from 2 to 20
(2, 4, 6, …, 20). Then the app displays the array in tabular format. The for statement at
lines 13–14 calculates an array element’s value by multiplying the current value of the for
loop’s control variable counter by 2, then adding 2.

Line 9 uses the modifier const to declare the constant ARRAY_LENGTH, whose value is
10. Constants must be initialized when they’re declared and cannot be modified thereafter.
We declare constants with all capital letters by convention to make them stand out in the
code.

Index Value
0 32
1 27
2 64
3 18
4 95
5 14
6 90
7 70
8 60
9 37

1 // Fig. 8.4: InitArray.cs
2 // Calculating values to be placed into the elements of an array.
3 using System;
4
5 public class InitArray
6 {
7 public static void Main(string[] args)
8 {
9

10
11
12 // calculate value for each array element
13 for (int counter = 0; counter < array.Length; ++counter)
14
15
16 Console.WriteLine("{0}{1,8}", "Index", "Value"); // headings
17
18 // output each array element's value
19 for (int counter = 0; counter < array.Length; ++counter)
20 Console.WriteLine("{0,5}{1,8}", counter, array[counter]);
21 } // end Main
22 } // end class InitArray

Fig. 8.4 | Calculating values to be placed into the elements of an array. (Part 1 of 2.)

Fig. 8.3 | Initializing the elements of an array with an array initializer. (Part 2 of 2.)

const int ARRAY_LENGTH = 10; // create a named constant
int[] array = new int[ARRAY_LENGTH]; // create array

array[counter] = 2 + 2 * counter;

292 Chapter 8 Arrays; Introduction to Exception Handling

8.4.4 Summing the Elements of an Array
Often, the elements of an array represent a series of values to be used in a calculation. For
example, if the elements of an array represent exam grades, an instructor may wish to total
the elements and use that total to calculate the class average for the exam. The GradeBook
examples later in the chapter (Fig. 8.15 and Fig. 8.20) use this technique.

Index Value
0 2
1 4
2 6
3 8
4 10
5 12
6 14
7 16
8 18
9 20

Common Programming Error 8.2
Assigning a value to a named constant after it’s been initialized is a compilation error.

Common Programming Error 8.3
Attempting to declare a named constant without initializing it is a compilation error.

Good Programming Practice 8.1
Constants also are called named constants. Apps using constants often are more readable
than those that use literal values (e.g., 10)—a named constant such as ARRAY_LENGTH
clearly indicates its purpose, whereas a literal value could have different meanings based
on the context in which it’s used. Another advantage to using named constants is that if
the value of the constant must be changed, the change is necessary only in the declaration,
thus reducing the cost of maintaining the code.

Good Programming Practice 8.2
Defining the size of an array as a constant variable instead of a literal constant makes code
clearer. This technique eliminates so-called magic numbers. For example, repeatedly
mentioning the size 10 in array-processing code for a 10-element array gives the number
10 an artificial significance and can be confusing when the program includes other 10s
that have nothing to do with the array size.

1 // Fig. 8.5: SumArray.cs
2 // Computing the sum of the elements of an array.
3 using System;
4

Fig. 8.5 | Computing the sum of the elements of an array. (Part 1 of 2.)

Fig. 8.4 | Calculating values to be placed into the elements of an array. (Part 2 of 2.)

8.4 Examples Using Arrays 293

The app in Fig. 8.5 sums the values contained in a 10-element integer array. The app
creates and initializes the array at line 9. The for statement performs the calculations.
[Note: The values supplied as array initializers are often read into an app, rather than spec-
ified in an initializer list. For example, an app could input the values from a user or from
a file on disk (as discussed in Chapter 17, Files and Streams). Reading the data into an app
makes the app more reusable, because it can be used with different sets of data.]

8.4.5 Using Bar Charts to Display Array Data Graphically
Many apps present data to users in a graphical manner. For example, numeric values are
often displayed as bars in a bar chart. In such a chart, longer bars represent proportionally
larger numeric values. One simple way to display numeric data graphically is with a bar
chart that shows each numeric value as a bar of asterisks (*).

An instructor might graph the number of grades in each of several categories to visu-
alize the grade distribution for an exam. Suppose the grades on an exam were 87, 68, 94,
100, 83, 78, 85, 91, 76 and 87. There was one grade of 100, two grades in the 90s, four
grades in the 80s, two grades in the 70s, one grade in the 60s and no grades below 60. Our
next app (Fig. 8.6) stores this grade distribution data in an array of 11 elements, each cor-
responding to a category of grades. For example, array[0] indicates the number of grades
in the range 0–9, array[7] the number of grades in the range 70–79 and array[10] the
number of 100 grades. The two versions of class GradeBook later in the chapter (Figs. 8.15
and 8.20) contain code that calculates these grade frequencies based on a set of grades. For
now, we manually create array by examining the set of grades and initializing the elements
of array to the number of values in each range (line 9).

5 public class SumArray
6 {
7 public static void Main(string[] args)
8 {
9 int[] array = { 87, 68, 94, 100, 83, 78, 85, 91, 76, 87 };

10 int total = 0;
11
12
13
14
15
16 Console.WriteLine("Total of array elements: {0}", total);
17 } // end Main
18 } // end class SumArray

Total of array elements: 849

1 // Fig. 8.6: BarChart.cs
2 // Bar chart displaying app.
3 using System;
4

Fig. 8.6 | Bar chart displaying app. (Part 1 of 2.)

Fig. 8.5 | Computing the sum of the elements of an array. (Part 2 of 2.)

// add each element's value to total
for (int counter = 0; counter < array.Length; ++counter)

total += array[counter];

294 Chapter 8 Arrays; Introduction to Exception Handling

The app reads the numbers from the array and graphs the information as a bar chart.
Each grade range is followed by a bar of asterisks indicating the number of grades in that
range. To label each bar, lines 17–21 output a grade range (e.g., "70-79: ") based on the
current value of counter. When counter is 10, line 18 outputs " 100: " to align the
colon with the other bar labels. When counter is not 10, line 20 uses the format items
{0:D2} and {1:D2} to output the label of the grade range. The format specifier D indicates
that the value should be formatted as an integer, and the number after the D indicates how
many digits this formatted integer must contain. The 2 indicates that values with fewer
than two digits should begin with a leading 0.

The nested for statement (lines 24–25) outputs the bars. Note the loop-continuation
condition at line 24 (stars < array[counter]). Each time the app reaches the inner for,

5 public class BarChart
6 {
7 public static void Main(string[] args)
8 {
9 int[] array = { 0, 0, 0, 0, 0, 0, 1, 2, 4, 2, 1 }; // distribution

10
11 Console.WriteLine("Grade distribution:");
12
13 // for each array element, output a bar of the chart
14 for (int counter = 0; counter < array.Length; ++counter)
15 {
16 // output bar labels ("00-09: ", ..., "90-99: ", "100: ")
17 if (counter == 10)
18 Console.Write(" 100: ");
19 else

20 Console.Write("{0:D2}-{1:D2}: ",
21 counter * 10, counter * 10 + 9);
22
23
24
25
26
27 Console.WriteLine(); // start a new line of output
28 } // end outer for
29 } // end Main
30 } // end class BarChart

Grade distribution:
00-09:
10-19:
20-29:
30-39:
40-49:
50-59:
60-69: *
70-79: **
80-89: ****
90-99: **
100: *

Fig. 8.6 | Bar chart displaying app. (Part 2 of 2.)

// display bar of asterisks
for (int stars = 0; stars < array[counter]; ++stars)

Console.Write("*");

8.4 Examples Using Arrays 295

the loop counts from 0 up to one less than array[counter], thus using a value in array
to determine the number of asterisks to display. In this example, array[0]–array[5] con-
tain 0s because no students received a grade below 60. Thus, the app displays no asterisks
next to the first six grade ranges.

8.4.6 Using the Elements of an Array as Counters
Sometimes, apps use counter variables to summarize data, such as the results of a survey.
In Fig. 7.7, we used separate counters in our die-rolling app to track the number of times
each face of a six-sided die appeared as the app rolled the die 6,000,000 times. An array
version of the app in Fig. 7.7 is shown in Fig. 8.7.

The app uses array frequency (line 10) to count the occurrences of each side of the
die. The single statement in line 14 of this app replaces lines 26–46 of Fig. 7.7. Line 14 uses
the random value to determine which frequency element to increment during each iter-
ation of the loop. The calculation in line 14 produces random numbers from 1 to 6, so
array frequency must be large enough to store six counters. We use a seven-element array
in which we ignore frequency[0]—it’s more logical to have the face value 1 increment
frequency[1] than frequency[0]. Thus, each face value is used as an index for array fre-

1 // Fig. 8.7: RollDie.cs
2 // Roll a six-sided die 6,000,000 times.
3 using System;
4
5 public class RollDie
6 {
7 public static void Main(string[] args)
8 {
9 Random randomNumbers = new Random(); // random-number generator

10 int[] frequency = new int[7]; // array of frequency counters
11
12 // roll die 6,000,000 times; use die value as frequency index
13 for (int roll = 1; roll <= 6000000; ++roll)
14
15
16 Console.WriteLine("{0}{1,10}", "Face", "Frequency");
17
18 // output each array element's value
19 for (int face = 1; face < frequency.Length; ++face)
20 Console.WriteLine("{0,4}{1,10}", face, frequency[face]);
21 } // end Main
22 } // end class RollDie

Face Frequency
1 999924
2 1000939
3 1001249
4 998454
5 1000233
6 999201

Fig. 8.7 | Roll a six-sided die 6,000,000 times.

++frequency[randomNumbers.Next(1, 7)];

296 Chapter 8 Arrays; Introduction to Exception Handling

quency. We also replaced lines 50–52 of Fig. 7.7 by looping through array frequency to
output the results (Fig. 8.7, lines 19–20).

8.4.7 Using Arrays to Analyze Survey Results; Introduction to
Exception Handling
Our next example uses arrays to summarize data collected in a survey. Consider the fol-
lowing problem statement:

Twenty students were asked to rate on a scale of 1 to 5 the quality of the food in the
student cafeteria, with 1 being “awful” and 5 being “excellent.” Place the 20 responses
in an integer array and determine the frequency of each rating.

This is a typical array-processing app (Fig. 8.8). We wish to summarize the number of re-
sponses of each type (that is, 1–5). Array responses (lines 10–11) is a 20-element integer
array containing the students’ survey responses. The last value in the array is intentionally an
incorrect response (14). When a C# program executes, array element indices are checked for
validity—all indices must be greater than or equal to 0 and less than the length of the array.
Any attempt to access an element outside that range of indices results in a runtime error that’s
known as an IndexOutOfRangeException. At the end of this section, we’ll discuss the invalid
response value, demonstrate array bounds checking and introduce C#’s exception-handling
mechanism, which can be used to detect and handle an IndexOutOfRangeException.

1 // Fig. 8.8: StudentPoll.cs
2 // Poll analysis app.
3 using System;
4
5 public class StudentPoll
6 {
7 public static void Main(string[] args)
8 {
9 // student response array (more typically, input at run time)

10 int[] responses = { 1, 2, 5, 4, 3, 5, 2, 1, 3, 3, 1, 4, 3, 3, 3,
11 2, 3, 3, 2, };
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Fig. 8.8 | Poll analysis app. (Part 1 of 2.)

14

int[] frequency = new int[6]; // array of frequency counters

// for each answer, select responses element and use that value
// as frequency index to determine element to increment
for (int answer = 0; answer < responses.Length; ++answer)
{

try

{
++frequency[responses[answer]];

} // end try
catch (IndexOutOfRangeException ex)
{

Console.WriteLine(ex.Message);
Console.WriteLine(" responses({0}) = {1}\n",

answer, responses[answer]);
} // end catch

} // end for

8.4 Examples Using Arrays 297

The frequency Array
We use the six-element array frequency (line 12) to count the number of occurrences of
each response. Each element is used as a counter for one of the possible types of survey
responses—frequency[1] counts the number of students who rated the food as 1, fre-
quency[2] counts the number of students who rated the food as 2, and so on.

Summarizing the Results
The for statement (lines 16–28) reads the responses from the array responses one at a
time and increments one of the counters frequency[1] to frequency[5]; we ignore fre-
quency[0] because the survey responses are limited to the range 1–5. The key statement
in the loop appears in line 20. This statement increments the appropriate frequency coun-
ter as determined by the value of responses[answer].

Let’s step through the first few iterations of the for statement:

• When the counter answer is 0, responses[answer] is the value of responses[0]
(that is, 1—see line 10). In this case, frequency[responses[answer]] is inter-
preted as frequency[1], and the counter frequency[1] is incremented by one.
To evaluate the expression, we begin with the value in the innermost set of brack-
ets (answer, currently 0). The value of answer is plugged into the expression, and
the next set of brackets (responses[answer]) is evaluated. That value is used as
the index for the frequency array to determine which counter to increment (in
this case, frequency[1]).

• The next time through the loop answer is 1, responses[answer] is the value of
responses[1] (that is, 2—see line 10), so frequency[responses[answer]] is in-
terpreted as frequency[2], causing frequency[2] to be incremented.

• When answer is 2, responses[answer] is the value of responses[2] (that is, 5—
see line 10), so frequency[responses[answer]] is interpreted as frequency[5],
causing frequency[5] to be incremented, and so on.

29
30 Console.WriteLine("{0}{1,10}", "Rating", "Frequency");
31
32 // output each array element's value
33 for (int rating = 1; rating < frequency.Length; ++rating)
34 Console.WriteLine("{0,6}{1,10}", rating, frequency[rating]);
35 } // end Main
36 } // end class StudentPoll

Index was outside the bounds of the array.
responses(19) = 14

Rating Frequency
1 3
2 4
3 8
4 2
5 2

Fig. 8.8 | Poll analysis app. (Part 2 of 2.)

298 Chapter 8 Arrays; Introduction to Exception Handling

Regardless of the number of responses processed in the survey, only a six-element array (in
which we ignore element zero) is required to summarize the results, because all the correct
response values are between 1 and 5, and the index values for a six-element array are 0–5.
In the output in Fig. 8.8, the frequency column summarizes only 19 of the 20 values in
the responses array—the last element of the array responses contains an incorrect re-
sponse that was not counted.

Exception Handling: Processing the Incorrect Response
An exception indicates a problem that occurs while a program executes. The name “excep-
tion” suggests that the problem occurs infrequently—if the “rule” is that a statement nor-
mally executes correctly, then the problem represents the “exception to the rule.”
Exception handling enables you to create fault-tolerant programs that can resolve (or
handle) exceptions. In many cases, this allows a program to continue executing as if no
problems were encountered. For example, the Student Poll app still displays results
(Fig. 8.8), even though one of the responses was out of range. More severe problems might
prevent a program from continuing normal execution, instead requiring the program to
notify the user of the problem, then terminate. When the runtime or a method detects a
problem, such as an invalid array index or an invalid method argument, it throws an ex-
ception—that is, an exception occurs.

The try Statement
To handle an exception, place any code that might throw an exception in a try statement
(lines 18–27). The try block (lines 18–21) contains the code that might throw an excep-
tion, and the catch block (lines 22–27) contains the code that handles the exception if one
occurs. You can have many catch blocks to handle different types of exceptions that might
be thrown in the corresponding try block. When line 20 correctly increments an element
of the frequency array, lines 22–27 are ignored. The braces that delimit the bodies of the
try and catch blocks are required.

Executing the catch Block
When the program encounters the value 14 in the responses array, it attempts to add 1

to frequency[14], which does not exist—the frequency array has only six elements.
Because array bounds checking is performed at execution time, the Common Language
Runtime generates an exception—specifically line 20 throws an IndexOutOfRange-

Exception to notify the program of this problem. At this point the try block terminates
and the catch block begins executing—if you declared any variables in the try block,
they’re now out of scope and are not accessible in the catch block.

The catch block declares a type (IndexOutOfRangeException) and an exception
parameter (ex). The catch block can handle exceptions of the specified type. Inside the
catch block, you can use the parameter’s identifier to interact with a caught exception
object.

Error-Prevention Tip 8.1
When writing code to access an array element, ensure that the array index remains greater
than or equal to 0 and less than the length of the array. This helps prevent IndexOutOf-
RangeExceptions in your program.

8.5 Case Study: Card Shuffling and Dealing Simulation 299

Message Property of the Exception Parameter
When lines 22–27 catch the exception, the program displays a message indicating the
problem that occurred. Line 24 uses the exception object’s Message property to get the
error message that’s stored in the exception object and display it. Once the message is dis-
played in this example, the exception is considered handled and the program continues
with the next statement after the catch block’s closing brace. In this example, the end of
the for statement is reached (line 28), so the program continues with the increment of the
control variable in line 16. We use exception handling again in Chapter 10 and
Chapter 13 presents a deeper look at exception handling.

8.5 Case Study: Card Shuffling and Dealing Simulation
So far, this chapter’s examples have used arrays of value-type elements. This section uses
random-number generation and an array of reference-type elements—namely, objects repre-
senting playing cards—to develop a class that simulates card shuffling and dealing. This
class can then be used to implement apps that play card games. The exercises at the end of
the chapter use the techniques developed here to build a poker app.

We first develop class Card (Fig. 8.9), which represents a playing card that has a face
(e.g., "Ace", "Deuce", "Three", …, "Jack", "Queen", "King") and a suit (e.g., "Hearts",
"Diamonds", "Clubs", "Spades"). Next, we develop class DeckOfCards (Fig. 8.10), which
creates a deck of 52 playing cards in which each element is a Card object. Then we build
an app (Fig. 8.11) that uses class DeckOfCards’s card shuffling and dealing capabilities.

Class Card
Class Card (Fig. 8.9) contains two string instance variables—face and suit—that are
used to store references to the face value and suit name for a specific Card. The constructor
for the class (lines 9–13) receives two strings that it uses to initialize face and suit.
Method ToString (lines 16–19) creates a string consisting of the face of the card, the
string " of " and the suit of the card. Recall from Chapter 7 that the + operator can be
used to concatenate (i.e., combine) several strings to form one larger string. Card’s To-
String method can be invoked explicitly to obtain a string representation of a Card object
(e.g., "Ace of Spades"). The ToString method of an object is called implicitly in many
cases when the object is used where a string is expected (e.g., when WriteLine outputs
the object or when the object is concatenated to a string using the + operator). For this
behavior to occur, ToString must be declared with the header exactly as shown in line 16
of Fig. 8.9. We’ll explain the purpose of the override keyword in more detail when we
discuss inheritance in Chapter 11.

1 // Fig. 8.9: Card.cs
2 // Card class represents a playing card.
3 public class Card
4 {
5 private string face; // face of card ("Ace", "Deuce", ...)
6 private string suit; // suit of card ("Hearts", "Diamonds", ...)
7

Fig. 8.9 | Card class represents a playing card. (Part 1 of 2.)

300 Chapter 8 Arrays; Introduction to Exception Handling

Class DeckOfCards
Class DeckOfCards (Fig. 8.10) declares an instance-variable named deck that will refer to an
array of Card objects (line 7). Like simple-type array variable declarations, the declaration of
a variable for an array of objects (e.g., Card[] deck) includes the type of the elements in the
array, followed by square brackets and the name of the array variable. Class DeckOfCards also
declares int instance variable currentCard (line 8), representing the next Card to be dealt
from the deck array, and named constant NUMBER_OF_CARDS (line 9), indicating the number
of Cards in the deck (52).

8 // two-parameter constructor initializes card's face and suit
9 public Card(string cardFace, string cardSuit)

10 {
11 face = cardFace; // initialize face of card
12 suit = cardSuit; // initialize suit of card
13 } // end two-parameter Card constructor
14
15 // return string representation of Card
16
17
18
19
20 } // end class Card

1 // Fig. 8.10: DeckOfCards.cs
2 // DeckOfCards class represents a deck of playing cards.
3 using System;
4
5 public class DeckOfCards
6 {
7 private Card[] deck; // array of Card objects
8 private int currentCard; // index of next Card to be dealt (0-51)
9 private const int NUMBER_OF_CARDS = 52; // constant number of Cards

10 private Random randomNumbers; // random-number generator
11
12 // constructor fills deck of Cards
13 public DeckOfCards()
14 {
15
16
17
18
19
20 currentCard = 0; // set currentCard so deck[0] is dealt first
21 randomNumbers = new Random(); // create random-number generator
22

Fig. 8.10 | DeckOfCards class represents a deck of playing cards. (Part 1 of 2.)

Fig. 8.9 | Card class represents a playing card. (Part 2 of 2.)

public override string ToString()
{

return face + " of " + suit;
} // end method ToString

string[] faces = { "Ace", "Deuce", "Three", "Four", "Five", "Six",
"Seven", "Eight", "Nine", "Ten", "Jack", "Queen", "King" };

string[] suits = { "Hearts", "Diamonds", "Clubs", "Spades" };

deck = new Card[NUMBER_OF_CARDS]; // create array of Card objects

8.5 Case Study: Card Shuffling and Dealing Simulation 301

Class DeckOfCards: Constructor
The class’s constructor instantiates the deck array (line 19) to be of size NUMBER_OF_CARDS.
When first created, the elements of the deck array are null by default, so the constructor
uses a for statement (lines 24–26) to fill the deck array with Cards. The for statement
initializes control variable count to 0 and loops while count is less than deck.Length, caus-
ing count to take on each integer value from 0 to 51 (the indices of the deck array). Each
Card is instantiated and initialized with two strings—one from the faces array (which
contains the strings "Ace" through "King") and one from the suits array (which con-
tains the strings "Hearts", "Diamonds", "Clubs" and "Spades"). The calculation
count % 13 always results in a value from 0 to 12 (the 13 indices of the faces array in lines
15–16), and the calculation count / 13 always results in a value from 0 to 3 (the four in-
dices of the suits array in line 17). When the deck array is initialized, it contains the Cards
with faces "Ace" through "King" in order for each suit.

23
24
25
26
27 } // end DeckOfCards constructor
28
29 // shuffle deck of Cards with one-pass algorithm
30 public void Shuffle()
31 {
32 // after shuffling, dealing should start at deck[0] again
33 currentCard = 0; // reinitialize currentCard
34
35 // for each Card, pick another random Card and swap them
36 for (int first = 0; first < deck.Length; ++first)
37 {
38 // select a random number between 0 and 51
39 int second = randomNumbers.Next(NUMBER_OF_CARDS);
40
41 // swap current Card with randomly selected Card
42
43
44
45 } // end for
46 } // end method Shuffle
47
48 // deal one Card
49 public Card DealCard()
50 {
51 // determine whether Cards remain to be dealt
52 if ()
53 return deck[currentCard++]; // return current Card in array
54 else

55 return null; // indicate that all Cards were dealt
56 } // end method DealCard
57 } // end class DeckOfCards

Fig. 8.10 | DeckOfCards class represents a deck of playing cards. (Part 2 of 2.)

// populate deck with Card objects
for (int count = 0; count < deck.Length; ++count)

deck[count] =
new Card(faces[count % 13], suits[count / 13]);

Card temp = deck[first];
deck[first] = deck[second];
deck[second] = temp;

currentCard < deck.Length

302 Chapter 8 Arrays; Introduction to Exception Handling

Class DeckOfCards: Shuffle Method
Method Shuffle (lines 30–46) shuffles the Cards in the deck. The method loops through
all 52 Cards (array indices 0 to 51). For each Card, a number between 0 and 51 is picked
randomly to select another Card. Next, the current Card object and the randomly selected
Card object are swapped in the array. This exchange is performed by the three assignments
in lines 42–44. The extra variable temp temporarily stores one of the two Card objects be-
ing swapped. The swap cannot be performed with only the two statements

If deck[first] is the "Ace" of "Spades" and deck[second] is the "Queen" of
"Hearts", then after the first assignment, both array elements contain the "Queen" of
"Hearts", and the "Ace" of "Spades" is lost—hence, the extra variable temp is needed. Af-
ter the for loop terminates, the Card objects are randomly ordered. Only 52 swaps are
made in a single pass of the entire array, and the array of Card objects is shuffled.

Recommendation: Use an Unbiased Shuffling Algorithm
It’s recommended that you use a so-called unbiased shuffling algorithm for real card
games. Such an algorithm ensures that all possible shuffled card sequences are equally like-
ly to occur. A popular unbiased shuffling algorithm is the Fisher-Yates algorithm—
en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle. This page also shows how to
implement the algorithm in several programming languages.

Class DeckOfCards: DealCard Method
Method DealCard (lines 49–56) deals one Card in the array. Recall that currentCard in-
dicates the index of the next Card to be dealt (i.e., the Card at the top of the deck). Thus,
line 52 compares currentCard to the length of the deck array. If the deck is not empty
(i.e., currentCard is less than 52), line 53 returns the top Card and increments current-
Card to prepare for the next call to DealCard—otherwise, null is returned.

Shuffling and Dealing Cards
The app of Fig. 8.11 demonstrates the card shuffling and dealing capabilities of class Deck-
OfCards (Fig. 8.10). Line 10 creates a DeckOfCards object named myDeckOfCards. Recall
that the DeckOfCards constructor creates the deck with the 52 Card objects in order by suit
and face. Line 11 invokes myDeckOfCards’s Shuffle method to rearrange the Card objects.
The for statement in lines 14–20 deals all 52 Cards in the deck and displays them in four
columns of 13 Cards each. Line 16 deals and displays a Card object by invoking myDeckOf-
Cards’s DealCard method. When Console.Write outputs a Card with string formatting,
the Card’s ToString method (declared in lines 16–19 of Fig. 8.9) is invoked implicitly. Be-
cause the field width is negative, the result is output left justified in a field of width 19.

deck[first] = deck[second];
deck[second] = deck[first];

1 // Fig. 8.11: DeckOfCardsTest.cs
2 // Card shuffling and dealing app.
3 using System;
4

Fig. 8.11 | Card shuffling and dealing app. (Part 1 of 2.)

8.6 foreach Statement 303

8.6 foreach Statement
In previous examples, we demonstrated how to use counter-controlled for statements to
iterate through the elements in an array. In this section, we introduce the foreach state-
ment, which iterates through the elements of an entire array or collection. This section dis-
cusses how to use the foreach statement to loop through an array. We show how to use
it with collections in Chapter 21. The syntax of a foreach statement is:

where type and identifier are the type and name (e.g., int number) of the iteration variable,
and arrayName is the array through which to iterate. The type of the iteration variable
must be consistent with the type of the elements in the array. As the next example illus-
trates, the iteration variable represents successive values in the array on successive iterations
of the foreach statement.

5 public class DeckOfCardsTest
6 {
7 // execute app
8 public static void Main(string[] args)
9 {

10 DeckOfCards myDeckOfCards = new DeckOfCards();
11 myDeckOfCards.Shuffle(); // place Cards in random order
12
13 // display all 52 Cards in the order in which they are dealt
14 for (int i = 0; i < 52; ++i)
15 {
16 Console.Write("{0,-19}", myDeckOfCards.DealCard());
17
18 if ((i + 1) % 4 == 0)
19 Console.WriteLine();
20 } // end for
21 } // end Main
22 } // end class DeckOfCardsTest

Eight of Clubs Ten of Clubs Ten of Spades Four of Spades
Ace of Spades Jack of Spades Three of Spades Seven of Spades
Three of Diamonds Five of Clubs Eight of Spades Five of Hearts
Ace of Hearts Ten of Hearts Deuce of Hearts Deuce of Clubs
Jack of Hearts Nine of Spades Four of Hearts Seven of Clubs
Queen of Spades Seven of Diamonds Five of Diamonds Ace of Clubs
Four of Clubs Ten of Diamonds Jack of Clubs Six of Diamonds
Eight of Diamonds King of Hearts Three of Clubs King of Spades
King of Diamonds Six of Spades Deuce of Spades Five of Spades
Queen of Clubs King of Clubs Queen of Hearts Seven of Hearts
Ace of Diamonds Deuce of Diamonds Four of Diamonds Nine of Clubs
Queen of Diamonds Jack of Diamonds Six of Hearts Nine of Diamonds
Nine of Hearts Three of Hearts Six of Clubs Eight of Hearts

foreach (type identifier in arrayName)
statement

Fig. 8.11 | Card shuffling and dealing app. (Part 2 of 2.)

304 Chapter 8 Arrays; Introduction to Exception Handling

Figure 8.12 uses the foreach statement (lines 13–14) to calculate the sum of the inte-
gers in an array of student grades. The type specified is int, because array contains int
values—therefore, the loop will select one int value from the array during each iteration.
The foreach statement iterates through successive values in the array one by one. The
foreach header can be read concisely as “for each iteration, assign the next element of
array to int variable number, then execute the following statement.” Thus, for each iter-
ation, identifier number represents the next int value in the array. Lines 13–14 are equiv-
alent to the following counter-controlled repetition used in lines 13–14 of Fig. 8.5 to total
the integers in array:

The foreach statement can be used in place of the for statement whenever code
looping through an array does not require access to the counter indicating the index of the
current array element. For example, totaling the integers in an array requires access only
to the element values—the index of each element is irrelevant. However, if an app must
use a counter for some reason other than simply to loop through an array (e.g., to display
an index number next to each array element value, as in the examples earlier in this
chapter), use the for statement.

for (int counter = 0; counter < array.Length; ++counter)
total += array[counter];

Common Programming Error 8.4
The foreach statement’s iteration variable can be used only to access array elements—it
cannot be used to modify elements. Any attempt to change the value of the iteration vari-
able in the body of a foreach statement will cause a compilation error.

1 // Fig. 8.12: ForEachTest.cs
2 // Using the foreach statement to total integers in an array.
3 using System;
4
5 public class ForEachTest
6 {
7 public static void Main(string[] args)
8 {
9 int[] array = { 87, 68, 94, 100, 83, 78, 85, 91, 76, 87 };

10 int total = 0;
11
12
13
14
15
16 Console.WriteLine("Total of array elements: {0}", total);
17 } // end Main
18 } // end class ForEachTest

Total of array elements: 849

Fig. 8.12 | Using the foreach statement to total integers in an array.

// add each element's value to total
foreach (int number in array)

total += number;

8.7 Passing Arrays and Array Elements to Methods 305

8.7 Passing Arrays and Array Elements to Methods
To pass an array argument to a method, specify the name of the array without any brackets.
For example, if hourlyTemperatures is declared as

then the method call

passes the reference of array hourlyTemperatures to method ModifyArray. Every array
object “knows” its own length (and makes it available via its Length property). Thus, when
we pass an array object’s reference to a method, we need not pass the array length as an
additional argument.

Specifying an Array Parameter
For a method to receive an array reference through a method call, the method’s parameter
list must specify an array parameter. For example, the method header for method Modify-
Array might be written as

indicating that ModifyArray receives the reference of an array of doubles in parameter b.
The method call passes array hourlyTemperature’s reference, so when the called method
uses the array variable b, it refers to the same array object as hourlyTemperatures in the
calling method.

Pass-By-Value vs. Pass-By-Reference
When an argument to a method is an entire array or an individual array element of a
reference type, the called method receives a copy of the reference. However, when an argu-
ment to a method is an individual array element of a value type, the called method receives
a copy of the element’s value. To pass an individual array element to a method, use the in-
dexed name of the array as an argument in the method call. If you want to pass a value-
type array element to a method by reference, you must use the ref keyword as shown in
Section 7.16.

Figure 8.13 demonstrates the difference between passing an entire array and passing
a value-type array element to a method. The foreach statement at lines 17–18 outputs the
five elements of array (an array of int values). Line 20 invokes method ModifyArray,
passing array as an argument. Method ModifyArray (lines 37–41) receives a copy of
array’s reference and uses the reference to multiply each of array’s elements by 2. To prove
that array’s elements (in Main) were modified, the foreach statement at lines 24–25 out-
puts the five elements of array again. As the output shows, method ModifyArray doubled
the value of each element.

double[] hourlyTemperatures = new double[24];

ModifyArray(hourlyTemperatures);

void ModifyArray(double[] b)

1 // Fig. 8.13: PassArray.cs
2 // Passing arrays and individual array elements to methods.
3 using System;
4

Fig. 8.13 | Passing arrays and individual array elements to methods. (Part 1 of 3.)

306 Chapter 8 Arrays; Introduction to Exception Handling

5 public class PassArray
6 {
7 // Main creates array and calls ModifyArray and ModifyElement
8 public static void Main(string[] args)
9 {

10 int[] array = { 1, 2, 3, 4, 5 };
11
12 Console.WriteLine(
13 "Effects of passing reference to entire array:\n" +
14 "The values of the original array are:");
15
16 // output original array elements
17 foreach (int value in array)
18 Console.Write(" {0}", value);
19
20
21 Console.WriteLine("\n\nThe values of the modified array are:");
22
23 // output modified array elements
24 foreach (int value in array)
25 Console.Write(" {0}", value);
26
27 Console.WriteLine(
28 "\n\nEffects of passing array element value:\n" +
29 "array[3] before ModifyElement: {0}", array[3]);
30
31
32 Console.WriteLine(
33 "array[3] after ModifyElement: {0}", array[3]);
34 } // end Main
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50 } // end class PassArray

Effects of passing reference to entire array:
The values of the original array are:

1 2 3 4 5

The values of the modified array are:
2 4 6 8 10

Fig. 8.13 | Passing arrays and individual array elements to methods. (Part 2 of 3.)

ModifyArray(array); // pass array reference

ModifyElement(array[3]); // attempt to modify array[3]

// multiply each element of an array by 2
public static void ModifyArray(int[] array2)
{

for (int counter = 0; counter < array2.Length; ++counter)
array2[counter] *= 2;

} // end method ModifyArray

// multiply argument by 2
public static void ModifyElement(int element)
{

element *= 2;
Console.WriteLine(

"Value of element in ModifyElement: {0}", element);
} // end method ModifyElement

8.8 Passing Arrays by Value and by Reference 307

Figure 8.13 next demonstrates that when a copy of an individual value-type array ele-
ment is passed to a method, modifying the copy in the called method does not affect the
original value of that element in the calling method’s array. To show the value of array[3]
before invoking method ModifyElement, lines 27–29 output the value of array[3], which
is 8. Line 31 calls method ModifyElement and passes array[3] as an argument. Remember
that array[3] is actually one int value (8) in array. Therefore, the app passes a copy of
the value of array[3]. Method ModifyElement (lines 44–49) multiplies the value received
as an argument by 2, stores the result in its parameter element, then outputs the value of
element (16). Since method parameters, like local variables, cease to exist when the
method in which they’re declared completes execution, the method parameter element is
destroyed when method ModifyElement terminates. Thus, when the app returns control
to Main, lines 32–33 output the unmodified value of array[3] (i.e., 8).

8.8 Passing Arrays by Value and by Reference
In C#, a variable that “stores” an object, such as an array, does not actually store the object
itself. Instead, such a variable stores a reference to the object. The distinction between ref-
erence-type variables and value-type variables raises some subtle issues that you must un-
derstand to create secure, stable programs.

As you know, when an app passes an argument to a method, the called method
receives a copy of that argument’s value. Changes to the local copy in the called method do
not affect the original variable in the caller. If the argument is of a reference type, the
method makes a copy of the reference, not a copy of the actual object that’s referenced. The
local copy of the reference also refers to the original object, which means that changes to
the object in the called method affect the original object.

In Section 7.16, you learned that C# allows variables to be passed by reference with
keyword ref. You can also use keyword ref to pass a reference-type variable by reference,
which allows the called method to modify the original variable in the caller and make that
variable refer to a different object. This is a subtle capability, which, if misused, can lead
to problems. For instance, when a reference-type object like an array is passed with ref,
the called method actually gains control over the reference itself, allowing the called method
to replace the original reference in the caller with a reference to a different object, or even
with null. Such behavior can lead to unpredictable effects, which can be disastrous in mis-
sion-critical apps. The app in Fig. 8.14 demonstrates the subtle difference between passing
a reference by value and passing a reference by reference with keyword ref.

Effects of passing array element value:
array[3] before ModifyElement: 8
Value of element in ModifyElement: 16
array[3] after ModifyElement: 8

Performance Tip 8.1
Passing references to arrays and other objects makes sense for performance reasons. If arrays
were passed by value, a copy of each element would be passed. For large, frequently passed
arrays, this would waste time and consume considerable storage for the copies of the arrays.

Fig. 8.13 | Passing arrays and individual array elements to methods. (Part 3 of 3.)

308 Chapter 8 Arrays; Introduction to Exception Handling

1 // Fig. 8.14: ArrayReferenceTest.cs
2 // Testing the effects of passing array references
3 // by value and by reference.
4 using System;
5
6 public class ArrayReferenceTest
7 {
8 public static void Main(string[] args)
9 {

10 // create and initialize firstArray
11 int[] firstArray = { 1, 2, 3 };
12
13 // copy the reference in variable firstArray
14 int[] firstArrayCopy = firstArray;
15
16 Console.WriteLine(
17 "Test passing firstArray reference by value");
18
19 Console.Write("\nContents of firstArray " +
20 "before calling FirstDouble:\n\t");
21
22 // display contents of firstArray
23 for (int i = 0; i < firstArray.Length; ++i)
24 Console.Write("{0} ", firstArray[i]);
25
26
27
28
29 Console.Write("\n\nContents of firstArray after " +
30 "calling FirstDouble\n\t");
31
32 // display contents of firstArray
33 for (int i = 0; i < firstArray.Length; ++i)
34 Console.Write("{0} ", firstArray[i]);
35
36 // test whether reference was changed by FirstDouble
37 if (firstArray == firstArrayCopy)
38 Console.WriteLine(
39 "\n\nThe references refer to the same array");
40 else

41 Console.WriteLine(
42 "\n\nThe references refer to different arrays");
43
44 // create and initialize secondArray
45 int[] secondArray = { 1, 2, 3 };
46
47 // copy the reference in variable secondArray
48 int[] secondArrayCopy = secondArray;
49
50 Console.WriteLine("\nTest passing secondArray " +
51 "reference by reference");

Fig. 8.14 | Passing an array reference by value and by reference. (Part 1 of 3.)

// pass variable firstArray by value to FirstDouble
FirstDouble(firstArray);

8.8 Passing Arrays by Value and by Reference 309

52
53 Console.Write("\nContents of secondArray " +
54 "before calling SecondDouble:\n\t");
55
56 // display contents of secondArray before method call
57 for (int i = 0; i < secondArray.Length; ++i)
58 Console.Write("{0} ", secondArray[i]);
59
60
61
62
63 Console.Write("\n\nContents of secondArray " +
64 "after calling SecondDouble:\n\t");
65
66 // display contents of secondArray after method call
67 for (int i = 0; i < secondArray.Length; ++i)
68 Console.Write("{0} ", secondArray[i]);
69
70 // test whether reference was changed by SecondDouble
71 if (secondArray == secondArrayCopy)
72 Console.WriteLine(
73 "\n\nThe references refer to the same array");
74 else

75 Console.WriteLine(
76 "\n\nThe references refer to different arrays");
77 } // end Main
78
79 // modify elements of array and attempt to modify reference
80 public static void FirstDouble()
81 {
82 // double each element's value
83 for (int i = 0; i < array.Length; ++i)
84 array[i] *= 2;
85
86
87
88 } // end method FirstDouble
89
90 // modify elements of array and change reference array
91 // to refer to a new array
92 public static void SecondDouble()
93 {
94 // double each element's value
95 for (int i = 0; i < array.Length; ++i)
96 array[i] *= 2;
97
98
99
100 } // end method SecondDouble
101 } // end class ArrayReferenceTest

Fig. 8.14 | Passing an array reference by value and by reference. (Part 2 of 3.)

// pass variable secondArray by reference to SecondDouble
SecondDouble(ref secondArray);

int[] array

// create new object and assign its reference to array
array = new int[] { 11, 12, 13 };

ref int[] array

// create new object and assign its reference to array
array = new int[] { 11, 12, 13 };

310 Chapter 8 Arrays; Introduction to Exception Handling

Lines 11 and 14 declare two integer array variables, firstArray and firstArrayCopy.
Line 11 initializes firstArraywith the values 1, 2 and 3. The assignment statement at line
14 copies the reference stored in firstArray to variable firstArrayCopy, causing these
variables to reference the same array object. We make the copy of the reference so that we
can determine later whether reference firstArray gets overwritten. The for statement at
lines 23–24 displays the contents of firstArray before it’s passed to method FirstDouble
(line 27) so that we can verify that the called method indeed changes the array’s contents.

Method FirstDouble

The for statement in method FirstDouble (lines 83–84) multiplies the values of all the
elements in the array by 2. Line 87 creates a new array containing the values 11, 12 and 13,
and assigns the array’s reference to parameter array in an attempt to overwrite reference
firstArray in the caller—this, of course, does not happen, because the reference was
passed by value. After method FirstDouble executes, the for statement at lines 33–34 dis-
plays the contents of firstArray, demonstrating that the values of the elements have been
changed by the method. The if…else statement at lines 37–42 uses the == operator to
compare references firstArray (which we just attempted to overwrite) and firstArray-
Copy. The expression in line 37 evaluates to true if the operands of operator == reference
the same object. In this case, the object represented by firstArray is the array created in
line 11—not the array created in method FirstDouble (line 87)—so the original reference
stored in firstArray was not modified.

Method SecondDouble

Lines 45–76 perform similar tests, using array variables secondArray and second-

ArrayCopy, and method SecondDouble (lines 92–100). Method SecondDouble performs
the same operations as FirstDouble, but receives its array argument using keyword ref.
In this case, the reference stored in secondArray after the method call is a reference to the
array created in line 99 of SecondDouble, demonstrating that a variable passed with key-

Test passing firstArray reference by value

Contents of firstArray before calling FirstDouble:
1 2 3

Contents of firstArray after calling FirstDouble
2 4 6

The references refer to the same array

Test passing secondArray reference by reference

Contents of secondArray before calling SecondDouble:
1 2 3

Contents of secondArray after calling SecondDouble:
11 12 13

The references refer to different arrays

Fig. 8.14 | Passing an array reference by value and by reference. (Part 3 of 3.)

8.9 Case Study: GradeBook Using an Array to Store Grades 311

word ref can be modified by the called method so that the variable in the caller actually
points to a different object—in this case, an array created in SecondDouble. The if...else
statement in lines 71–76 confirms that secondArray and secondArrayCopy no longer re-
fer to the same array.

8.9 Case Study: GradeBook Using an Array to Store
Grades
This section further evolves class GradeBook, introduced in Chapter 4 and expanded in
Chapters 5–6. Recall that this class represents a grade book used by an instructor to store
and analyze a set of student grades. Previous versions of the class process a set of grades
entered by the user, but do not maintain the individual grade values in instance variables
of the class. Thus, repeat calculations require the user to re-enter the same grades. One way
to solve this problem would be to store each grade entered in an individual instance of the
class. For example, we could create instance variables grade1, grade2, …, grade10 in class
GradeBook to store 10 student grades. However, the code to total the grades and determine
the class average would be cumbersome, and the class would not be able to process any
more than 10 grades at a time. In this section, we solve this problem by storing grades in
an array.

Storing Student Grades in an Array in Class GradeBook
The version of class GradeBook (Fig. 8.15) presented here uses an array of integers to store
the grades of several students on a single exam. This eliminates the need to repeatedly in-
put the same set of grades. Variable grades (which will refer to an array of ints) is declared
as an instance variable in line 7—therefore, each GradeBook object maintains its own set
of grades. The class’s constructor (lines 14–18) has two parameters—the name of the
course and an array of grades. When an app (e.g., class GradeBookTest in Fig. 8.16) creates
a GradeBook object, the app passes an existing int array to the constructor, which assigns
the array’s reference to instance variable grades (line 17). The size of array grades is de-
termined by the class that passes the array to the constructor. Thus, a GradeBook object
can process a variable number of grades—as many as are in the array in the caller. The
grade values in the passed array could have been input from a user at the keyboard or read
from a file on disk (as discussed in Chapter 17). In our test app, we simply initialize an
array with a set of grade values (Fig. 8.16, line 9). Once the grades are stored in instance

Software Engineering Observation 8.1
When a method receives a reference-type parameter by value, a copy of the object’s
reference is passed. This prevents a method from overwriting references passed to that
method. In the vast majority of cases, protecting the caller’s reference from modification is
the desired behavior. If you encounter a situation where you truly want the called
procedure to modify the caller’s reference, pass the reference-type parameter using keyword
ref—but, again, such situations are rare.

Software Engineering Observation 8.2
In C#, references to objects (including arrays) are passed to called methods. A called
method receiving a reference to an object in a caller can interact with, and possibly change,
the caller’s object.

312 Chapter 8 Arrays; Introduction to Exception Handling

variable grades of class GradeBook, all the class’s methods can access the elements of
grades as needed to perform various calculations.

1 // Fig. 8.15: GradeBook.cs
2 // Grade book using an array to store test grades.
3 using System;
4
5 public class GradeBook
6 {
7
8
9 // auto-implemented property CourseName

10 public string CourseName { get; set; }
11
12 // two-parameter constructor initializes
13 // auto-implemented property CourseName and grades array
14 public GradeBook(string name, int[] gradesArray)
15 {
16 CourseName = name; // set CourseName to name
17
18 } // end two-parameter GradeBook constructor
19
20 // display a welcome message to the GradeBook user
21 public void DisplayMessage()
22 {
23 // auto-implemented property CourseName gets the name of course
24 Console.WriteLine("Welcome to the grade book for\n{0}!\n",
25 CourseName);
26 } // end method DisplayMessage
27
28 // perform various operations on the data
29 public void ProcessGrades()
30 {
31 // output grades array
32
33
34 // call method GetAverage to calculate the average grade
35 Console.WriteLine("\nClass average is {0:F}",);
36
37 // call methods GetMinimum and GetMaximum
38 Console.WriteLine("Lowest grade is {0}\nHighest grade is {1}\n",
39 ,);
40
41 // call OutputBarChart to display grade distribution chart
42
43 } // end method ProcessGrades
44
45 // find minimum grade
46 public int GetMinimum()
47 {
48 int lowGrade = grades[0]; // assume grades[0] is smallest
49

Fig. 8.15 | Grade book using an array to store test grades. (Part 1 of 3.)

private int[] grades; // array of student grades

grades = gradesArray; // initialize grades array

OutputGrades();

GetAverage()

GetMinimum() GetMaximum()

OutputBarChart();

8.9 Case Study: GradeBook Using an Array to Store Grades 313

50
51
52
53
54
55
56
57
58 return lowGrade; // return lowest grade
59 } // end method GetMinimum
60
61 // find maximum grade
62 public int GetMaximum()
63 {
64 int highGrade = grades[0]; // assume grades[0] is largest
65
66 // loop through grades array
67 foreach (int grade in grades)
68 {
69 // if grade greater than highGrade, assign it to highGrade
70 if (grade > highGrade)
71 highGrade = grade; // new highest grade
72 } // end for
73
74 return highGrade; // return highest grade
75 } // end method GetMaximum
76
77 // determine average grade for test
78 public double GetAverage()
79 {
80 int total = 0; // initialize total
81
82
83
84
85
86 // return average of grades
87 return (double) total / grades.Length;
88 } // end method GetAverage
89
90 // output bar chart displaying grade distribution
91 public void OutputBarChart()
92 {
93 Console.WriteLine("Grade distribution:");
94
95 // stores frequency of grades in each range of 10 grades
96 int[] frequency = new int[11];
97
98
99
100
101

Fig. 8.15 | Grade book using an array to store test grades. (Part 2 of 3.)

// loop through grades array
foreach (int grade in grades)
{

// if grade lower than lowGrade, assign it to lowGrade
if (grade < lowGrade)

lowGrade = grade; // new lowest grade
} // end for

// sum grades for one student
foreach (int grade in grades)

total += grade;

// for each grade, increment the appropriate frequency
foreach (int grade in grades)

++frequency[grade / 10];

314 Chapter 8 Arrays; Introduction to Exception Handling

Method ProcessGrades

Method ProcessGrades (lines 29–43) contains a series of method calls that result in the
output of a report summarizing the grades. Line 32 calls method OutputGrades to display
the contents of array grades. Lines 126–128 in method OutputGrades use a for statement
to output the student grades. A for statement, rather than a foreach, must be used in this
case, because lines 127–128 use counter variable student’s value to output each grade next
to a particular student number (see Fig. 8.16). Although array indices start at 0, an instruc-
tor would typically number students starting at 1. Thus, lines 127–128 output
student + 1 as the student number to produce grade labels "Student 1: ", "Student 2: "
and so on.

Method GetAverage

Method ProcessGrades next calls method GetAverage (line 35) to obtain the average of
the grades in the array. Method GetAverage (lines 78–88) uses a foreach statement to to-
tal the values in array grades before calculating the average. The iteration variable in the
foreach’s header (e.g., int grade) indicates that for each iteration, int variable grade
takes on a value in array grades. The averaging calculation in line 87 uses grades.Length
to determine the number of grades being averaged.

102 // for each grade frequency, display bar in chart
103 for (int count = 0; count < frequency.Length; ++count)
104 {
105 // output bar label ("00-09: ", ..., "90-99: ", "100: ")
106 if (count == 10)
107 Console.Write(" 100: ");
108 else

109 Console.Write("{0:D2}-{1:D2}: ",
110 count * 10, count * 10 + 9);
111
112 // display bar of asterisks
113 for (int stars = 0; stars < frequency[count]; ++stars)
114 Console.Write("*");
115
116 Console.WriteLine(); // start a new line of output
117 } // end outer for
118 } // end method OutputBarChart
119
120 // output the contents of the grades array
121 public void OutputGrades()
122 {
123 Console.WriteLine("The grades are:\n");
124
125
126
127
128
129 } // end method OutputGrades
130 } // end class GradeBook

Fig. 8.15 | Grade book using an array to store test grades. (Part 3 of 3.)

// output each student's grade
for (int student = 0; student < grades.Length; ++student)

Console.WriteLine("Student {0,2}: {1,3}",
student + 1, grades[student]);

8.9 Case Study: GradeBook Using an Array to Store Grades 315

Methods GetMinimum and GetMaximum

Lines 38–39 in method ProcessGrades call methods GetMinimum and GetMaximum to de-
termine the lowest and highest grades of any student on the exam, respectively. Each of
these methods uses a foreach statement to loop through array grades. Lines 51–56 in
method GetMinimum loop through the array, and lines 54–55 compare each grade to
lowGrade. If a grade is less than lowGrade, lowGrade is set to that grade. When line 58
executes, lowGrade contains the lowest grade in the array. Method GetMaximum (lines 62–
75) works the same way as method GetMinimum.

Method OutputBarChart

Finally, line 42 in method ProcessGrades calls method OutputBarChart to display a dis-
tribution chart of the grade data, using a technique similar to that in Fig. 8.6. In that ex-
ample, we manually calculated the number of grades in each category (i.e., 0–9, 10–19,
…, 90–99 and 100) by simply looking at a set of grades. In this example, lines 99–100 use
a technique similar to that in Figs. 8.7 and 8.8 to calculate the frequency of grades in each
category. Line 96 declares variable frequency and initializes it with an array of 11 ints to
store the frequency of grades in each grade category. For each grade in array grades, lines
99–100 increment the appropriate element of the frequency array. To determine which
element to increment, line 100 divides the current grade by 10, using integer division. For
example, if grade is 85, line 100 increments frequency[8] to update the count of grades
in the range 80–89. Lines 103–117 next display the bar chart (see Fig. 8.6) based on the
values in array frequency. Like lines 24–25 of Fig. 8.6, lines 113–114 of Fig. 8.15 use a
value in array frequency to determine the number of asterisks to display in each bar.

Class GradeBookTest That Demonstrates Class GradeBook
The app of Fig. 8.16 creates an object of class GradeBook (Fig. 8.15) using int array
gradesArray (declared and initialized in line 9). Lines 11–12 pass a course name and
gradesArray to the GradeBook constructor. Line 13 displays a welcome message, and line
14 invokes the GradeBook object’s ProcessGrades method. The output reveals the sum-
mary of the 10 grades in myGradeBook.

1 // Fig. 8.16: GradeBookTest.cs
2 // Create a GradeBook object using an array of grades.
3 public class GradeBookTest
4 {
5 // Main method begins app execution
6 public static void Main(string[] args)
7 {
8
9

10
11 GradeBook myGradeBook = new GradeBook(
12 "CS101 Introduction to C# Programming", gradesArray);
13 myGradeBook.DisplayMessage();
14 myGradeBook.ProcessGrades();
15 } // end Main
16 } // end class GradeBookTest

Fig. 8.16 | Create a GradeBook object using an array of grades. (Part 1 of 2.)

// one-dimensional array of student grades
int[] gradesArray = { 87, 68, 94, 100, 83, 78, 85, 91, 76, 87 };

316 Chapter 8 Arrays; Introduction to Exception Handling

8.10 Multidimensional Arrays
Multidimensional arrays with two dimensions are often used to represent tables of values
consisting of information arranged in rows and columns. To identify a particular table el-
ement, we must specify two indices. By convention, the first identifies the element’s row
and the second its column. Arrays that require two indices to identify a particular element
are called two-dimensional arrays. (Multidimensional arrays can have more than two di-
mensions, but such arrays are beyond the scope of this book.) C# supports two types of
two-dimensional arrays—rectangular arrays and jagged arrays.

Welcome to the grade book for
CS101 Introduction to C# Programming!

The grades are:

Student 1: 87
Student 2: 68
Student 3: 94
Student 4: 100
Student 5: 83
Student 6: 78
Student 7: 85
Student 8: 91
Student 9: 76
Student 10: 87

Class average is 84.90
Lowest grade is 68
Highest grade is 100

Grade distribution:
00-09:
10-19:
20-29:
30-39:
40-49:
50-59:
60-69: *
70-79: **
80-89: ****
90-99: **
100: *

Software Engineering Observation 8.3
A test harness (or test app) is responsible for creating an object of the class being tested and
providing it with data. This data could come from any of several sources. Test data can
be placed directly into an array with an array initializer, it can come from the user at the
keyboard or it can come from a file (as you’ll see in Chapter 17). After passing this data,
typically through the class’s constructor, to instantiate the object, the test harness should
call the object to test its methods and manipulate its data. Gathering data in the test
harness like this allows the class to manipulate data from several sources.

Fig. 8.16 | Create a GradeBook object using an array of grades. (Part 2 of 2.)

8.10 Multidimensional Arrays 317

Rectangular Arrays
Rectangular arrays are used to represent tables of information in the form of rows and col-
umns, where each row has the same number of columns. Figure 8.17 illustrates a rectan-
gular array named a containing three rows and four columns—a three-by-four array. In
general, an array with m rows and n columns is called an m-by-n array.

Array-Access Expression for a Two-Dimensional Rectangular Array
Every element in array a is identified in Fig. 8.17 by an array-access expression of the form
a[row, column]; a is the name of the array, and row and column are the indices that
uniquely identify each element in array a by row and column number. The names of the
elements in row 0 all have a first index of 0, and the names of the elements in column 3
all have a second index of 3.

Array Initializer for a Two-Dimensional Rectangular Array
Like one-dimensional arrays, multidimensional arrays can be initialized with array initial-
izers in declarations. A rectangular array b with two rows and two columns could be de-
clared and initialized with nested array initializers as follows:

The initializer values are grouped by row in braces. So 1 and 2 initialize b[0, 0] and
b[0, 1], respectively, and 3 and 4 initialize b[1, 0] and b[1, 1], respectively. The compiler
counts the number of nested array initializers (represented by sets of two inner braces with-
in the outer braces) in the initializer list to determine the number of rows in array b. The
compiler counts the initializer values in the nested array initializer for a row to determine
the number of columns (two) in that row. The compiler will generate an error if the num-
ber of initializers in each row is not the same, because every row of a rectangular array must
have the same length.

Jagged Arrays
A jagged array is maintained as a one-dimensional array in which each element refers to a
one-dimensional array. The manner in which jagged arrays are represented makes them
quite flexible, because the lengths of the rows in the array need not be the same. For exam-
ple, jagged arrays could be used to store a single student’s exam grades across multiple
classes, where the number of exams may vary from class to class.

Fig. 8.17 | Rectangular array with three rows and four columns.

int[,] b = { { 1, 2 }, { 3, 4 } };

Row 0

Row 1

Row 2

Column index
Row index
Array name

a[0, 0]

a[1, 0]

a[2, 0]

a[0, 1]

a[1, 1]

a[2, 1]

a[0, 2]

a[1, 2]

a[2, 2]

a[0, 3]

Column 0 Column 1 Column 2 Column 3

a[1, 3]

a[2, 3]

318 Chapter 8 Arrays; Introduction to Exception Handling

Array Initializer for a Two-Dimensional Jagged Array
We can access the elements in a jagged array by an array-access expression of the form
arrayName[row][column]—similar to the array-access expression for rectangular arrays,
but with a separate set of square brackets for each dimension. A jagged array with three
rows of different lengths could be declared and initialized as follows:

In this statement, 1 and 2 initialize jagged[0][0] and jagged[0][1], respectively; 3
initializes jagged[1][0]; and 4, 5 and 6 initialize jagged[2][0], jagged[2][1] and
jagged[2][2], respectively. Therefore, array jagged in the preceding declaration is actu-
ally composed of four separate one-dimensional arrays—one that represents the rows, one
containing the values in the first row ({1, 2}), one containing the value in the second row
({3}) and one containing the values in the third row ({4, 5, 6}). Thus, array jagged itself
is an array of three elements, each a reference to a one-dimensional array of int values.

Diagram of a Two-Dimensional Jagged Array in Memory
Observe the differences between the array-creation expressions for rectangular arrays and
for jagged arrays. Two sets of square brackets follow the type of jagged, indicating that
this is an array of int arrays. Furthermore, in the array initializer, C# requires the keyword
new to create an array object for each row. Figure 8.18 illustrates the array reference jagged
after it’s been declared and initialized.

Creating Two-Dimensional Arrays with Array-Creation Expressions
A rectangular array can be created with an array-creation expression. For example, the fol-
lowing lines declare variable b and assign it a reference to a three-by-four rectangular array:

In this case, we use the literal values 3 and 4 to specify the number of rows and number of
columns, respectively, but this is not required—apps can also use variables and expressions
to specify array dimensions. As with one-dimensional arrays, the elements of a rectangular
array are initialized when the array object is created.

A jagged array cannot be completely created with a single array-creation expression.
The following statement is a syntax error:

int[][] jagged = { new int[] { 1, 2 },
new int[] { 3 },
new int[] { 4, 5, 6 } };

Fig. 8.18 | Jagged array with three rows of different lengths.

int[,] b;
b = new int[3, 4];

int[][] c = new int[2][5]; // error

jagged

1 2

3

4 5 6

8.10 Multidimensional Arrays 319

Instead, each one-dimensional array in the jagged array must be initialized separately.
A jagged array can be created as follows:

The preceding statements create a jagged array with two rows. Row 0 has five columns,
and row 1 has three columns.

Two-Dimensional Array Example: Displaying Element Values
Figure 8.19 demonstrates initializing rectangular and jagged arrays with array initializers and
using nested for loops to traverse the arrays (i.e., visit every element of each array). Class
InitArray’s Main method creates two arrays. Line 12 uses nested array initializers to ini-
tialize variable rectangular with an array in which row 0 has the values 1, 2 and 3, and
row 1 has the values 4, 5 and 6. Lines 17–19 uses nested initializers of different lengths to
initialize variable jagged. In this case, the initializer uses the keyword new to create a one-
dimensional array for each row. Row 0 is initialized to have two elements with values 1
and 2, respectively. Row 1 is initialized to have one element with value 3. Row 2 is initial-
ized to have three elements with the values 4, 5 and 6, respectively.

int[][] c;
c = new int[2][]; // create 2 rows
c[0] = new int[5]; // create 5 columns for row 0
c[1] = new int[3]; // create 3 columns for row 1

1 // Fig. 8.19: InitArray.cs
2 // Initializing rectangular and jagged arrays.
3 using System;
4
5 public class InitArray
6 {
7 // create and output rectangular and jagged arrays
8 public static void Main(string[] args)
9 {

10 // with rectangular arrays,
11 // every row must be the same length.
12
13
14 // with jagged arrays,
15 // we need to use "new int[]" for every row,
16 // but every row does not need to be the same length.
17
18
19
20
21 OutputArray(rectangular); // displays array rectangular by row
22 Console.WriteLine(); // output a blank line
23 OutputArray(jagged); // displays array jagged by row
24 } // end Main
25
26 // output rows and columns of a rectangular array
27 public static void OutputArray()
28 {
29 Console.WriteLine("Values in the rectangular array by row are");

Fig. 8.19 | Initializing jagged and rectangular arrays. (Part 1 of 2.)

int[,] rectangular = { { 1, 2, 3 }, { 4, 5, 6 } };

int[][] jagged = { new int[] { 1, 2 },
new int[] { 3 },
new int[] { 4, 5, 6 } };

int[,] array

320 Chapter 8 Arrays; Introduction to Exception Handling

Overloaded Method OutputArray

Method OutputArray has been overloaded with two versions. The first version (lines 27–
40) specifies the array parameter as int[,] array to indicate that it takes a rectangular ar-
ray. The second version (lines 43–56) takes a jagged array, because its array parameter is
listed as int[][] array.

Method OutputArray for Rectangular Arrays
Line 21 invokes method OutputArray with argument rectangular, so the version of Out-
putArray at lines 27–40 is called. The nested for statement (lines 32–39) outputs the
rows of a rectangular array. The loop-continuation condition of each for statement (lines
32 and 35) uses the rectangular array’s GetLength method to obtain the length of each di-
mension. Dimensions are numbered starting from 0, so the method call GetLength(0) on

30
31
32
33
34
35
36
37
38
39
40 } // end method OutputArray
41
42 // output rows and columns of a jagged array
43 public static void OutputArray()
44 {
45 Console.WriteLine("Values in the jagged array by row are");
46
47
48
49
50
51
52
53
54
55
56 } // end method OutputArray
57 } // end class InitArray

Values in the rectangular array by row are
1 2 3
4 5 6

Values in the jagged array by row are
1 2
3
4 5 6

Fig. 8.19 | Initializing jagged and rectangular arrays. (Part 2 of 2.)

// loop through array's rows
for (int row = 0; row < array.GetLength(0); ++row)
{

// loop through columns of current row
for (int column = 0; column < array.GetLength(1); ++column)

Console.Write("{0} ", array[row, column]);

Console.WriteLine(); // start new line of output
} // end outer for

int[][] array

// loop through each row
foreach (int[] row in array)
{

// loop through each element in current row
foreach (int element in row)

Console.Write("{0} ", element);

Console.WriteLine(); // start new line of output
} // end outer foreach

8.11 Case Study: GradeBook Using a Rectangular Array 321

array returns the size of the first dimension of the array (the number of rows), and the call
GetLength(1) returns the size of the second dimension (the number of columns).

Method OutputArray for Jagged Arrays
Line 23 invokes method OutputArray with argument jagged, so the version of Output-
Array at lines 43–56 is called. The nested foreach statement (lines 48–55) outputs the
rows of a jagged array. The inner foreach statement (lines 51–52) iterates through each
element in the current row of the array. This allows the loop to determine the exact num-
ber of columns in each row. Since the jagged array is created as an array of arrays, we can
use nested foreach statements to output the elements in the console window. The outer
loop iterates through the elements of array, which are references to one-dimensional ar-
rays of int values that represent each row. The inner loop iterates through the elements of
the current row. A foreach statement can also iterate through all the elements in a rectan-
gular array. In this case, foreach iterates through all the rows and columns starting from
row 0, as if the elements were in a one-dimensional array.

Common Multidimensional-Array Manipulations Performed with for Statements
Many common array manipulations use for statements. As an example, the following for
statement sets all the elements in row 2 of rectangular array a in Fig. 8.17 to 0:

We specified row 2; therefore, we know that the first index is always 2 (0 is the first row,
and 1 is the second row). This for loop varies only the second index (i.e., the column in-
dex). The preceding for statement is equivalent to the assignment statements

The following nested for statement totals the values of all the elements in array a:

These nested for statements total the array elements one row at a time. The outer for
statement begins by setting the row index to 0 so that row 0’s elements can be totaled by
the inner for statement. The outer for then increments row to 1 so that row 1’s elements
can be totaled. Then the outer for increments row to 2 so that row 2’s elements can be
totaled. The variable total can be displayed when the outer for statement terminates. In
the next example, we show how to process a rectangular array in a more concise manner
using foreach statements.

8.11 Case Study: GradeBook Using a Rectangular Array
In Section 8.9, we presented class GradeBook (Fig. 8.15), which used a one-dimensional
array to store student grades on a single exam. In most courses, students take several exams.

for (int column = 0; column < a.GetLength(1); ++column)
a[2, column] = 0;

a[2, 0] = 0;
a[2, 1] = 0;
a[2, 2] = 0;
a[2, 3] = 0;

int total = 0;

for (int row = 0; row < a.GetLength(0); ++row)
{

for (int column = 0; column < a.GetLength(1); ++column)
total += a[row, column];

} // end outer for

322 Chapter 8 Arrays; Introduction to Exception Handling

Instructors are likely to want to analyze grades across the entire course, both for a single
student and for the class as a whole.

Storing Student Grades in a Rectangular Array in Class GradeBook
Figure 8.20 contains a version of class GradeBook that uses a rectangular array grades to
store the grades of a number of students on multiple exams. Each row of the array represents
a single student’s grades for the entire course, and each column represents the grades for the
whole class on one of the exams the students took during the course. An app such as Grade-
BookTest (Fig. 8.21) passes the array as an argument to the GradeBook constructor. In this
example, we use a 10-by-3 array containing 10 students’ grades on three exams. Five meth-
ods perform array manipulations to process the grades. Each method is similar to its coun-
terpart in the earlier one-dimensional-array version of class GradeBook (Fig. 8.15). Method
GetMinimum (lines 44–58 in Fig. 8.20) determines the lowest grade of any student for the se-
mester. Method GetMaximum (lines 61–75) determines the highest grade of any student for
the semester. Method GetAverage (lines 78–90) determines a particular student’s semester
average. Method OutputBarChart (lines 93–122) outputs a bar chart of the distribution of
all student grades for the semester. Method OutputGrades (lines 125–149) outputs the two-
dimensional array in tabular format, along with each student’s semester average.

1 // Fig. 8.20: GradeBook.cs
2 // Grade book using a rectangular array to store grades.
3 using System;
4
5 public class GradeBook
6 {
7
8
9 // auto-implemented property CourseName

10 public string CourseName { get; set; }
11
12 // two-parameter constructor initializes
13 // auto-implemented property CourseName and grades array
14 public GradeBook(string name, int[,] gradesArray)
15 {
16 CourseName = name; // set CourseName to name
17
18 } // end two-parameter GradeBook constructor
19
20 // display a welcome message to the GradeBook user
21 public void DisplayMessage()
22 {
23 // auto-implemented property CourseName gets the name of course
24 Console.WriteLine("Welcome to the grade book for\n{0}!\n",
25 CourseName);
26 } // end method DisplayMessage
27
28 // perform various operations on the data
29 public void ProcessGrades()
30 {

Fig. 8.20 | Grade book using a rectangular array to store grades. (Part 1 of 4.)

private int[,] grades; // rectangular array of student grades

grades = gradesArray; // initialize grades array

8.11 Case Study: GradeBook Using a Rectangular Array 323

31 // output grades array
32 OutputGrades();
33
34 // call methods GetMinimum and GetMaximum
35 Console.WriteLine("\n{0} {1}\n{2} {3}\n",
36 "Lowest grade in the grade book is", GetMinimum(),
37 "Highest grade in the grade book is", GetMaximum());
38
39 // output grade distribution chart of all grades on all tests
40 OutputBarChart();
41 } // end method ProcessGrades
42
43 // find minimum grade
44 public int GetMinimum()
45 {
46 // assume first element of grades array is smallest
47 int lowGrade = grades[0, 0];
48
49
50
51
52
53
54
55
56
57 return lowGrade; // return lowest grade
58 } // end method GetMinimum
59
60 // find maximum grade
61 public int GetMaximum()
62 {
63 // assume first element of grades array is largest
64 int highGrade = grades[0, 0];
65
66 // loop through elements of rectangular grades array
67 foreach (int grade in grades)
68 {
69 // if grade greater than highGrade, assign it to highGrade
70 if (grade > highGrade)
71 highGrade = grade;
72 } // end foreach
73
74 return highGrade; // return highest grade
75 } // end method GetMaximum
76
77
78
79
80
81
82
83

Fig. 8.20 | Grade book using a rectangular array to store grades. (Part 2 of 4.)

// loop through elements of rectangular grades array
foreach (int grade in grades)
{

// if grade less than lowGrade, assign it to lowGrade
if (grade < lowGrade)

lowGrade = grade;
} // end foreach

// determine average grade for particular student
public double GetAverage(int student)
{

// get the number of grades per student
int amount = grades.GetLength(1);
int total = 0; // initialize total

324 Chapter 8 Arrays; Introduction to Exception Handling

84
85
86
87
88
89
90
91
92 // output bar chart displaying overall grade distribution
93 public void OutputBarChart()
94 {
95 Console.WriteLine("Overall grade distribution:");
96
97 // stores frequency of grades in each range of 10 grades
98 int[] frequency = new int[11];
99
100
101
102
103
104
105
106 // for each grade frequency, display bar in chart
107 for (int count = 0; count < frequency.Length; ++count)
108 {
109 // output bar label ("00-09: ", ..., "90-99: ", "100: ")
110 if (count == 10)
111 Console.Write(" 100: ");
112 else

113 Console.Write("{0:D2}-{1:D2}: ",
114 count * 10, count * 10 + 9);
115
116 // display bar of asterisks
117 for (int stars = 0; stars < frequency[count]; ++stars)
118 Console.Write("*");
119
120 Console.WriteLine(); // start a new line of output
121 } // end outer for
122 } // end method OutputBarChart
123
124 // output the contents of the grades array
125 public void OutputGrades()
126 {
127 Console.WriteLine("The grades are:\n");
128 Console.Write(" "); // align column heads
129
130 // create a column heading for each of the tests
131 for (int test = 0; test < grades.GetLength(1); ++test)
132 Console.Write("Test {0} ", test + 1);
133
134 Console.WriteLine("Average"); // student average column heading
135

Fig. 8.20 | Grade book using a rectangular array to store grades. (Part 3 of 4.)

// sum grades for one student
for (int exam = 0; exam < amount; ++exam)

total += grades[student, exam];

// return average of grades
return (double) total / amount;

} // end method GetAverage

// for each grade in GradeBook, increment the appropriate frequency
foreach (int grade in grades)
{

++frequency[grade / 10];
} // end foreach

8.11 Case Study: GradeBook Using a Rectangular Array 325

Processing a Two-Dimensional Array with a foreach Statement
Methods GetMinimum, GetMaximum and OutputBarChart each loop through array grades
using the foreach statement—for example, the foreach statement from method GetMin-
imum (lines 50–55). To find the lowest overall grade, this foreach statement iterates
through rectangular array grades and compares each element to variable lowGrade. If a
grade is less than lowGrade, lowGrade is set to that grade.

When the foreach statement traverses the elements of array grades, it looks at each
element of the first row in order by index, then each element of the second row in order
by index and so on. The foreach statement in lines 50–55 traverses the elements of grade
in the same order as the following equivalent code, expressed with nested for statements:

When the foreach statement completes, lowGrade contains the lowest grade in the rect-
angular array. Method GetMaximum works similarly to method GetMinimum.

Method OutputBarChart

Method OutputBarChart (lines 93–122) displays the grade distribution as a bar chart. The
syntax of the foreach statement (lines 101–104) is identical for one-dimensional and two-
dimensional arrays.

Method OutputGrades

Method OutputGrades (lines 125–149) uses nested for statements to output values of the
array grades, in addition to each student’s semester average. The output in Fig. 8.21 shows
the result, which resembles the tabular format of an instructor’s physical grade book. Lines
131–132 (in Fig. 8.20) display the column headings for each test. We use the for statement
rather than the foreach statement here so that we can identify each test with a number.
Similarly, the for statement in lines 137–148 first outputs a row label using a counter vari-

136 // create rows/columns of text representing array grades
137 for (int student = 0; student < grades.GetLength(0); ++student)
138 {
139 Console.Write("Student {0,2}", student + 1);
140
141 // output student's grades
142 for (int grade = 0; grade < grades.GetLength(1); ++grade)
143 Console.Write("{0,8}", grades[student, grade]);
144
145 // call method GetAverage to calculate student's average grade;
146 // pass row number as the argument to GetAverage
147 Console.WriteLine("{0,9:F}",);
148 } // end outer for
149 } // end method OutputGrades
150 } // end class GradeBook

for (int row = 0; row < grades.GetLength(0); ++row)
for (int column = 0; column < grades.GetLength(1); ++column)
{

if (grades[row, column] < lowGrade)
lowGrade = grades[row, column];

}

Fig. 8.20 | Grade book using a rectangular array to store grades. (Part 4 of 4.)

GetAverage(student)

326 Chapter 8 Arrays; Introduction to Exception Handling

able to identify each student (line 139). Although array indices start at 0, lines 132 and 139
output test + 1 and student + 1, respectively, to produce test and student numbers start-
ing at 1 (see Fig. 8.21). The inner for statement in lines 142–143 uses the outer for state-
ment’s counter variable student to loop through a specific row of array grades and output
each student’s test grade. Finally, line 147 obtains each student’s semester average by pass-
ing the row index of grades (i.e., student) to method GetAverage.

Method GetAverage

Method GetAverage (lines 78–90) takes one argument—the row index for a particular
student. When line 147 calls GetAverage, the argument is int value student, which spec-
ifies the particular row of rectangular array grades. Method GetAverage calculates the
sum of the array elements on this row, divides the total by the number of test results and
returns the floating-point result as a double value (line 89).

Class GradeBookTest That Demonstrates Class GradeBook
The app in Fig. 8.21 creates an object of class GradeBook (Fig. 8.20) using the two-dimen-
sional array of ints that gradesArray references (Fig. 8.21, lines 9–18). Lines 20–21 pass
a course name and gradesArray to the GradeBook constructor. Lines 22–23 then invoke
myGradeBook’s DisplayMessage and ProcessGrades methods to display a welcome mes-
sage and obtain a report summarizing the students’ grades for the semester, respectively.

1 // Fig. 8.21: GradeBookTest.cs
2 // Create a GradeBook object using a rectangular array of grades.
3 public class GradeBookTest
4 {
5 // Main method begins app execution
6 public static void Main(string[] args)
7 {
8
9

10
11
12
13
14
15
16
17
18
19
20 GradeBook myGradeBook = new GradeBook(
21 "CS101 Introduction to C# Programming", gradesArray);
22 myGradeBook.DisplayMessage();
23 myGradeBook.ProcessGrades();
24 } // end Main
25 } // end class GradeBookTest

Welcome to the grade book for
CS101 Introduction to C# Programming!

Fig. 8.21 | Create a GradeBook object using a rectangular array of grades. (Part 1 of 2.)

// rectangular array of student grades
int[,] gradesArray = { { 87, 96, 70 },

{ 68, 87, 90 },
{ 94, 100, 90 },
{ 100, 81, 82 },
{ 83, 65, 85 },
{ 78, 87, 65 },
{ 85, 75, 83 },
{ 91, 94, 100 },
{ 76, 72, 84 },
{ 87, 93, 73 } };

8.12 Variable-Length Argument Lists 327

8.12 Variable-Length Argument Lists
Variable-length argument lists allow you to create methods that receive an arbitrary num-
ber of arguments. A one-dimensional array-type argument preceded by the keyword
params in a method’s parameter list indicates that the method receives a variable number
of arguments with the type of the array’s elements. This use of a paramsmodifier can occur
only in the last entry of the parameter list. While you can use method overloading and ar-
ray passing to accomplish much of what is accomplished with variable-length argument
lists, using the params modifier is more concise.

Figure 8.22 demonstrates method Average (lines 8–17), which receives a variable-
length sequence of doubles (line 8). C# treats the variable-length argument list as a one-
dimensional array whose elements are all of the same type. Hence, the method body can
manipulate the parameter numbers as an array of doubles. Lines 13–14 use the foreach
loop to walk through the array and calculate the total of the doubles in the array. Line 16
accesses numbers.Length to obtain the size of the numbers array for use in the averaging
calculation. Lines 31, 33 and 35 in Main call method Average with two, three and four
arguments, respectively. Method Average has a variable-length argument list, so it can
average as many double arguments as the caller passes. The output reveals that each call to
method Average returns the correct value.

The grades are:

Test 1 Test 2 Test 3 Average
Student 1 87 96 70 84.33
Student 2 68 87 90 81.67
Student 3 94 100 90 94.67
Student 4 100 81 82 87.67
Student 5 83 65 85 77.67
Student 6 78 87 65 76.67
Student 7 85 75 83 81.00
Student 8 91 94 100 95.00
Student 9 76 72 84 77.33
Student 10 87 93 73 84.33

Lowest grade in the grade book is 65
Highest grade in the grade book is 100

Overall grade distribution:
00-09:
10-19:
20-29:
30-39:
40-49:
50-59:
60-69: ***
70-79: ******
80-89: ***********
90-99: *******
100: ***

Fig. 8.21 | Create a GradeBook object using a rectangular array of grades. (Part 2 of 2.)

328 Chapter 8 Arrays; Introduction to Exception Handling

Common Programming Error 8.5
The params modifier may be used only with the last parameter of the parameter list.

1 // Fig. 8.22: ParamArrayTest.cs
2 // Using variable-length argument lists.
3 using System;
4
5 public class ParamArrayTest
6 {
7 // calculate average
8 public static double Average()
9 {

10 double total = 0.0; // initialize total
11
12
13
14
15
16 return total / numbers.Length;
17 } // end method Average
18
19 public static void Main(string[] args)
20 {
21 double d1 = 10.0;
22 double d2 = 20.0;
23 double d3 = 30.0;
24 double d4 = 40.0;
25
26 Console.WriteLine(
27 "d1 = {0:F1}\nd2 = {1:F1}\nd3 = {2:F1}\nd4 = {3:F1}\n",
28 d1, d2, d3, d4);
29
30 Console.WriteLine("Average of d1 and d2 is {0:F1}",
31);
32 Console.WriteLine("Average of d1, d2 and d3 is {0:F1}",
33);
34 Console.WriteLine("Average of d1, d2, d3 and d4 is {0:F1}",
35);
36 } // end Main
37 } // end class ParamArrayTest

d1 = 10.0
d2 = 20.0
d3 = 30.0
d4 = 40.0

Average of d1 and d2 is 15.0
Average of d1, d2 and d3 is 20.0
Average of d1, d2, d3 and d4 is 25.0

Fig. 8.22 | Using variable-length argument lists.

params double[] numbers

// calculate total using the foreach statement
foreach (double d in numbers)

total += d;

Average(d1, d2)

Average(d1, d2, d3)

Average(d1, d2, d3, d4)

8.13 Using Command-Line Arguments 329

8.13 Using Command-Line Arguments
On many systems, it’s possible to pass arguments from the command line (these are known
as command-line arguments) to an app by including a parameter of type string[] (i.e., an
array of strings) in the parameter list of Main, exactly as we’ve done in every app in the book.
By convention, this parameter is named args (Fig. 8.23, line 7). When an app is executed
from the Command Prompt, the execution environment passes the command-line arguments
that appear after the app name to the app’s Main method as strings in the one-dimensional
array args. The number of arguments passed from the command line is obtained by access-
ing the array’s Length property. For example, the command "MyApp a b" passes two com-
mand-line arguments to app MyApp. Command-line arguments are separated by whitespace,
not commas. When the preceding command executes, the Main method entry point receives
the two-element array args (i.e., args.Length is 2) in which args[0] contains the string
"a" and args[1] contains the string "b". Common uses of command-line arguments in-
clude passing options and file names to apps.

1 // Fig. 8.23: InitArray.cs
2 // Using command-line arguments to initialize an array.
3 using System;
4
5 public class InitArray
6 {
7 public static void Main(string[] args)
8 {
9 // check number of command-line arguments

10 if ()
11 Console.WriteLine(
12 "Error: Please re-enter the entire command, including\n" +
13 "an array size, initial value and increment.");
14 else

15 {
16 // get array size from first command-line argument
17
18 int[] array = new int[arrayLength]; // create array
19
20 // get initial value and increment from command-line argument
21
22
23
24
25
26
27
28 Console.WriteLine("{0}{1,8}", "Index", "Value");
29
30 // display array index and value
31 for (int counter = 0; counter < array.Length; ++counter)
32 Console.WriteLine("{0,5}{1,8}", counter, array[counter]);
33 } // end else
34 } // end Main
35 } // end class InitArray

Fig. 8.23 | Using command-line arguments to initialize an array. (Part 1 of 2.)

args.Length != 3

int arrayLength = Convert.ToInt32(args[0]);

int initialValue = Convert.ToInt32(args[1]);
int increment = Convert.ToInt32(args[2]);

// calculate value for each array element
for (int counter = 0; counter < array.Length; ++counter)

array[counter] = initialValue + increment * counter;

330 Chapter 8 Arrays; Introduction to Exception Handling

Figure 8.23 uses three command-line arguments to initialize an array. When the app
executes, if args.Length is not 3, the app displays an error message and terminates (lines
10–13). Otherwise, lines 16–32 initialize and display the array based on the values of the
command-line arguments.

The command-line arguments become available to Main as strings in args. Line 17
gets args[0]—a string that specifies the array size—and converts it to an int value,
which the app uses to create the array in line 18. The static method ToInt32 of class
Convert converts its string argument to an int.

Lines 21–22 convert the args[1] and args[2] command-line arguments to int

values and store them in initialValue and increment, respectively. Lines 25–26 calcu-
late the value for each array element.

The first sample execution indicates that the app received an insufficient number of
command-line arguments. The second sample execution uses command-line arguments 5,
0 and 4 to specify the size of the array (5), the value of the first element (0) and the incre-
ment of each value in the array (4), respectively. The corresponding output indicates that
these values create an array containing the integers 0, 4, 8, 12 and 16. The output from the
third sample execution illustrates that the command-line arguments 10, 1 and 2 produce
an array whose 10 elements are the nonnegative odd integers from 1 to 19.

Specifying Command-Line Arguments in Visual Studio
We ran this example from a Command Prompt. You can also supply command-line argu-
ments in the IDE. Right click the project’s Properties node in the Solution Explorer, then

C:\Examples\ch08\fig08_23>InitArray.exe
Error: Please re-enter the entire command, including
an array size, initial value and increment.

C:\Examples\ch08\fig08_23>InitArray.exe 5 0 4
Index Value

0 0
1 4
2 8
3 12
4 16

C:\Examples\ch08\fig08_23>InitArray.exe 10 1 2
Index Value

0 1
1 3
2 5
3 7
4 9
5 11
6 13
7 15
8 17
9 19

Fig. 8.23 | Using command-line arguments to initialize an array. (Part 2 of 2.)

8.14 Wrap-Up 331

select Open. Select the Debug tab, then enter the arguments in the text box labeled Com-
mand line arguments.

8.14 Wrap-Up
This chapter began our introduction to data structures, exploring the use of arrays to store
data in and retrieve data from lists and tables of values. The chapter examples demonstrat-
ed how to declare array variables, initialize arrays and refer to individual elements of arrays.
The chapter introduced the foreach statement as an additional means (besides the for
statement) for iterating through arrays. We showed how to pass arrays to methods and
how to declare and manipulate multidimensional arrays. Finally, the chapter showed how
to write methods that use variable-length argument lists and how to read arguments passed
to an app from the command line.

We continue our coverage of data structures in Chapter 9, where we discuss the List
collection, which is a dynamically resizable array-based collection. Chapter 18 discusses
searching and sorting algorithms. Chapter 19 introduces dynamic data structures, such as
lists, queues, stacks and trees, that can grow and shrink as apps execute. Chapter 20 pres-
ents generics, which provide the means to create general models of methods and classes
that can be declared once, but used with many different data types. Chapter 21 introduces
the data structure classes provided by the .NET Framework, some of which use generics
to allow you to specify the exact types of objects that a particular data structure will store.
You can use these predefined data structures instead of building your own. Chapter 21 dis-
cusses many data-structure classes that can grow and shrink in response to an app’s
changing storage requirements. The .NET Framework also provides class Array, which
contains utility methods for array manipulation. Chapter 21 uses several static methods
of class Array to perform such manipulations as sorting and searching the data in an array.

We’ve now introduced the basic concepts of classes, objects, control statements,
methods and arrays. In Chapter 9 we introduce Language Integrated Query (LINQ),
which enables you to write expressions that can retrieve information from a wide variety
of data sources, such as arrays. You’ll see how to search, sort and filter data using LINQ.

If you’re in a course which either skips LINQ or defers coverage until later in the book
when it’s needed to support other more advanced C# features, you can proceed to
Chapter 10, in which we take a deeper look at classes and objects.

Summary
Section 8.1 Introduction
• Arrays are data structures consisting of related data items of the same type. Arrays are fixed-length

entities—they remain the same length once they’re created.

Section 8.2 Arrays
• Arrays are reference types. What we typically think of as an array is actually a reference to an array

object. The elements of an array can be either value types or reference types (including other arrays).

• An app refers to an array element with an array-access expression that includes the name of the
array, followed by the index of the particular element in square brackets ([]).

• The first element in every array has index zero and is sometimes called the zeroth element.

• An array’s Length property returns the number of elements in the array.

332 Chapter 8 Arrays; Introduction to Exception Handling

Section 8.3 Declaring and Creating Arrays
• To create an array instance, you specify the type and the number of array elements as part of an

array-creation expression that uses keyword new. The following declaration and array-creation
expression create an array object containing 12 int elements:

int[] a = new int[12];

• When an array is created, each element of the array receives a default value—0 for the numeric
simple-type elements, false for bool elements and null for references.

• An app can declare variables that reference arrays of any type. Every element of a value-type array
contains a value of the array’s declared type. In an array of a reference type, every element is a
reference to an object of the array’s declared type or null.

Section 8.4 Examples Using Arrays
• An app can create an array and initialize its elements with an array initializer, which is a comma-

separated list of expressions (called an initializer list) enclosed in braces.

• Constants must be initialized when they’re declared and cannot be modified thereafter.

• In a format item, a D format specifier indicates that the value should be formatted as an integer,
and the number after the D indicates how many digits this formatted integer must contain.

• When a program is executed, array element indices are checked for validity—all indices must be
greater than or equal to 0 and less than the length of the array. If an attempt is made to use an
invalid index to access an element, an IndexOutOfRangeException exception occurs.

• An exception indicates a problem that occurs while a program executes. The name “exception”
suggests that the problem occurs infrequently—if the “rule” is that a statement normally executes
correctly, then the problem represents the “exception to the rule.”

• Exception handling enables you to create fault-tolerant programs that can resolve exceptions.

• To handle an exception, place any code that might throw an exception in a try statement.

• The try block contains the code that might throw an exception, and the catch block contains
the code that handles the exception if one occurs.

• You can have many catch blocks to handle different types of exceptions that might be thrown in
the corresponding try block.

• When a try block terminates any variables declared in the try block go out of scope.

• A catch block declares a type and an exception parameter. Inside the catch block, you can use
the parameter’s identifier to interact with a caught exception object.

• An exception object’s Message property returns the exception’s error message.

Section 8.5 Case Study: Card Shuffling and Dealing Simulation
• The ToString method of an object is called implicitly in many cases when the object is used

where a string is expected, such as concatenating an object to a string.

Section 8.6 foreach Statement
• The foreach statement iterates through the elements of an entire array or collection. The syntax

of a foreach statement is:

foreach (type identifier in arrayName)
statement

where type and identifier are the type and name of the iteration variable, and arrayName is the
array through which to iterate.

• The foreach header can be read concisely as “for each iteration, assign the next element of the
array to the iteration variable, then execute the following statement.”

Summary 333

• The foreach statement’s iteration variable can be used only to access array elements, not to mod-
ify them. Any attempt to change the value of the iteration variable in the body of a foreach state-
ment will cause a compilation error.

Section 8.7 Passing Arrays and Array Elements to Methods
• When an argument to a method is an entire array or an individual array element of a reference

type, the called method receives a copy of the reference. However, when an argument to a meth-
od is an individual array element of a value type, the called method receives a copy of the ele-
ment’s value.

Section 8.8 Passing Arrays by Value and by Reference
• When a reference-type object is passed with ref, the called method actually gains control over

the reference itself, allowing the called method to replace the original reference in the caller with
a different object or even with null.

• If you encounter a situation where you truly want the called procedure to modify the caller’s ref-
erence, pass the reference-type parameter using keyword ref—but such situations are rare.

Section 8.10 Multidimensional Arrays
• Two-dimensional arrays are often used to represent tables of values consisting of information ar-

ranged in rows and columns. To identify a particular table element, we must specify two indices.

• C# supports two types of two-dimensional arrays—rectangular arrays and jagged arrays.

• Rectangular arrays are used to represent tables of information in the form of rows and columns,
where each row has the same number of columns.

• Elements in rectangular array a are identified by an expression of the form a[row, column].

• A rectangular array could be declared and initialized with array initializers of the form:

arrayType[,] arrayName = { {row0 initializer}, {row1 initializer}, ... };

provided that each row of the rectangular array must have the same length.

• A rectangular array can be created with an array-creation expression of the form

arrayType[,] arrayName = new arrayType[numRows, numColumns];

• A jagged array is maintained as a one-dimensional array in which each element refers to a one-
dimensional array.

• The lengths of the rows in a jagged array need not be the same.

• We can access the elements in a jagged array arrayName by an array-access expression of the form
arrayName[row][column].

• A jagged array can be declared and initialized in the form:

arrayType[][] arrayName = { new arrayType[] {row0 initializer},
new arrayType[] {row1 initializer}, ... };

Section 8.11 Case Study: Class GradeBook Using a Rectangular Array
• When the foreach statement traverses a rectangular array’s elements, it looks at each element of

the first row in order by index, then each element of the second row in order by index and so on.

Section 8.12 Variable-Length Argument Lists
• A one-dimensional array parameter preceded by params in a method’s parameter list indicates

that the method receives a variable number of arguments with the type of the array’s elements.

• The params modifier can appear only in the last entry of the parameter list.

• C# treats a variable-length argument list as a one-dimensional array.

334 Chapter 8 Arrays; Introduction to Exception Handling

Section 8.13 Using Command-Line Arguments
• When an app is executed from the Command Prompt, the execution environment passes the com-

mand-line arguments that appear after the app name to the app’s Main method as strings in a
one-dimensional array.

Terminology
array
array-access expression
array-creation expression
array initializer
bounds checking
catch block
column index
column of an array
command-line arguments
const keyword
element of an array
exception
exception handling
fault-tolerant program
foreach statement
index
index zero
IndexOutOfRangeException

initializer list
iteration variable
jagged array

leading 0
Length property of an array
m-by-n array
magic number
Message property of an exception
multidimensional array
name of an array
named constant
nested array initializers
params modifier
rectangular array
row index
row of an array
square brackets, []
table of values
test harness
traverse an array
try statement
two-dimensional array
variable-length argument list
zeroth element

Self-Review Exercises
8.1 Fill in the blank(s) in each of the following statements:

a) Lists and tables of values can be stored in .
b) An array is a group of (called elements) containing values that all have the

same .
c) The statement allows you to iterate through the elements in an array without

using a counter.
d) The number that refers to a particular array element is called the element’s .
e) An array that uses two indices is referred to as a(n) array.
f) Use the foreach header to iterate through double array numbers.
g) Command-line arguments are stored in .
h) Use the expression to receive the total number of arguments in a command

line. Assume that command-line arguments are stored in string[] args.
i) Given the command MyApp test, the first command-line argument is .
j) A(n) in the parameter list of a method indicates that the method can receive

a variable number of arguments.

8.2 Determine whether each of the following is true or false. If false, explain why.
a) A single array can store values of many different types.
b) An array index should normally be of type float.
c) An individual array element that’s passed to a method and modified in that method will

contain the modified value when the called method completes execution.

Answers to Self-Review Exercises 335

d) Command-line arguments are separated by commas.

8.3 Perform the following tasks for an array called fractions:
a) Declare constant ARRAY_SIZE initialized to 10.
b) Declare variable fractions which will reference an array with ARRAY_SIZE elements of

type double. Initialize the elements to 0.
c) Name the element of the array with index 3.
d) Assign the value 1.667 to the array element with index 9.
e) Assign the value 3.333 to the array element with index 6.
f) Sum all the elements of the array, using a for statement. Declare integer variable x as a

control variable for the loop.

8.4 Perform the following tasks for an array called table:
a) Declare the variable and initialize it with a rectangular integer array that has three rows

and three columns. Assume that constant ARRAY_SIZE has been declared to be 3.
b) How many elements does the array contain?
c) Use a for statement to initialize each element of the array to the sum of its indices.

8.5 Find and correct the error in each of the following code segments:
a) const int ARRAY_SIZE = 5;

ARRAY_SIZE = 10;

b) Assume int[] b = new int[10];

for (int i = 0; i <= b.Length; ++i)

b[i] = 1;

c) Assume int[,] a = { { 1, 2 }, { 3, 4 } };

a[1][1] = 5;

Answers to Self-Review Exercises
8.1 a) arrays. b) variables, type. c) foreach. d) index (or position number). e) two-dimension-
al. f) foreach (double d in numbers). g) an array of strings, usually called args. h) args.Length.
i) test. j) params modifier.

8.2 a) False. An array can store only values of the same type.
b) False. An array index must be an integer or an integer expression.
c) For individual value-type elements of an array: False. A called method receives and ma-

nipulates a copy of the value of such an element, so modifications do not affect the orig-
inal value. If the reference of an array is passed to a method, however, modifications to
the array elements made in the called method are indeed reflected in the original. For
individual elements of a reference type: True. A called method receives a copy of the
reference of such an element, and changes to the referenced object will be reflected in
the original array element.

d) False. Command-line arguments are separated by whitespace.

8.3 a) const int ARRAY_SIZE = 10;

b) double[] fractions = new double[ARRAY_SIZE];

c) fractions[3]

d) fractions[9] = 1.667;

e) fractions[6] = 3.333;

f) double total = 0.0;

for (int x = 0; x < fractions.Length; ++x)

total += fractions[x];

8.4 a) int[,] table = new int[ARRAY_SIZE, ARRAY_SIZE];

b) Nine.

336 Chapter 8 Arrays; Introduction to Exception Handling

c) for (int x = 0; x < table.GetLength(0); ++x)

for (int y = 0; y < table.GetLength(1); ++y)

table[x, y] = x + y;

8.5 a) Error: Assigning a value to a constant after it’s been initialized.
Correction: Assign the correct value to the constant in the const declaration.

b) Error: Referencing an array element outside the bounds of the array (b[10]).
Correction: Change the <= operator to <.

c) Error: Array indexing is performed incorrectly.
Correction: Change the statement to a[1, 1] = 5;.

Exercises
8.6 Fill in the blanks in each of the following statements:

a) One-dimensional array p contains four elements. The names of those elements are
, , and .

b) Naming an array’s variable, stating its type and specifying the number of dimensions in
the array is called the array.

c) In a two-dimensional array, the first index identifies the of an element and the
second index identifies the of an element.

d) An m-by-n array contains rows, columns and elements.
e) The name of the element in row 3 and column 5 of jagged array d is .

8.7 Determine whether each of the following is true or false. If false, explain why.
a) To refer to a particular location or element within an array, we specify the name of the

array’s variable and the value of the particular element.
b) The declaration of a variable that references an array reserves memory for the array.
c) To indicate that 100 locations should be reserved for integer array p, the programmer

writes the declaration p[100];

d) An app that initializes the elements of a 15-element array to 0 must contain at least one
for statement.

e) To total the elements of a two-dimensional array you must use nested for statements.

8.8 Write C# statements to accomplish each of the following tasks:
a) Display the value of the element of character array f with index 6.
b) Initialize each of the five elements of one-dimensional integer array g to 8.
c) Total the 100 elements of floating-point array c.
d) Copy 11-element array a into the first portion of array b, which contains 34 elements.
e) Determine and display the smallest and largest values contained in 99-element floating-

point array w.

8.9 Consider the two-by-three rectangular integer array t.
a) Write a statement that declares t and creates the array.
b) How many rows does t have?
c) How many columns does t have?
d) How many elements does t have?
e) Write the names of all the elements in row 1 of t.
f) Write the names of all the elements in column 2 of t.
g) Write a single statement that sets the element of t in row 0 and column 1 to zero.
h) Write a sequence of statements that initializes each element of t to 1. Do not use a rep-

etition statement.
i) Write a nested for statement that initializes each element of t to 3.

Exercises 337

j) Write a nested for statement that inputs values for the elements of t from the user.
k) Write a sequence of statements that determines and displays the smallest value in t.
l) Write a statement that displays the elements of row 0 of t.
m) Write a statement that totals the elements of column 2 of t.
n) Write a sequence of statements that displays the contents of t in tabular format. List the

column indices as headings across the top, and list the row indices at the left of each row.

8.10 (Sales Commissions) Use a one-dimensional array to solve the following problem: A com-
pany pays its salespeople on a commission basis. The salespeople receive $200 per week plus 9% of
their gross sales for that week. For example, a salesperson who grosses $5000 in sales in a week re-
ceives $200 plus 9% of $5000, or a total of $650. Write an app (using an array of counters) that
determines how many of the salespeople earned salaries in each of the following ranges (assume that
each salesperson’s salary is an integer). Summarize the results in tabular format.

a) $200–299
b) $300–399
c) $400–499
d) $500–599
e) $600–699
f) $700–799
g) $800–899
h) $900–999
i) $1000 and over

8.11 (Array Manipulations) Write statements that perform the following one-dimensional-array
operations:

a) Set the three elements of integer array counts to 0.
b) Add 1 to each of the four elements of integer array bonus.
c) Display the five values of integer array bestScores in column format.

8.12 (Duplicate Elimination) Use a one-dimensional array to solve the following problem:
Write an app that inputs five numbers, each of which is between 10 and 100, inclusive. As each
number is read, display it only if it’s not a duplicate of a number already read. Provide for the “worst
case,” in which all five numbers are different. Use the smallest possible array to solve this problem.
Display the complete set of unique values input after the user inputs each new value.

8.13 (Jagged Arrays) List the elements of the three-by-five jagged array sales in the order in
which they’re set to 0 by the following code segment:

for (int row = 0; row < sales.Length; ++row)
{

for (int col = 0; col < sales[row].Length; ++col)
{

sales[row][col] = 0;
}

}

8.14 (Variable-Length Argument List) Write an app that calculates the product of a series of in-
tegers that are passed to method product using a variable-length argument list. Test your method
with several calls, each with a different number of arguments.

8.15 (Command-Line Arguments) Rewrite Fig. 8.2 so that the array’s size is specified by the first
command-line argument. If no command-line argument is supplied, use 10 as the default size.

8.16 (Using the foreach Statement) Write an app that uses a foreach statement to sum the dou-
ble values passed by the command-line arguments. [Hint: Use static method ToDouble of class
Convert to convert a string to a double value.]

338 Chapter 8 Arrays; Introduction to Exception Handling

8.17 (Dice Rolling) Write an app to simulate the rolling of two dice. The app should use an ob-
ject of class Random once to roll the first die and again to roll the second die. The sum of the two
values should then be calculated. Each die can show an integer value from 1 to 6, so the sum of the
values will vary from 2 to 12, with 7 being the most frequent sum and 2 and 12 the least frequent
sums. Figure 8.24 shows the 36 possible combinations of the two dice. Your app should roll the dice
36,000 times. Use a one-dimensional array to tally the number of times each possible sum appears.
Display the results in tabular format. Determine whether the totals are reasonable (e.g., there are six
ways to roll a 7, so approximately one-sixth of the rolls should be 7).

8.18 (Game of Craps) Write an app that runs 1000 games of craps (Fig. 7.8) and answers the
following questions:

a) How many games are won on the first roll, second roll, …, twentieth roll and after the
twentieth roll?

b) How many games are lost on the first roll, second roll, …, twentieth roll and after the
twentieth roll?

c) What are the chances of winning at craps? [Note: You should discover that craps is one
of the fairest casino games.]

d) What is the average length of a game of craps?

8.19 (Airline Reservations System) A small airline has just purchased a computer for its new au-
tomated reservations system. You have been asked to develop the new system. You’re to write an
app to assign seats on each flight of the airline’s only plane (capacity: 10 seats).

Display the following alternatives: Please type 1 for First Class and Please type 2 for

Economy. If the user types 1, your app should assign a seat in the first-class section (seats 1–5). If the
user types 2, your app should assign a seat in the economy section (seats 6–10).

Use a one-dimensional array of type bool to represent the seating chart of the plane. Initialize
all the elements of the array to false to indicate that all the seats are empty. As each seat is
assigned, set the corresponding element of the array to true to indicate that the seat is no longer
available.

Your app should never assign a seat that has already been assigned. When the economy section
is full, your app should ask the person if it’s acceptable to be placed in the first-class section (and
vice versa). If yes, make the appropriate seat assignment. If no, display the message "Next flight
leaves in 3 hours."

8.20 (Total Sales) Use a rectangular array to solve the following problem: A company has three
salespeople (1 to 3) who sell five different products (1 to 5). Once a day, each salesperson passes in
a slip for each type of product sold. Each slip contains the following:

a) The salesperson number
b) The product number
c) The total dollar value of that product sold that day

Fig. 8.24 | The 36 possible sums of two dice.

2

1

3

4

5

6

3

2

4

5

6

7

4

3

5

6

7

8

5

4

6

7

8

9

6

5

7

8

9

10

7

6

8

9

10

11

8

7

9

10

11

12

321 654

Exercises 339

Thus, each salesperson passes in between 0 and 5 sales slips per day. Assume that the information
from all of the slips for last month is available. Write an app that will read all the information for last
month’s sales and summarize the total sales by salesperson and by product. All totals should be stored
in rectangular array sales. After processing all the information for last month, display the results in
tabular format, with each column representing a particular salesperson and each row representing a
particular product. Cross-total each row to get the total sales of each product for last month. Cross-
total each column to get the total sales by salesperson for last month. Your tabular output should
include these cross-totals to the right of the totaled rows and below the totaled columns.

8.21 (Turtle Graphics) The Logo language made the concept of turtle graphics famous. Imagine
a mechanical turtle that walks around the room under the control of a C# app. The turtle holds a
pen in one of two positions—up or down. While the pen is down, the turtle traces out shapes as it
moves, and while the pen is up, the turtle moves about freely without writing anything. In this prob-
lem, you’ll simulate the operation of the turtle and create a computerized sketchpad.

Use a 20-by-20 rectangular array floor that’s initialized to 0. Read commands from an array
that contains them. Keep track at all times of the current position of the turtle and whether the pen
is currently up or down. Assume that the turtle always starts at position (0, 0) of the floor with its
pen up. The set of turtle commands your app must process are shown in Fig. 8.25.

Suppose that the turtle is somewhere near the center of the floor. The following “app” would
draw and display a 12-by-12 square, leaving the pen in the up position:

2
5,12
3
5,12
3
5,12
3
5,12
1
6
9

As the turtle moves with the pen down, set the appropriate elements of array floor to 1s. When the
6 command (display the array) is given, wherever there’s a 1 in the array, display an asterisk or any
character you choose. Wherever there’s a 0, display a blank.

Write an app to implement the turtle graphics capabilities discussed here. Write several turtle
graphics apps to draw interesting shapes. Add other commands to increase the power of your turtle
graphics language.

Command Meaning

1 Pen up

2 Pen down

3 Turn right

4 Turn left

5,10 Move forward 10 spaces (replace 10
for a different number of spaces)

6 Display the 20-by-20 array

9 End of data (sentinel)

Fig. 8.25 | Turtle graphics commands.

340 Chapter 8 Arrays; Introduction to Exception Handling

8.22 (Knight’s Tour) One of the more interesting puzzlers for chess buffs is the Knight’s Tour
problem, originally proposed by the mathematician Euler. Can the chess piece called the knight
move around an empty chessboard and touch each of the 64 squares once and only once? We study
this intriguing problem in depth here.

The knight makes only L-shaped moves (two spaces in one direction and one space in a per-
pendicular direction). Thus, as shown in Fig. 8.26, from a square near the middle of an empty
chessboard, the knight (labeled K) can make eight different moves (numbered 0 through 7).

a) Draw an eight-by-eight chessboard on a sheet of paper, and attempt a Knight’s Tour by
hand. Put a 1 in the starting square, a 2 in the second square, a 3 in the third and so on.
Before starting the tour, estimate how far you think you’ll get, remembering that a full
tour consists of 64 moves. How far did you get? Was this close to your estimate?

b) Now let’s develop an app that will move the knight around a chessboard. The board is
represented by an eight-by-eight rectangular array board. Each square is initialized to
zero. We describe each of the eight possible moves in terms of their horizontal and ver-
tical components. For example, a move of type 0, as shown in Fig. 8.26, consists of
moving two squares horizontally to the right and one square vertically upward. A move
of type 2 consists of moving one square horizontally to the left and two squares vertically
upward. Horizontal moves to the left and vertical moves upward are indicated with neg-
ative numbers. The eight moves may be described by two one-dimensional arrays, hor-
izontal and vertical, as follows:

horizontal[0] = 2 vertical[0] = -1

horizontal[1] = 1 vertical[1] = -2

horizontal[2] = -1 vertical[2] = -2

horizontal[3] = -2 vertical[3] = -1

horizontal[4] = -2 vertical[4] = 1

horizontal[5] = -1 vertical[5] = 2

horizontal[6] = 1 vertical[6] = 2

horizontal[7] = 2 vertical[7] = 1

Let variables currentRow and currentColumn indicate the row and column, respec-
tively, of the knight’s current position. To make a move of type moveNumber, where mov-
eNumber is between 0 and 7, your app should use the statements

currentRow += vertical[moveNumber];
currentColumn += horizontal[moveNumber];

Write an app to move the knight around the chessboard. Keep a counter that varies
from 1 to 64. Record the latest count in each square the knight moves to. Test each

Fig. 8.26 | The eight possible moves of the knight.

0 54321

K

2 1

3

4

0

7

5 6

1

2

0

3

4

5

6

7

6 7

Exercises 341

potential move to see if the knight has already visited that square. Test every potential
move to ensure that the knight does not land off the chessboard. Run the app. How
many moves did the knight make?

c) After attempting to write and run a Knight’s Tour app, you have probably developed
some valuable insights. We’ll use these insights to develop a heuristic for moving the
knight. Heuristics do not guarantee success, but a carefully developed heuristic greatly
improves the chance of success. You may have observed that the outer squares are more
troublesome than the squares nearer the center of the board. In fact, the most trouble-
some and inaccessible squares are the four corners.

Intuition may suggest that you should attempt to move the knight to the most trou-
blesome squares first and leave open those that are easiest to get to, so that when the
board gets congested near the end of the tour, there will be a greater chance of success.

We could develop an “accessibility heuristic” by classifying each of the squares
according to how accessible it is and always moving the knight (using the knight’s L-
shaped moves) to the most inaccessible square. We label two-dimensional array acces-
sibility with numbers indicating from how many squares each particular square is
accessible. On a blank chessboard, each of the 16 squares nearest the center is rated as
8, each corner square is rated as 2, and the other squares have accessibility numbers of
3, 4 or 6 as follows:

2 3 4 4 4 4 3 2
3 4 6 6 6 6 4 3
4 6 8 8 8 8 6 4
4 6 8 8 8 8 6 4
4 6 8 8 8 8 6 4
4 6 8 8 8 8 6 4
3 4 6 6 6 6 4 3
2 3 4 4 4 4 3 2

Write a new version of the Knight’s Tour, using the accessibility heuristic. The knight
should always move to the square with the lowest accessibility number. In case of a tie,
the knight may move to any of the tied squares. Therefore, the tour may begin in any of
the four corners. [Note: As the knight moves around the chessboard as more squares
become occupied, your app should reduce the accessibility numbers. In this way, at any
given time during the tour, each available square’s accessibility number will remain equal
to precisely the number of squares from which that square may be reached.] Run this ver-
sion of your app. Did you get a full tour? Modify the app to run 64 tours, one starting
from each square of the chessboard. How many full tours did you get?

d) Write a version of the Knight’s Tour app that, when encountering a tie between two or
more squares, decides what square to choose by looking ahead to those squares reach-
able from the “tied” squares. Your app should move to the tied square for which the next
move would arrive at the square with the lowest accessibility number.

8.23 (Knight’s Tour: Brute-Force Approaches) In Part c of Exercise 8.22, we developed a solution
to the Knight’s Tour problem. The approach used, called the “accessibility heuristic,” generates
many solutions and executes efficiently.

As computers continue to increase in power, we’ll be able to solve more problems with sheer
computer power and relatively unsophisticated algorithms. Let’s call this approach “brute-force”
problem solving.

a) Use random-number generation to enable the knight to walk around the chessboard (in
its legitimate L-shaped moves) at random. Your app should run one tour and display
the final chessboard. How far did the knight get?

b) Most likely, the app in Part a produced a relatively short tour. Now modify your app
to attempt 1000 tours. Use a one-dimensional array to keep track of the number of

342 Chapter 8 Arrays; Introduction to Exception Handling

tours of each length. When your app finishes attempting the 1000 tours, it should dis-
play this information in neat tabular format. What was the best result?

c) Most likely, the app in Part b gave you some “respectable” tours, but no full tours. Now
let your app run until it produces a full tour. Once again, keep a table of the number of
tours of each length, and display this table when the first full tour is found. How many
tours did your app attempt before producing a full tour?

d) Compare the brute-force version of the Knight’s Tour with the accessibility-heuristic
version. Which required a more careful study of the problem? Which algorithm was
more difficult to develop? Which required more computer power? Could we be certain
(in advance) of obtaining a full tour with the accessibility-heuristic approach? Could we
be certain (in advance) of obtaining a full tour with the brute-force approach? Argue the
pros and cons of brute-force problem solving in general.

8.24 (Eight Queens) Another puzzler for chess buffs is the Eight Queens problem, which asks: Is
it possible to place eight queens on an empty chessboard so that no queen is “attacking” any other
(i.e., no two queens are in the same row, in the same column or along the same diagonal)? Use the
thinking developed in Exercise 8.22 to formulate a heuristic for solving the Eight Queens problem.
Run your app. [Hint: It’s possible to assign a value to each square of the chessboard to indicate how
many squares of an empty chessboard are “eliminated” if a queen is placed in that square. Each of
the corners would be assigned the value 22, as demonstrated by Fig. 8.27. Once these “elimination
numbers” are placed in all 64 squares, an appropriate heuristic might be as follows: Place the next
queen in the square with the smallest elimination number. Why is this strategy intuitively appeal-
ing?]

8.25 (Eight Queens: Brute-Force Approaches) In this exercise, you’ll develop several brute-force
approaches to solving the Eight Queens problem introduced in Exercise 8.24.

a) Use the random brute-force technique developed in Exercise 8.23 to solve the Eight
Queens problem.

b) Use an exhaustive technique (i.e., try all possible combinations of eight queens on the
chessboard) to solve the Eight Queens problem.

8.26 (Knight’s Tour: Closed-Tour Test) In the Knight’s Tour (Exercise 8.22), a full tour occurs
when the knight makes 64 moves, touching each square of the chessboard once and only once. A
closed tour occurs when the 64th move is one move away from the square in which the tour started.
Modify the app you wrote in Exercise 8.22 to test for a closed tour if a full tour has occurred.

8.27 (Sieve of Eratosthenes) A prime number is any integer greater than 1 that’s evenly divisible
only by itself and 1. The Sieve of Eratosthenes finds prime numbers. It operates as follows:

Fig. 8.27 | The 22 squares eliminated by placing a queen in the upper left corner.

* *****

* *

* *

* *

* *

* *

*

*

*

*

*

*

Exercises 343

a) Create a simple type bool array with all elements initialized to true. Array elements with
prime indices will remain true. All other array elements will eventually be set to false.

b) Starting with array index 2, determine whether a given element is true. If so, loop
through the remainder of the array and set to false every element whose index is a mul-
tiple of the index for the element with value true. Then continue the process with the
next element with value true. For array index 2, all elements beyond element 2 in the
array with indices that are multiples of 2 (indices 4, 6, 8, 10, etc.) will be set to false;
for array index 3, all elements beyond element 3 in the array with indices that are mul-
tiples of 3 (indices 6, 9, 12, 15, etc.) will be set to false; and so on.

When this process completes, the array elements that are still true indicate that the index is a
prime number. These indices can be displayed. Write an app that uses an array of 1000 elements to
determine and display the prime numbers between 2 and 999. Ignore elements 0 and 1.

8.28 (Simulation: The Tortoise and the Hare) You’ll now re-create the classic race of the tortoise
and the hare. You’ll use random-number generation to develop a simulation of this memorable
event.

Our contenders begin the race at square 1 of 70 squares. Each square represents a possible
position along the race course. The finish line is at square 70. The first contender to reach or pass
square 70 is rewarded with a pail of fresh carrots and lettuce. The course weaves its way up the side
of a slippery mountain, so occasionally the contenders lose ground.

A clock ticks once per second. With each tick of the clock, your app should adjust the posi-
tion of the animals according to the rules in Fig. 8.28. Use variables to keep track of the positions
of the animals (i.e., position numbers are 1–70). Start each animal at position 1 (the “starting
gate”). If an animal slips left before square 1, move it back to square 1.

Generate the percentages in Fig. 8.28 by producing a random integer i in the range
1 ≤ i ≤ 10. For the tortoise, perform a “fast plod” when 1 ≤ i ≤ 5, a “slip” when 6 ≤ i ≤ 7 or
a “slow plod” when 8 ≤ i ≤ 10. Use a similar technique to move the hare.

Begin the race by displaying

ON YOUR MARK, GET SET
BANG !!!!!
AND THEY'RE OFF !!!!!

Then, for each tick of the clock (i.e., each repetition of a loop), display a 70-position line showing
the letter T in the position of the tortoise and the letter H in the position of the hare. Occasionally,
the contenders will land on the same square. In this case, the tortoise bites the hare, and your app

Animal Move type Percentage of the time Actual move

Tortoise Fast plod 50% 3 squares to the right

Slip 20% 6 squares to the left

Slow plod 30% 1 square to the right

Hare Sleep 20% No move at all

Big hop 20% 9 squares to the right

Big slip 10% 12 squares to the left

Small hop 30% 1 square to the right

Small slip 20% 2 squares to the left

Fig. 8.28 | Rules for adjusting the positions of the tortoise and the hare.

344 Chapter 8 Arrays; Introduction to Exception Handling

should display OUCH!!! beginning at that position. All output positions other than the T, the H or
the OUCH!!! (in case of a tie) should be blank.

After each line is displayed, test for whether either animal has reached or passed square 70. If
so, display the winner and terminate the simulation. If the tortoise wins, display TORTOISE WINS!!!
YAY!!! If the hare wins, display Hare wins. Yuch. If both animals win on the same tick of the
clock, you may want to favor the tortoise (the “underdog”), or you may want to display It's a tie.
If neither animal wins, perform the loop again to simulate the next tick of the clock. When you’re
ready to run your app, assemble a group of fans to watch the race. You’ll be amazed at how involved
your audience gets!

8.29 (Card Shuffling and Dealing) Modify the app of Fig. 8.11 to deal a five-card poker hand.
Then modify class DeckOfCards of Fig. 8.10 to include methods that determine whether a hand
contains

a) a pair
b) two pairs
c) three of a kind (e.g., three jacks)
d) four of a kind (e.g., four aces)
e) a flush (i.e., all five cards of the same suit)
f) a straight (i.e., five cards of consecutive face values)
g) a full house (i.e., two cards of one face value and three cards of another face value)

[Hint: Add properties Face and Suit to class Card of Fig. 8.9.]

8.30 (Card Shuffling and Dealing) Use the methods developed in Exercise 8.29 to write an app
that deals two five-card poker hands, evaluates each hand and determines which is better.

Special Section: Building Your Own Computer
In the next several problems, we take a temporary diversion from the world of high-level language
programming to “peel open” a computer and look at its internal structure. We introduce machine-
language programming and write several machine-language programs. To make this an especially
valuable experience, we then build a computer (through the technique of software-based simula-
tion) on which you can execute your machine-language programs.

8.31 (Machine-Language Programming) Let’s create a computer called the Simpletron. As its
name implies, it’s a simple machine, but powerful. The Simpletron runs programs written in the
only language it directly understands: Simpletron Machine Language, or SML for short.

The Simpletron contains an accumulator—a special register into which information is put
before the Simpletron uses it in calculations or examines it in various ways. All the information in
the Simpletron is handled in terms of words. A word is a signed four-digit decimal number, such as
+3364, -1293, +0007 and -0001. The Simpletron is equipped with a 100-word memory, and these
words are referenced by their location numbers 00, 01, …, 99.

Before running an SML program, we must load, or place, the code into memory. The first
instruction (or statement) of every SML program is always placed in location 00. The simulator
will start executing at this location.

Each instruction written in SML occupies one word of the Simpletron’s memory (hence,
instructions are signed four-digit decimal numbers). We shall assume that the sign of an SML instruc-
tion is always plus, but the sign of a data word may be either plus or minus. Each location in the Sim-
pletron’s memory may contain an instruction, a data value used by a program or an unused (and
hence undefined) area of memory. The first two digits of each SML instruction are the operation code
specifying the operation to be performed. SML operation codes are summarized in Fig. 8.29.

The last two digits of an SML instruction are the operand—the address of the memory loca-
tion containing the word to which the operation applies. Let’s consider several simple SML pro-
grams. The first SML program (Fig. 8.30) reads two numbers from the keyboard, then computes

Special Section: Building Your Own Computer 345

Operation code Meaning

Input/output operations:

const int READ = 10; Read a word from the keyboard into a specific location in
memory.

const int WRITE = 11; Write a word from a specific location in memory to the screen.

Load/store operations:

const int LOAD = 20; Load a word from a specific location in memory into the
accumulator.

const int STORE = 21; Store a word from the accumulator into a specific location in
memory.

Arithmetic operations:

const int ADD = 30; Add a word from a specific location in memory to the word
in the accumulator (leave the result in the accumulator).

const int SUBTRACT = 31; Subtract a word from a specific location in memory from the
word in the accumulator (leave the result in the accumulator).

const int DIVIDE = 32; Divide a word from a specific location in memory into the
word in the accumulator (leave result in the accumulator).

const int MULTIPLY = 33; Multiply a word from a specific location in memory by the
word in the accumulator (leave the result in the
accumulator).

Transfer of control operations:

const int BRANCH = 40; Branch to a specific location in memory.

const int BRANCHNEG = 41; Branch to a specific location in memory if the accumulator is
negative.

const int BRANCHZERO = 42; Branch to a specific location in memory if the accumulator is
zero.

const int HALT = 43; Halt. The program has completed its task.

Fig. 8.29 | Simpletron Machine Language (SML) operation codes.

Location Number Instruction

00 +1007 (Read A)

01 +1008 (Read B)

02 +2007 (Load A)

03 +3008 (Add B)

04 +2109 (Store C)

05 +1109 (Write C)

06 +4300 (Halt)

Fig. 8.30 | SML program that reads two integers and computes their sum. (Part 1 of 2.)

346 Chapter 8 Arrays; Introduction to Exception Handling

and displays their sum. The instruction +1007 reads the first number from the keyboard and places
it into location 07 (which has been initialized to 0). Then instruction +1008 reads the next number
into location 08. The load instruction, +2007, puts the first number into the accumulator, and the
add instruction, +3008, adds the second number to the number in the accumulator. All SML arith-
metic instructions leave their results in the accumulator. The store instruction, +2109, places the result
in memory location 09, from which the write instruction, +1109, takes the number and displays it
(as a signed four-digit decimal number). The halt instruction, +4300, terminates execution.

The second SML program (Fig. 8.31) reads two numbers from the keyboard and determines
and displays the larger value. Note the use of the instruction +4107 as a conditional transfer of con-
trol, much the same as C#’s if statement.

Now write SML programs to accomplish each of the following tasks:
a) Use a sentinel-controlled loop to read positive numbers and compute and display their

sum. Terminate input when a negative number is entered.
b) Use a counter-controlled loop to read seven numbers, some positive and some negative,

then compute and display their average.
c) Read a series of numbers, then determine and display the largest number. The first

number read indicates how many numbers should be processed.

8.32 (Computer Simulator) In this problem, you’re going to build your own computer. No,
you’ll not be soldering components together. Rather, you’ll use the powerful technique of software-
based simulation to create an object-oriented software model of the Simpletron of Exercise 8.31. Your

07 +0000 (Variable A)

08 +0000 (Variable B)

09 +0000 (Result C)

Location Number Instruction

00 +1009 (Read A)

01 +1010 (Read B)

02 +2009 (Load A)

03 +3110 (Subtract B)

04 +4107 (Branch negative to 07)

05 +1109 (Write A)

06 +4300 (Halt)

07 +1110 (Write B)

08 +4300 (Halt)

09 +0000 (Variable A)

10 +0000 (Variable B)

Fig. 8.31 | SML program that reads two integers and determines the larger.

Location Number Instruction

Fig. 8.30 | SML program that reads two integers and computes their sum. (Part 2 of 2.)

Special Section: Building Your Own Computer 347

Simpletron simulator will turn the computer you’re using into a Simpletron, and you’ll actually be
able to run, test and debug the SML programs you wrote in Exercise 8.31.

When you run your Simpletron simulator, it should begin by displaying:

*** Welcome to Simpletron! ***
*** Please enter your program one instruction ***
*** (or data word) at a time into the input ***
*** text field. I will display the location ***
*** number and a question mark (?). You then ***
*** type the word for that location. Enter ***
*** -99999 to stop entering your program. ***

Your app should simulate the memory of the Simpletron with a one-dimensional array memory of
100 elements. Now assume that the simulator is running, and let’s examine the dialog as we enter
the program of Fig. 8.31 (Exercise 8.31):

00 ? +1009
01 ? +1010
02 ? +2009
03 ? +3110
04 ? +4107
05 ? +1109
06 ? +4300
07 ? +1110
08 ? +4300
09 ? +0000
10 ? +0000
11 ? -99999

Your program should display the memory location followed by a question mark. Each of the values
to the right of a question mark is input by the user. When the sentinel value -99999 is input, the
program should display the following:

*** Program loading completed ***
*** Program execution begins ***

The SML program has now been placed (or loaded) in array memory. Now the Simpletron exe-
cutes the SML program. Execution begins with the instruction in location 00 and, as in C#, con-
tinues sequentially, unless directed to some other part of the program by a transfer of control.

Use variable accumulator to represent the accumulator register. Use variable instruction-

Counter to keep track of the location in memory that contains the instruction being performed.
Use variable operationCode to indicate the operation currently being performed (i.e., the left two
digits of the instruction word). Use variable operand to indicate the memory location on which the
current instruction operates. Thus, operand is the rightmost two digits of the instruction currently
being performed. Do not execute instructions directly from memory. Rather, transfer the next
instruction to be performed from memory to a variable called instructionRegister. Then “pick
off” the left two digits and place them in operationCode, and “pick off ” the right two digits and
place them in operand. When the Simpletron begins execution, the special registers are all initial-
ized to zero.

Now, let’s “walk through” execution of the first SML instruction, +1009 in memory location
00. This procedure is called an instruction execution cycle.

The instructionCounter tells us the location of the next instruction to be performed. We
fetch the contents of that location from memory by using the C# statement

instructionRegister = memory[instructionCounter];

The operation code and the operand are extracted from the instruction register by the statements

operationCode = instructionRegister / 100;
operand = instructionRegister % 100;

348 Chapter 8 Arrays; Introduction to Exception Handling

Now the Simpletron must determine that the operation code is actually a read (versus a write, a
load, or whatever). A switch differentiates among the 12 operations of SML. In the switch state-
ment, the behavior of various SML instructions is simulated as shown in Fig. 8.32. We discuss
branch instructions shortly and leave the others to you.

When the SML program completes execution, the name and contents of each register, as well
as the complete contents of memory, should be displayed. This is often called a memory dump. To
help you program your dump method, a sample dump format is shown in Fig. 8.33. A dump after
executing a Simpletron program would show the actual values of instructions and data values at the
moment execution terminated.

Let’s proceed with the execution of our program’s first instruction—namely, the +1009 in loca-
tion 00. As we’ve indicated, the switch statement simulates this task by prompting the user to enter
a value, reading the value and storing it in memory location memory[operand]. The value is then
read into location 09.

At this point, simulation of the first instruction is completed. All that remains is to prepare
the Simpletron to execute the next instruction. Since the instruction just performed was not a
transfer of control, we need merely increment the instructionCounter.

Instruction Description

read: Display the prompt "Enter an integer", then input the integer and store it
in location memory[operand].

load: accumulator = memory[operand];

add: accumulator += memory[operand];

halt: This instruction displays the message
*** Simpletron execution terminated ***

Fig. 8.32 | Behavior of several SML instructions in the Simpletron.

REGISTERS:
accumulator +0000
instructionCounter 00
instructionRegister +0000
operationCode 00
operand 00

MEMORY:
0 1 2 3 4 5 6 7 8 9

0 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
10 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
20 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
30 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
40 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
50 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
60 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
70 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
80 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
90 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000

Fig. 8.33 | A sample memory dump.

Special Section: Building Your Own Computer 349

This action completes the simulated execution of the first instruction. The entire process (i.e., the
instruction execution cycle) begins anew with the fetch of the next instruction to execute.

Now let’s consider how the branching instructions—the transfers of control—are simulated.
All we need to do is adjust the value in the instruction counter appropriately. Therefore, the
unconditional branch instruction (40) is simulated within the switch as

instructionCounter = operand;

The conditional “branch if accumulator is zero” instruction is simulated as

if (accumulator == 0)
instructionCounter = operand;

At this point, you should implement your Simpletron simulator and run each of the SML
programs you wrote in Exercise 8.31. If you desire, you may embellish SML with additional fea-
tures and provide for these features in your simulator.

Your simulator should check for various types of errors. During the program-loading phase,
for example, each number the user types into the Simpletron’s memory must be in the range -9999
to +9999. Your simulator should test that each number entered is in this range and, if not, keep
prompting the user to re-enter the number until the user enters a correct number.

During the execution phase, your simulator should check for various serious errors, such as
attempts to divide by zero, attempts to execute invalid operation codes and accumulator overflows
(i.e., arithmetic operations resulting in values larger than +9999 or smaller than -9999). Such seri-
ous errors are called fatal errors. When a fatal error is detected, your simulator should display an
error message, such as

*** Attempt to divide by zero ***
*** Simpletron execution abnormally terminated ***

and should display a full computer dump in the format we discussed previously. This treatment
will help the user locate the error in the program.

8.33 (Project: Simpletron Simulator Modifications) In Exercise 8.32, you wrote a software sim-
ulation of a computer that executes programs written in Simpletron Machine Language (SML). In
this exercise, we propose several modifications and enhancements to the Simpletron Simulator.

a) Extend the Simpletron Simulator’s memory to contain 1000 memory locations to en-
able the Simpletron to handle larger programs.

b) Allow the simulator to perform remainder calculations. This modification requires an
additional SML instruction.

c) Allow the simulator to perform exponentiation calculations. This modification requires
an additional SML instruction.

d) Modify the simulator to use hexadecimal values rather than integer values to represent
SML instructions.

e) Modify the simulator to allow output of a newline. This modification requires an addi-
tional SML instruction.

f) Modify the simulator to process floating-point values in addition to integer values.
g) Modify the simulator to handle string input. [Hint: Each Simpletron word can be di-

vided into two groups, each holding a two-digit integer. Each two-digit integer repre-
sents the ASCII (see Appendix C) decimal equivalent of an uppercase character. Add a
machine-language instruction that will input a string and store the string beginning at
a specific Simpletron memory location. The first half of the word at that location will
be a count of the number of characters in the string (i.e., the length of the string). Each
succeeding half-word contains one ASCII character expressed as two decimal digits.
The machine-language instruction converts each character into its ASCII equivalent
and assigns it to a half-word.]

350 Chapter 8 Arrays; Introduction to Exception Handling

h) Modify the simulator to handle output of uppercase strings stored in the format of Part
g. [Hint: Add a machine-language instruction that will display a string beginning at a
certain Simpletron memory location. The first half of the word at that location is a
count of the number of characters in the string (i.e., the length of the string). Each suc-
ceeding half-word contains one ASCII character expressed as two decimal digits. The
machine-language instruction checks the length and displays the string by translating
each two-digit number into its equivalent character.]

Making a Difference Exercise
8.34 (Polling) The Internet and the web are enabling more people to network, join a cause, voice
opinions, and so on. The presidential candidates in 2012 used the Internet intensively to get out
their messages and raise money for their campaigns. In this exercise, you’ll write a simple polling
program that allows users to rate five social-consciousness issues from 1 (least important) to 10
(most important). Pick five causes that are important to you (for example, political issues, global
environmental issues). Use a one-dimensional array topics (of type String) to store the five causes.
To summarize the survey responses, use a 5-row, 10-column two-dimensional array responses (of
type Integer), each row corresponding to an element in the topics array. When the program runs,
it should ask the user to rate each issue. Have your friends and family respond to the survey. Then
have the program display a summary of the results, including:

a) A tabular report with the five topics down the left side and the 10 ratings across the top,
listing in each column the number of ratings received for each topic.

b) To the right of each row, show the average of the ratings for that issue.
c) Which issue received the highest point total? Display both the issue and the point total.
d) Which issue received the lowest point total? Display both the issue and the point total.

9Introduction to LINQ and
the List Collection

To write it, it took three months;
to conceive it three minutes; to
collect the data in it—all my
life.
—F. Scott Fitzgerald

You shall listen to all sides and
filter them from your self.
—Walt Whitman

The portraitist can select one
tiny aspect of everything shown
at a moment to incorporate into
the final painting.
—Robert Nozick

List, list, O, list!
—William Shakespeare

O b j e c t i v e s
In this chapter you’ll:

� Learn basic LINQ concepts.

� Query an array using LINQ.

� Learn basic .NET collections
concepts.

� Create and use a generic
List collection.

� Query a generic List
collection using LINQ.

352 Chapter 9 Introduction to LINQ and the List Collection

9.1 Introduction
Chapter 8 introduced arrays—simple data structures used to store items of a specific type.
Although commonly used, arrays have limited capabilities. For instance, you must specify
an array’s size, and if at execution time, you wish to modify it, you must do so manually
by creating a new array or by using class Array’s Resize method, which incurs the over-
head of creating a new array and copying the existing elements into the new array for you.

In this chapter, we introduce a set of prepackaged data structures—the .NET Frame-
work’s collection classes—that offer greater capabilities than traditional arrays. They’re
reusable, reliable, powerful and efficient and have been carefully designed and tested to
ensure correctness and good performance. This chapter focuses on the List collection. A
List is similar to an array but provides additional functionality, such as dynamic
resizing—a List can increase its size when items are added to it and decrease its size when
items are removed. We use the List collection to implement several examples similar to
those used in the preceding chapter.

Large amounts of data that need to persist beyond an app’s execution are typically stored
in a database—an organized collection of data. (We discuss databases in detail in
Chapter 22.) A database management system (DBMS) provides mechanisms for storing, orga-
nizing, retrieving and modifying data in the database. A language called SQL—pronounced
“sequel”—is the international standard used to perform queries (i.e., to request information
that satisfies given criteria) and to manipulate data. For years, programs accessing a relational
database passed SQL queries to the database management system, then processed the results.
This chapter introduces C#’s new LINQ (Language Integrated Query) capabilities. LINQ
allows you to write query expressions, similar to SQL queries, that retrieve information from
a variety of data sources, not just databases. We use LINQ to Objects in this chapter to query
arrays and Lists, selecting elements that satisfy a set of conditions—this is known as fil-
tering. Figure 9.1 shows where and how we use LINQ throughout the book.

9.1 Introduction
9.2 Querying an Array of int Values

Using LINQ
9.3 Querying an Array of Employee

Objects Using LINQ

9.4 Introduction to Collections
9.5 Querying a Generic Collection Using

LINQ
9.6 Wrap-Up
9.7 Deitel LINQ Resource Center

Summary | Terminology | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

Chapter Used to

Chapter 9, Introduction to LINQ and
the List Collection

Query arrays and Lists.

Chapter 16, Strings and Characters: A
Deeper Look

Select GUI controls in a Windows Forms app
(located in the online section of the chapter).

Fig. 9.1 | LINQ usage throughout the book. (Part 1 of 2.)

9.2 Querying an Array of int Values Using LINQ 353

LINQ Providers
The syntax of LINQ is built into C#, but LINQ queries may be used in many different
contexts because of libraries known as providers. A LINQ provider is a set of classes that
implement LINQ operations and enable programs to interact with data sources to perform
tasks such as sorting, grouping and filtering elements.

In this book, we discuss LINQ to Entities and LINQ to XML, which allow you to query
databases and XML documents using LINQ. These providers, along with LINQ to
Objects, mentioned above, are included with C# and the .NET Framework. There are
many providers that are more specialized, allowing you to interact with a specific website
or data format. Many LINQ providers are available. Be sure to check out the open source
site codeplex.com. Simply search for “LINQ providers” on the site.

9.2 Querying an Array of int Values Using LINQ
Figure 9.2 demonstrates querying an array of integers using LINQ. Repetition statements
that filter arrays focus on the process of getting the results—iterating through the elements
and checking whether they satisfy the desired criteria. LINQ specifies the conditions that
selected elements must satisfy. This is known as declarative programming—as opposed to
imperative programming (which we’ve been doing so far) in which you specify the actual
steps to perform a task. The query in lines 20–22 specifies that the results should consist
of all the ints in the values array that are greater than 4. It does not specify how those re-
sults are obtained—the C# compiler generates all the necessary code, which is one of the
great strengths of LINQ. To use LINQ to Objects, you must import the System.Linq
namespace (line 4).

Chapter 17, Files and Streams Search a directory and manipulate text files.

Chapter 22, Databases and LINQ Retrieve information from a database.

Chapter 23, Web App Development
with ASP.NET

Retrieve information from a database to be used in a
web-based app.

Chapter 24, XML and LINQ to XML Query an XML document.

Chapter 30, Web Services Query and update a database. Process XML returned
by WCF services.

1 // Fig. 9.2: LINQWithSimpleTypeArray.cs
2 // LINQ to Objects using an int array.
3 using System;
4
5

Fig. 9.2 | LINQ to Objects using an int array. (Part 1 of 3.)

Chapter Used to

Fig. 9.1 | LINQ usage throughout the book. (Part 2 of 2.)

using System.Linq;

354 Chapter 9 Introduction to LINQ and the List Collection

6 class LINQWithSimpleTypeArray
7 {
8 public static void Main(string[] args)
9 {

10 // create an integer array
11 int[] values = { 2, 9, 5, 0, 3, 7, 1, 4, 8, 5 };
12
13 // display original values
14 Console.Write("Original array:");
15 foreach (element in values)
16 Console.Write(" {0}", element);
17
18 // LINQ query that obtains values greater than 4 from the array
19 filtered =
20
21
22
23
24 // display filtered results
25 Console.Write("\nArray values greater than 4:");
26 foreach (var element in filtered)
27 Console.Write(" {0}", element);
28
29 // use orderby clause to original values in ascending order
30 var sorted =
31
32
33
34
35 // display sorted results
36 Console.Write("\nOriginal array, sorted:");
37 foreach (var element in sorted)
38 Console.Write(" {0}", element);
39
40 // sort the filtered results into descending order
41 var sortFilteredResults =
42
43
44
45
46 // display the sorted results
47 Console.Write(
48 "\nValues greater than 4, descending order (separately):");
49 foreach (var element in sortFilteredResults)
50 Console.Write(" {0}", element);
51
52 // filter original array and sort results in descending order
53 var sortAndFilter =
54
55
56
57
58

Fig. 9.2 | LINQ to Objects using an int array. (Part 2 of 3.)

var

var

from value in values
where value > 4

select value;

from value in values
orderby value
select value;

from value in filtered
orderby value descending

select value;

from value in values
where value > 4

orderby value descending

select value;

9.2 Querying an Array of int Values Using LINQ 355

The from Clause and Implicitly Typed Local Variables
A LINQ query begins with a from clause (line 20), which specifies a range variable (value)
and the data source to query (values). The range variable represents each item in the data
source (one at a time), much like the control variable in a foreach statement. We do not
specify the range variable’s type. Since it’s assigned one element at a time from the array
values, which is an int array, the compiler determines that the range variable value

should be of type int. This is a C# feature called implicitly typed local variables, which
enables the compiler to infer a local variable’s type based on the context in which it’s used.

Introducing the range variable in the from clause at the beginning of the query allows
the IDE to provide IntelliSense while you write the rest of the query. The IDE knows the
range variable’s type, so when you enter the range variable’s name followed by a dot (.) in
the code editor, the IDE can display the range variable’s methods and properties.

The var Keyword and Implicitly Typed Local Variables
You can also declare a local variable and let the compiler infer the variable’s type based on
the variable’s initializer. To do so, the var keyword is used in place of the variable’s type
when declaring the variable. Consider the declaration

Here, the compiler infers that the variable x should be of type int, because the compiler
assumes that whole-number values, like 7, are of type int. Similarly, in the declaration

the compiler infers that y should be of type double, because the compiler assumes that
floating-point number values, like -123.45, are of type double. Typically, implicitly typed
local variables are used for more complex types, such as the collections of data returned by
LINQ queries. We use this feature in lines 19, 30, 41 and 53 to let the compiler determine
the type of each variable that stores the results of a LINQ query. We also use this feature
to declare the control variable in the foreach statements at lines 15–16, 26–27, 37–38,
49–50 and 62–63. In each case, the compiler infers that the control variable is of type int
because the array values and the LINQ query results all contain int values.

59 // display the filtered and sorted results
60 Console.Write(
61 "\nValues greater than 4, descending order (one query):");
62 foreach (var element in sortAndFilter)
63 Console.Write(" {0}", element);
64
65 Console.WriteLine();
66 } // end Main
67 } // end class LINQWithSimpleTypeArray

Original array: 2 9 5 0 3 7 1 4 8 5
Array values greater than 4: 9 5 7 8 5
Original array, sorted: 0 1 2 3 4 5 5 7 8 9
Values greater than 4, descending order (separately): 9 8 7 5 5
Values greater than 4, descending order (one query): 9 8 7 5 5

var x = 7;

var y = -123.45;

Fig. 9.2 | LINQ to Objects using an int array. (Part 3 of 3.)

356 Chapter 9 Introduction to LINQ and the List Collection

The where Clause
If the condition in the where clause (line 21) evaluates to true, the element is selected—
i.e., it’s included in the results. Here, the ints in the array are included only if they’re
greater than 4. An expression that takes an element of a collection and returns true or
false by testing a condition on that element is known as a predicate.

The select Clause
For each item in the data source, the select clause (line 22) determines what value ap-
pears in the results. In this case, it’s the int that the range variable currently represents. A
LINQ query typically ends with a select clause.

Iterating Through the Results of the LINQ Query
Lines 26–27 use a foreach statement to display the query results. As you know, a foreach
statement can iterate through the contents of an array, allowing you to process each ele-
ment in the array. Actually, the foreach statement can iterate through the contents of ar-
rays, collections and the results of LINQ queries. The foreach statement in lines 26–27
iterates over the query result filtered, displaying each of its items.

LINQ vs. Repetition Statements
It would be simple to display the integers greater than 4 using a repetition statement that
tests each value before displaying it. However, this would intertwine the code that selects
elements and the code that displays them. With LINQ, these are kept separate, making
the code easier to understand and maintain.

The orderby Clause
The orderby clause (line 32) sorts the query results in ascending order. Lines 43 and 56
use the descending modifier in the orderby clause to sort the results in descending order.
An ascending modifier also exists but isn’t normally used, because it’s the default. Any
value that can be compared with other values of the same type may be used with the or-
derby clause. A value of a simple type (e.g., int) can always be compared to another value
of the same type; we’ll say more about comparing values of reference types in Chapter 12.

The queries in lines 42–44 and 54–57 generate the same results, but in different ways.
The first query uses LINQ to sort the results of the query from lines 20–22. The second
query uses both the where and orderby clauses. Because queries can operate on the results
of other queries, it’s possible to build a query one step at a time, and pass the results of
queries between methods for further processing.

More on Implicitly Typed Local Variables
Implicitly typed local variables can also be used to initialize arrays without explicitly giving
their type. For example, the following statement creates an array of int values:

Note that there are no square brackets on the left side of the assignment operator, and that
new[] is used to specify that the variable is an array.

An Aside: Interface IEnumerable<T>
As we mentioned, the foreach statement can iterate through the contents of arrays, collec-
tions and LINQ query results. Actually, foreach iterates over any so-called IEnumerable<T>
object, which just happens to be what most LINQ queries return.

var array = new[] { 32, 27, 64, 18, 95, 14, 90, 70, 60, 37 };

9.3 Querying an Array of Employee Objects Using LINQ 357

IEnumerable<T> is an interface. Interfaces define and standardize the ways in which
people and systems can interact with one another. For example, the controls on a radio
serve as an interface between radio users and the radio’s internal components. The controls
allow users to perform a limited set of operations (e.g., changing the station, adjusting the
volume, and choosing between AM and FM), and different radios may implement the
controls in different ways (e.g., using push buttons, dials or voice commands). The inter-
face specifies what operations a radio permits users to perform but does not specify how
the operations are implemented. Similarly, the interface between a driver and a car with a
manual transmission includes the steering wheel, the gear shift, the clutch, the gas pedal
and the brake pedal. This same interface is found in nearly all manual-transmission cars,
enabling someone who knows how to drive one manual-transmission car to drive another.

Software objects also communicate via interfaces. A C# interface describes a set of
members that can be called on an object—to tell the object, for example, to perform some
task or return some piece of information. The IEnumerable<T> interface describes the
functionality of any object that can be iterated over and thus offers members to access each
element. A class that implements an interface must define each member in the interface
with a signature identical to the one in the interface definition. Implementing an interface
is like signing a contract with the compiler that states, “I will declare all the members spec-
ified by the interface.” Chapter 12 covers use of interfaces in more detail, as well as how
to define your own interfaces.

Arrays are IEnumerable<T> objects, so a foreach statement can iterate over an array’s
elements. Similarly, each LINQ query returns an IEnumerable<T> object. Therefore, you
can use a foreach statement to iterate over the results of any LINQ query. The notation
<T> indicates that the interface is a generic interface that can be used with any type of data
(for example, ints, strings or Employees). You’ll learn more about the <T> notation in
Section 9.4. You’ll learn more about interfaces in Section 12.7.

9.3 Querying an Array of Employee Objects Using LINQ
LINQ is not limited to querying arrays of simple types such as ints. It can be used with
most data types, including strings and user-defined classes. It cannot be used when a que-
ry does not have a defined meaning—for example, you cannot use orderby on objects that
are not comparable. Comparable types in .NET are those that implement the IComparable
interface, which is discussed in Section 20.4. All built-in types, such as string, int and
double implement IComparable. Figure 9.3 presents the Employee class. Figure 9.4 uses
LINQ to query an array of Employee objects.

1 // Fig. 9.3: Employee.cs
2 // Employee class with FirstName, LastName and MonthlySalary properties.
3 public class Employee
4 {
5 private decimal monthlySalaryValue; // monthly salary of employee
6
7 // auto-implemented property FirstName
8 public string FirstName { get; set; }
9

Fig. 9.3 | Employee class. (Part 1 of 2.)

358 Chapter 9 Introduction to LINQ and the List Collection

10 // auto-implemented property LastName
11 public string LastName { get; set; }
12
13 // constructor initializes first name, last name and monthly salary
14 public Employee(string first, string last, decimal salary)
15 {
16 FirstName = first;
17 LastName = last;
18 MonthlySalary = salary;
19 } // end constructor
20
21 // property that gets and sets the employee's monthly salary
22 public decimal MonthlySalary
23 {
24 get

25 {
26 return monthlySalaryValue;
27 } // end get
28 set

29 {
30 if (value >= 0M) // if salary is nonnegative
31 {
32 monthlySalaryValue = value;
33 } // end if
34 } // end set
35 } // end property MonthlySalary
36
37 // return a string containing the employee's information
38 public override string ToString()
39 {
40 return string.Format("{0,-10} {1,-10} {2,10:C}",
41 FirstName, LastName, MonthlySalary);
42 } // end method ToString
43 } // end class Employee

1 // Fig. 9.4: LINQWithArrayOfObjects.cs
2 // LINQ to Objects using an array of Employee objects.
3 using System;
4 using System.Linq;
5
6 public class LINQWithArrayOfObjects
7 {
8 public static void Main(string[] args)
9 {

10 // initialize array of employees
11 Employee[] employees = {
12 new Employee("Jason", "Red", 5000M),
13 new Employee("Ashley", "Green", 7600M),
14 new Employee("Matthew", "Indigo", 3587.5M),

Fig. 9.4 | LINQ to Objects using an array of Employee objects. (Part 1 of 3.)

Fig. 9.3 | Employee class. (Part 2 of 2.)

9.3 Querying an Array of Employee Objects Using LINQ 359

15 new Employee("James", "Indigo", 4700.77M),
16 new Employee("Luke", "Indigo", 6200M),
17 new Employee("Jason", "Blue", 3200M),
18 new Employee("Wendy", "Brown", 4236.4M) }; // end init list
19
20 // display all employees
21 Console.WriteLine("Original array:");
22 foreach (var element in employees)
23 Console.WriteLine(element);
24
25 // filter a range of salaries using && in a LINQ query
26 var between4K6K =
27
28
29
30
31 // display employees making between 4000 and 6000 per month
32 Console.WriteLine(string.Format(
33 "\nEmployees earning in the range {0:C}-{1:C} per month:",
34 4000, 6000));
35 foreach (var element in between4K6K)
36 Console.WriteLine(element);
37
38 // order the employees by last name, then first name with LINQ
39 var nameSorted =
40
41
42
43
44 // header
45 Console.WriteLine("\nFirst employee when sorted by name:");
46
47 // attempt to display the first result of the above LINQ query
48 if ()
49 Console.WriteLine();
50 else

51 Console.WriteLine("not found");
52
53 // use LINQ to select employee last names
54 var lastNames =
55
56
57
58 // use method Distinct to select unique last names
59 Console.WriteLine("\nUnique employee last names:");
60 foreach (var element in)
61 Console.WriteLine(element);
62
63 // use LINQ to select first and last names
64 var names =
65
66
67

Fig. 9.4 | LINQ to Objects using an array of Employee objects. (Part 2 of 3.)

from e in employees
where e.MonthlySalary >= 4000M && e.MonthlySalary <= 6000M

select e;

from e in employees
orderby e.LastName, e.FirstName
select e;

nameSorted.Any()
nameSorted.First()

from e in employees
select e.LastName;

lastNames.Distinct()

from e in employees
select new { e.FirstName, Last = e.LastName };

360 Chapter 9 Introduction to LINQ and the List Collection

Accessing the Properties of a LINQ Query’s Range Variable
Line 28 of Fig. 9.4 shows a where clause that accesses the properties of the range variable.
In this example, the compiler infers that the range variable is of type Employee based on
its knowledge that employees was defined as an array of Employee objects (lines 11–18).
Any bool expression can be used in a where clause. Line 28 uses the conditional AND (&&)
operator to combine conditions. Here, only employees that have a salary between $4,000
and $6,000 per month, inclusive, are included in the query result, which is displayed in
lines 35–36.

Sorting a LINQ Query’s Results By Multiple Properties
Line 41 uses an orderby clause to sort the results according to multiple properties—spec-
ified in a comma-separated list. In this query, the employees are sorted alphabetically by

68 // display full names
69 Console.WriteLine("\nNames only:");
70 foreach (var element in names)
71 Console.WriteLine(element);
72
73 Console.WriteLine();
74 } // end Main
75 } // end class LINQWithArrayOfObjects

Original array:
Jason Red $5,000.00
Ashley Green $7,600.00
Matthew Indigo $3,587.50
James Indigo $4,700.77
Luke Indigo $6,200.00
Jason Blue $3,200.00
Wendy Brown $4,236.40

Employees earning in the range $4,000.00-$6,000.00 per month:
Jason Red $5,000.00
James Indigo $4,700.77
Wendy Brown $4,236.40

First employee when sorted by name:
Jason Blue $3,200.00

Unique employee last names:
Red
Green
Indigo
Blue
Brown

Names only:
{ FirstName = Jason, Last = Red }
{ FirstName = Ashley, Last = Green }
{ FirstName = Matthew, Last = Indigo }
{ FirstName = James, Last = Indigo }
{ FirstName = Luke, Last = Indigo }
{ FirstName = Jason, Last = Blue }
{ FirstName = Wendy, Last = Brown }

Fig. 9.4 | LINQ to Objects using an array of Employee objects. (Part 3 of 3.)

9.3 Querying an Array of Employee Objects Using LINQ 361

last name. Each group of Employees that have the same last name is then sorted within the
group by first name.

Any, First and Count Extension Methods
Line 48 introduces the query result’s Any method, which returns true if there’s at least one
element, and false if there are no elements. The query result’s First method (line 49)
returns the first element in the result. You should check that the query result is not empty
(line 48) before calling First.

We’ve not specified the class that defines methods First and Any. Your intuition
probably tells you they’re methods declared in the IEnumerable<T> interface, but they
aren’t. They’re actually extension methods—such methods can be used to enhance a class’s
capabilities without modifying the class’s definition. The LINQ extension methods can be
used as if they were methods of IEnumerable<T>.

LINQ defines many more extension methods, such as Count, which returns the
number of elements in the results. Rather than using Any, we could have checked that
Count was nonzero, but it’s more efficient to determine whether there’s at least one ele-
ment than to count all the elements. The LINQ query syntax is actually transformed by
the compiler into extension method calls, with the results of one method call used in the
next. It’s this design that allows queries to be run on the results of previous queries, as it
simply involves passing the result of a method call to another method.

Selecting a Property of an Object
Line 56 uses the select clause to select the range variable’s LastName property rather than
the range variable itself. This causes the results of the query to consist of only the last
names (as strings), instead of complete Employee objects. Lines 60–61 display the unique
last names. The Distinct extension method (line 60) removes duplicate elements, caus-
ing all elements in the result to be unique.

Creating New Types in the select Clause of a LINQ Query
The last LINQ query in the example (lines 65–66) selects the properties FirstName and
LastName. The syntax

creates a new object of an anonymous type (a type with no name), which the compiler
generates for you based on the properties listed in the curly braces ({}). In this case, the
anonymous type consists of properties for the first and last names of the selected Employee.
The LastName property is assigned to the property Last in the select clause. This shows
how you can specify a new name for the selected property. If you don’t specify a new name,
the property’s original name is used—this is the case for FirstName in this example. The
preceding query is an example of a projection—it performs a transformation on the data.
In this case, the transformation creates new objects containing only the FirstName and
Last properties. Transformations can also manipulate the data. For example, you could
give all employees a 10% raise by multiplying their MonthlySalary properties by 1.1.

When creating a new anonymous type, you can select any number of properties by
specifying them in a comma-separated list within the curly braces ({}) that delineate the
anonymous type definition. In this example, the compiler automatically creates a new class
having properties FirstName and Last, and the values are copied from the Employee

new { e.FirstName, Last = e.LastName }

362 Chapter 9 Introduction to LINQ and the List Collection

objects. These selected properties can then be accessed when iterating over the results.
Implicitly typed local variables allow you to use anonymous types because you do not have
to explicitly state the type when declaring such variables.

When the compiler creates an anonymous type, it automatically generates a ToString
method that returns a string representation of the object. You can see this in the pro-
gram’s output—it consists of the property names and their values, enclosed in braces.
Anonymous types are discussed in more detail in Chapter 22.

9.4 Introduction to Collections
The .NET Framework Class Library provides several classes, called collections, used to store
groups of related objects. These classes provide efficient methods that organize, store and
retrieve your data without requiring knowledge of how the data is being stored. This
reduces app development time.

You’ve used arrays to store sequences of objects. Arrays do not automatically change
their size at execution time to accommodate additional elements—you must do so manu-
ally by creating a new array or by using the Array class’s Resize method.

The collection class List<T> (from namespace System.Collections.Generic) pro-
vides a convenient solution to this problem. The T is a placeholder—when declaring a new
List, replace it with the type of elements that you want the List to hold. This is similar
to specifying the type when declaring an array. For example,

declares list1 as a List collection that can store only int values, and

declares list2 as a List of strings. Classes with this kind of placeholder that can be used
with any type are called generic classes. Generic classes and additional generic collection
classes are discussed in Chapters 20 and 21, respectively. Figure 21.2 provides a table of col-
lection classes. Figure 9.5 shows some common methods and properties of class List<T>.

List< int > list1;

List< string > list2;

Method or
property Description

Add Adds an element to the end of the List.

Capacity Property that gets or sets the number of elements a List can store without
resizing.

Clear Removes all the elements from the List.

Contains Returns true if the List contains the specified element and false otherwise.

Count Property that returns the number of elements stored in the List.

IndexOf Returns the index of the first occurrence of the specified value in the List.

Insert Inserts an element at the specified index.

Remove Removes the first occurrence of the specified value.

Fig. 9.5 | Some methods and properties of class List<T>. (Part 1 of 2.)

9.4 Introduction to Collections 363

Figure 9.6 demonstrates dynamically resizing a List object. The Add and Insert

methods add elements to the List (lines 13–14). The Add method appends its argument
to the end of the List. The Insert method inserts a new element at the specified position.
The first argument is an index—as with arrays, collection indices start at zero. The second
argument is the value that’s to be inserted at the specified index. The indices of elements
at the specified index and above increase by one. This is usually slower than adding an ele-
ment to the end of the List.

RemoveAt Removes the element at the specified index.

RemoveRange Removes a specified number of elements starting at a specified index.

Sort Sorts the List.

TrimExcess Sets the Capacity of the List to the number of elements the List currently
contains (Count).

1 // Fig. 9.6: ListCollection.cs
2 // Generic List<T> collection demonstration.
3 using System;
4 using System.Collections.Generic;
5
6 public class ListCollection
7 {
8 public static void Main(string[] args)
9 {

10 // create a new List of strings
11 List< string > items = new List< string >();
12
13
14
15
16 // display the colors in the list
17 Console.Write(
18 "Display list contents with counter-controlled loop:");
19
20
21
22 // display colors using foreach
23 Console.Write(
24 "\nDisplay list contents with foreach statement:");
25 foreach (var item in items)
26 Console.Write(" {0}", item);
27
28 items.Add("green"); // add "green" to the end of the List
29 items.Add("yellow"); // add "yellow" to the end of the List
30

Fig. 9.6 | Generic List<T> collection demonstration. (Part 1 of 2.)

Method or
property Description

Fig. 9.5 | Some methods and properties of class List<T>. (Part 2 of 2.)

items.Add("red"); // append an item to the List
items.Insert(0, "yellow"); // insert the value at index 0

for (int i = 0; i < items.Count; i++)
Console.Write(" {0}", items[i]);

364 Chapter 9 Introduction to LINQ and the List Collection

Lines 19–20 display the items in the List. The Count property returns the number of
elements currently in the List. Lists can be indexed like arrays by placing the index in
square brackets after the List variable’s name. The indexed List expression can be used
to modify the element at the index. Lines 25–26 output the List by using a foreach state-
ment. More elements are then added to the List, and it’s displayed again (lines 28–34).

The Remove method is used to remove the first element with a specific value (line 36).
If no such element is in the List, Remove does nothing. A similar method, RemoveAt,
removes the element at the specified index (line 43). When an element is removed through

31 // display the List
32 Console.Write("\nList with two new elements:");
33 foreach (var item in items)
34 Console.Write(" {0}", item);
35
36
37
38 // display the List
39 Console.Write("\nRemove first instance of yellow:");
40 foreach (var item in items)
41 Console.Write(" {0}", item);
42
43
44
45 // display the List
46 Console.Write("\nRemove second list element (green):");
47 foreach (var item in items)
48 Console.Write(" {0}", item);
49
50 // check if a value is in the List
51 Console.WriteLine("\n\"red\" is {0}in the list",
52 ? string.Empty : "not ");
53
54 // display number of elements in the List
55
56
57 // display the capacity of the List
58
59 } // end Main
60 } // end class ListCollection

Display list contents with counter-controlled loop: yellow red
Display list contents with foreach statement: yellow red
List with two new elements: yellow red green yellow
Remove first instance of yellow: red green yellow
Remove second list element (green): red yellow
"red" is in the list
Count: 2
Capacity: 4

Fig. 9.6 | Generic List<T> collection demonstration. (Part 2 of 2.)

items.Remove("yellow"); // remove the first "yellow"

items.RemoveAt(1); // remove item at index 1

items.Contains("red")

Console.WriteLine("Count: {0}", items.Count);

Console.WriteLine("Capacity: {0}", items.Capacity);

9.5 Querying a Generic Collection Using LINQ 365

either of these methods, the indices of all elements above that index decrease by one—the
opposite of the Insert method.

Line 52 uses the Contains method to check if an item is in the List. The Contains
method returns true if the element is found in the List, and false otherwise. The
method compares its argument to each element of the List in order until the item is
found, so using Contains on a large List is inefficient.

Lines 55 and 58 display the List’s Count and Capacity. Recall that the Count prop-
erty (line 55) indicates the number of items in the List. The Capacity property (line 58)
indicates how many items the List can hold without having to grow. When the List
grows, it must create a larger internal array and copy each element to the new array. This
is a time-consuming operation. It would be inefficient for the List to grow each time an
element is added. Instead, the List grows only when an element is added and the Count
and Capacity properties are equal—there’s no space for the new element.

9.5 Querying a Generic Collection Using LINQ
You can use LINQ to Objects to query Lists just as arrays. In Fig. 9.7, a List of strings
is converted to uppercase and searched for those that begin with "R".

1 // Fig. 9.7: LINQWithListCollection.cs
2 // LINQ to Objects using a List< string >.
3 using System;
4 using System.Linq;
5 using System.Collections.Generic;
6
7 public class LINQWithListCollection
8 {
9 public static void Main(string[] args)

10 {
11 // populate a List of strings
12 List< string > items = new List< string >();
13 items.Add("aQua"); // add "aQua" to the end of the List
14 items.Add("RusT"); // add "RusT" to the end of the List
15 items.Add("yElLow"); // add "yElLow" to the end of the List
16 items.Add("rEd"); // add "rEd" to the end of the List
17
18 // convert all strings to uppercase; select those starting with "R"
19 var startsWithR =
20 from item in items
21
22
23 orderby uppercaseString
24 select uppercaseString;
25
26 // display query results
27 foreach (var item in startsWithR)
28 Console.Write("{0} ", item);
29
30 Console.WriteLine(); // output end of line

Fig. 9.7 | LINQ to Objects using a List<string>. (Part 1 of 2.)

let uppercaseString = item.ToUpper()
where uppercaseString.StartsWith("R")

366 Chapter 9 Introduction to LINQ and the List Collection

Line 21 uses LINQ’s let clause to create a new range variable. This is useful if you
need to store a temporary result for use later in the LINQ query. Typically, let declares a
new range variable to which you assign the result of an expression that operates on the
query’s original range variable. In this case, we use string method ToUpper to convert
each item to uppercase, then store the result in the new range variable uppercaseString.
We then use the new range variable uppercaseString in the where, orderby and select
clauses. The where clause (line 22) uses string method StartsWith to determine whether
uppercaseString starts with the character "R". Method StartsWith performs a case-
sensitive comparison to determine whether a string starts with the string received as an
argument. If uppercaseString starts with "R", method StartsWith returns true, and the
element is included in the query results. More powerful string matching can be done
using the regular-expression capabilities introduced in Chapter 16, Strings and Characters:
A Deeper Look.

The query is created only once (lines 20–24), yet iterating over the results (lines 27–
28 and 36–37) gives two different lists of colors. This demonstrates LINQ’s deferred exe-
cution—the query executes only when you access the results—such as iterating over them
or using the Count method—not when you define the query. This allows you to create a
query once and execute it many times. Any changes to the data source are reflected in the
results each time the query executes.

There may be times when you do not want this behavior, and want to retrieve a collec-
tion of the results immediately. LINQ provides extension methods ToArray and ToList for
this purpose. These methods execute the query on which they’re called and give you the
results as an array or List<T>, respectively. These methods can also improve efficiency if
you’ll be iterating over the same results multiple times, as you execute the query only once.

Collection Initializers
C# has a feature called collection initializers, which provide a convenient syntax (similar
to array initializers) for initializing a collection. For example, lines 12–16 of Fig. 9.7 could
be replaced with the following statement:

31
32 items.Add("rUbY"); // add "rUbY" to the end of the List
33 items.Add("SaFfRon"); // add "SaFfRon" to the end of the List
34
35 // display updated query results
36 foreach (var item in startsWithR)
37 Console.Write("{0} ", item);
38
39 Console.WriteLine(); // output end of line
40 } // end Main
41 } // end class LINQWithListCollection

RED RUST
RED RUBY RUST

List< string > items =
new List< string > { "aQua", "RusT", "yElLow", "rEd" };

Fig. 9.7 | LINQ to Objects using a List<string>. (Part 2 of 2.)

9.6 Wrap-Up 367

9.6 Wrap-Up
This chapter introduced LINQ (Language Integrated Query), a powerful feature for que-
rying data. We showed how to filter an array or collection using LINQ’s where clause, and
how to sort the query results using the orderby clause. We used the select clause to select
specific properties of an object, and the let clause to introduce a new range variable to make
writing queries more convenient. The StartsWithmethod of class stringwas used to filter
strings starting with a specified character or series of characters. We used several LINQ
extension methods to perform operations not provided by the query syntax—the Distinct
method to remove duplicates from the results, the Any method to determine if the results
contain any items, and the First method to retrieve the first element in the results.

We introduced the List<T> generic collection, which provides all the functionality of
arrays, along with other useful capabilities such as dynamic resizing. We used method Add
to append new items to the end of the List, method Insert to insert new items into spec-
ified locations in the List, method Remove to remove the first occurrence of a specified
item, method RemoveAt to remove an item at a specified index and method Contains to
determine if an item was in the List. We used property Count to get the number of items
in the List, and property Capacity to determine the size the List can hold without
growing. We use more advanced features of LINQ in later chapters. In Chapter 10 we take
a deeper look at classes and objects.

9.7 Deitel LINQ Resource Center
We’ve created a LINQ Resource Center (www.deitel.com/LINQ/) that contains many
links to additional information, including blogs by Microsoft LINQ team members,
books, sample chapters, FAQs, tutorials, videos, webcasts and more.

Summary
Section 9.1 Introduction
• .NET’s collection classes provide reusable data structures that are reliable, powerful and efficient.

• Lists automatically increase their size to accommodate additional elements.

• Large amounts of data are often stored in a database—an organized collection of data. Today’s
most popular database systems are relational databases. SQL is the international standard lan-
guage used almost universally with relational databases to perform queries (i.e., to request infor-
mation that satisfies given criteria).

• LINQ allows you to write query expressions (similar to SQL queries) that retrieve information
from a wide variety of data sources. You can query arrays and Lists, selecting elements that satisfy
a set of conditions—this is known as filtering.

• A LINQ provider is a set of classes that implement LINQ operations and enable programs to
interact with data sources to perform tasks such as sorting, grouping and filtering elements.

Section 9.2 Querying an Array of int Values Using LINQ
• Repetition statements focus on the process of iterating through elements. LINQ specifies the

conditions that selected elements must satisfy, not the steps necessary to get the results.

• The System.Linq namespace contains the classes for LINQ to Objects.

www.deitel.com/LINQ/

368 Chapter 9 Introduction to LINQ and the List Collection

• A from clause specifies a range variable and the data source to query. The range variable represents
each item in the data source (one at a time), much like the control variable in a foreach statement.

• If the condition in the where clause evaluates to true for an element, it’s included in the results.

• The select clause determines what value appears in the results.

• A C# interface describes members that can be used to interact with an object.

• The IEnumerable<T> interface describes the functionality of any object that’s capable of being
iterated over and thus offers methods to access each element in some order.

• A class that implements an interface must define each member in the interface.

• Arrays and generic collections implement the IEnumerable<T> interface.

• A foreach statement can iterate over any object that implements the IEnumerable<T> or IEnu-
merable interface.

• A LINQ query returns an object that implements the IEnumerable<T> interface.

• The orderby clause sorts query results in ascending order by default. Results can also be sorted
in descending order using the descending modifier.

• C# provides implicitly typed local variables, which enable the compiler to infer a local variable’s
type based on the variable’s initializer.

• To distinguish such an initialization from a simple assignment statement, the var keyword is
used in place of the variable’s type.

• You can use local type inference with control variables in the header of a for or foreach statement.

• Implicitly typed local variables can be used to initialize arrays without explicitly giving their type.
To do so, use new[] to specify that the variable is an array.

Section 9.3 Querying an Array of Employee Objects Using LINQ
• LINQ can be used with collections of most data types.

• Any boolean expression can be used in a where clause.

• An orderby clause can sort the results according to multiple properties specified in a comma-sep-
arated list.

• Method Any returns true if there’s at least one element in the result; otherwise, it returns false.

• The First method returns the first element in the query result. You should check that the query
result is not empty before calling First.

• The Count method returns the number of elements in the query result.

• The Distinct method removes duplicate values from query results.

• You can select any number of properties (a projection) in a select clause by specifying them in
a comma-separated list in braces after the new keyword. The compiler automatically creates a new
class having these properties—called an anonymous type.

Section 9.4 Introduction to Collections
• The .NET collection classes provide efficient methods that organize, store and retrieve data with-

out requiring knowledge of how the data is being stored.

• Class List<T> is similar to an array but provides richer functionality, such as dynamic resizing.

• The Add method appends an element to the end of a List.

• The Insert method inserts a new element at a specified position in the List.

• The Count property returns the number of elements currently in a List.

• Lists can be indexed like arrays by placing the index in square brackets after the List object’s name.

Terminology 369

• The Remove method is used to remove the first element with a specific value.

• The RemoveAt method removes the element at the specified index.

• The Contains method returns true if the element is found in the List, and false otherwise.

• The Capacity property indicates how many items a List can hold without growing.

Section 9.5 Querying a Generic Collection Using LINQ
• LINQ to Objects can query Lists.

• LINQ’s let clause creates a new range variable. This is useful if you need to store a temporary
result for use later in the LINQ query.

• The StartsWith method of the string class determines whether a string starts with the string
passed to it as an argument.

• A LINQ query uses deferred execution—it executes only when you access the results, not when
you create the query.

Terminology
Add method of class List<T>
anonymous type
Any extension method for IEnumerable<T>
ascending modifier of the orderby clause
Capacity property of class List<T>
collection initializer
Contains method of class List<T>
Count extension method for IEnumerable<T>
Count property of class List<T>
declarative programming
deferred execution
descending modifier of the orderby clause
Distinct extension method for IEnumerable<T>
dynamic resizing
filtering a collection with LINQ
First extension method for IEnumerable<T>
from clause of a LINQ query
IEnumerable<T> interface
imperative programming
implicitly typed local variable

Insert method of class List<T>
interface
let clause of a LINQ query
LINQ (Language Integrated Query)
LINQ provider
LINQ to Objects
List<T> collection class
orderby clause of a LINQ query
predicate
projection
query expression
query using LINQ
range variable
Remove method of class List<T>
RemoveAt method of class List<T>
select clause of a LINQ query
StartsWith method of class string
ToUpper method of class string
var keyword
where clause of a LINQ query

Self-Review Exercises
9.1 Fill in the blanks in each of the following statements:

a) Use the property of the List class to find the number of elements in the List.
b) The LINQ clause is used for filtering.
c) are classes specifically designed to store groups of objects and provide methods

that organize, store and retrieve those objects.
d) To add an element to the end of a List, use the method.
e) To get only unique results from a LINQ query, use the method.

9.2 State whether each of the following is true or false. If false, explain why.
a) The orderby clause in a LINQ query can sort only in ascending order.
b) LINQ queries can be used on both arrays and collections.
c) The Remove method of the List class removes an element at a specific index.

370 Chapter 9 Introduction to LINQ and the List Collection

Answers to Self-Review Exercises
9.1 a) Count. b) where. c) Collections. d) Add. e) Distinct.

9.2 a) False. The descending modifier is used to make orderby sort in descending order.
b) True. c) False. Remove removes the first element equal to its argument. RemoveAt removes the el-
ement at a specific index.

Exercises
9.3 (Querying an Array of Invoice Objects) Use the class Invoice provided in the ex09_03 fold-
er with this chapter’s examples to create an array of Invoice objects. Use the sample data shown in
Fig. 9.8. Class Invoice includes four properties—a PartNumber (type int), a PartDescription (type
string), a Quantity of the item being purchased (type int) and a Price (type decimal). Perform
the following queries on the array of Invoice objects and display the results:

a) Use LINQ to sort the Invoice objects by PartDescription.
b) Use LINQ to sort the Invoice objects by Price.
c) Use LINQ to select the PartDescription and Quantity and sort the results by Quantity.
d) Use LINQ to select from each Invoice the PartDescription and the value of the In-

voice (i.e., Quantity * Price). Name the calculated column InvoiceTotal. Order the
results by Invoice value. [Hint: Use let to store the result of Quantity * Price in a new
range variable total.]

e) Using the results of the LINQ query in Part d, select the InvoiceTotals in the range
$200 to $500.

9.4 (Duplicate Word Removal) Write a console app that inputs a sentence from the user (as-
sume no punctuation), then determines and displays the nonduplicate words in alphabetical order.
Treat uppercase and lowercase letters the same. [Hint: You can use string method Split with no
arguments, as in sentence.Split(), to break a sentence into an array of strings containing the in-
dividual words. By default, Split uses spaces as delimiters. Use string method ToLower in the se-
lect and orderby clauses of your LINQ query to obtain the lowercase version of each word.]

9.5 (Sorting Letters and Removing Duplicates) Write a console app that inserts 30 random let-
ters into a List< char >. Perform the following queries on the List and display your results: [Hint:
Strings can be indexed like arrays to access a character at a specific index.]

a) Use LINQ to sort the List in ascending order.
b) Use LINQ to sort the List in descending order.
c) Display the List in ascending order with duplicates removed.

Part number Part description Quantity Price

83 Electric sander 7 57.98

24 Power saw 18 99.99

7 Sledge hammer 11 21.50

77 Hammer 76 11.99

39 Lawn mower 3 79.50

68 Screwdriver 106 6.99

56 Jig saw 21 11.00

3 Wrench 34 7.50

Fig. 9.8 | Sample data for Exercise 9.3.

10Classes and Objects:
A Deeper Look

But what, to serve
our private ends,
Forbids the cheating
of our friends?
—Charles Churchill

This above all: to thine own self
be true.
—William Shakespeare.

O b j e c t i v e s
In this chapter you’ll:

� Understand encapsulation
and data hiding.

� Use composition to allow a
class to have references to
objects of other classes as
members.

� Throw an exception to
indicate that an argument is
out of range.

� Use keyword this.

� Use static variables and
methods.

� Use readonly fields.

� Take advantage of C#’s
memory-management
features.

� Use the IDE’s Class View
and Object Browser
windows.

� Use object initializers to
create an object and initialize
it in the same statement.

372 Chapter 10 Classes and Objects: A Deeper Look

10.1 Introduction
In this chapter, we take a deeper look at building classes, controlling access to members of
a class and creating constructors. We discuss composition—a capability that allows a class
to have references to objects of other classes as members. We reexamine the use of proper-
ties. The chapter also discusses static class members and readonly instance variables in
detail. We investigate issues such as software reusability, data abstraction and encapsula-
tion. We also discuss several miscellaneous topics related to defining classes.

10.2 Time Class Case Study
Time1 Class Declaration
Our first example consists of classes Time1 (Fig. 10.1) and Time1Test (Fig. 10.2). Class
Time1 represents the time of day. Class Time1Test’s Main method creates an object of class
Time1 and invokes its methods. The output of this app appears in Fig. 10.2. [Note: C# has
the type DateTime for date and time manipulations. Our time examples are for demonstra-
tion purposes—you do not need to create your own types for dates and times.]

Class Time1 contains three private instance variables of type int (Fig. 10.1, lines 7–
9)—hour, minute and second—that represent the time in universal-time format (24-hour
clock format, in which hours are in the range 0–23). Class Time1 contains publicmethods
SetTime (lines 13–25), ToUniversalString (lines 28–32) and ToString (lines 35–40).
These are the public services or the public interface that this class provides to its clients.

10.1 Introduction
10.2 Time Class Case Study
10.3 Controlling Access to Members
10.4 Referring to the Current Object’s

Members with the this Reference
10.5 Time Class Case Study: Overloaded

Constructors
10.6 Default and Parameterless Constructors
10.7 Composition

10.8 Garbage Collection and Destructors
10.9 static Class Members

10.10 readonly Instance Variables
10.11 Data Abstraction and

Encapsulation
10.12 Class View and Object Browser

10.13 Object Initializers
10.14 Wrap-Up

Summary | Terminology | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

1 // Fig. 10.1: Time1.cs
2 // Time1 class declaration maintains the time in 24-hour format.
3 using System; // namespace containing ArgumentOutOfRangeException
4
5 public class Time1
6 {
7
8
9

Fig. 10.1 | Time1 class declaration maintains the time in 24-hour format. (Part 1 of 2.)

private int hour; // 0 - 23
private int minute; // 0 - 59
private int second; // 0 - 59

10.2 Time Class Case Study 373

In this example, class Time1 does not declare a constructor, so the class has a default
constructor that’s supplied by the compiler. Each instance variable implicitly receives the
default value 0 for an int. When instance variables are declared in the class body, they can
be initialized using the same initialization syntax as a local variable.

Method SetTime and Throwing Exceptions
Method SetTime (lines 13–25) is a public method that declares three int parameters and
uses them to set the time. Lines 16–17 test each argument to determine whether the value
is in the proper range, and, if so, lines 19–21 assign the values to the hour, minute and
second instance variables. The hour value (line 13) must be greater than or equal to 0 and
less than 24, because universal-time format represents hours as integers from 0 to 23 (e.g.,
1 PM is hour 13 and 11 PM is hour 23; midnight is hour 0 and noon is hour 12). Similarly,
both minute and second values must be greater than or equal to 0 and less than 60. For val-
ues outside these ranges, SetTime throws an exception of type ArgumentOutOfRangeEx-

ception (lines 23–24), which notifies the client code that an invalid argument was passed
to the method. As you learned in Chapter 8, you can use try...catch to catch exceptions
and attempt to recover from them, which we’ll do in Fig. 10.2. The throw statement (line

10
11 // set a new time value using universal time; throw an
12 // exception if the hour, minute or second is invalid
13 public void SetTime(int h, int m, int s)
14 {
15 // validate hour, minute and second
16 if ((h >= 0 && h < 24) && (m >= 0 && m < 60) &&
17 (s >= 0 && s < 60))
18 {
19 = h;
20 = m;
21 = s;
22 } // end if
23 else

24
25 } // end method SetTime
26
27 // convert to string in universal-time format (HH:MM:SS)
28 public string ToUniversalString()
29 {
30
31
32 } // end method ToUniversalString
33
34 // convert to string in standard-time format (H:MM:SS AM or PM)
35 public override string ToString()
36 {
37
38
39
40 } // end method ToString
41 } // end class Time1

Fig. 10.1 | Time1 class declaration maintains the time in 24-hour format. (Part 2 of 2.)

hour
minute
second

throw new ArgumentOutOfRangeException();

return string.Format("{0:D2}:{1:D2}:{2:D2}",
hour, minute, second);

return string.Format("{0}:{1:D2}:{2:D2} {3}",
((hour == 0 || hour == 12) ? 12 : hour % 12),
minute, second, (hour < 12 ? "AM" : "PM"));

374 Chapter 10 Classes and Objects: A Deeper Look

24) creates a new object of type ArgumentOutOfRangeException. The parentheses follow-
ing the class name indicate a call to the ArgumentOutOfRangeException constructor. After
the exception object is created, the throw statement immediately terminates method Set-
Time and the exception is returned to the code that attempted to set the time.

Method ToUniversalString

Method ToUniversalString (lines 28–32) takes no arguments and returns a string in
universal-time format, consisting of six digits—two for the hour, two for the minute and
two for the second. For example, if the time were 1:30:07 PM, method ToUniversal-

String would return 13:30:07. The return statement (lines 30–31) uses static method
Format of class string to return a string containing the formatted hour, minute and sec-
ond values, each with two digits and, where needed, a leading 0 (specified with the D2 for-
mat specifier—which pads the integer with leading 0s if it has less than two digits). Method
Format is similar to the string formatting in method Console.Write, except that Format
returns a formatted string rather than displaying it in a console window. The formatted
string is returned by method ToUniversalString.

Method ToString

Method ToString (lines 35–40) takes no arguments and returns a string in standard-
time format, consisting of the hour, minute and second values separated by colons and fol-
lowed by an AM or PM indicator (e.g., 1:27:06 PM). Like method ToUniversalString,
method ToString uses static string method Format to format the minute and second

as two-digit values with leading 0s, if necessary. Line 38 uses a conditional operator (?:)
to determine the value for hour in the string—if the hour is 0 or 12 (AM or PM), it appears
as 12—otherwise, it appears as a value from 1 to 11. The conditional operator in line 39
determines whether AM or PM will be returned as part of the string.

Recall from Section 7.4 that all objects in C# have a ToString method that returns a
string representation of the object. We chose to return a string containing the time in
standard-time format. Method ToString is called implicitly when an object’s value is
output with a format item in a call to Console.Write. Remember that to enable objects
to be converted to their string representations, we need to declare method ToString with
keyword override—the reason for this will become clear when we discuss inheritance in
Chapter 11.

Using Class Time1
As you learned in Chapter 4, each class you declare represents a new type in C#. Therefore,
after declaring class Time1, we can use it as a type in declarations such as

The Time1Test app class (Fig. 10.2) uses class Time1. Line 10 creates a Time1 object
and assigns it to local variable time. Operator new invokes class Time1’s default constructor,
since Time1 does not declare any constructors. Lines 13–17 output the time, first in uni-
versal-time format (by invoking time’s ToUniversalString method in line 14), then in
standard-time format (by explicitly invoking time’s ToString method in line 16) to con-
firm that the Time1 object was initialized properly. Line 20 invokes method SetTime of
the time object to change the time. Then lines 21–25 output the time again in both for-
mats to confirm that the time was set correctly.

Time1 sunset; // sunset can hold a reference to a Time1 object

10.2 Time Class Case Study 375

1 // Fig. 10.2: Time1Test.cs
2 // Time1 object used in an app.
3 using System;
4
5 public class Time1Test
6 {
7 public static void Main(string[] args)
8 {
9 // create and initialize a Time1 object

10
11
12 // output string representations of the time
13 Console.Write("The initial universal time is: ");
14 Console.WriteLine();
15 Console.Write("The initial standard time is: ");
16 Console.WriteLine();
17 Console.WriteLine(); // output a blank line
18
19 // change time and output updated time
20
21 Console.Write("Universal time after SetTime is: ");
22 Console.WriteLine();
23 Console.Write("Standard time after SetTime is: ");
24 Console.WriteLine();
25 Console.WriteLine(); // output a blank line
26
27 // attempt to set time with invalid values
28 try

29 {
30
31 } // end try
32 catch (ArgumentOutOfRangeException ex)
33 {
34 Console.WriteLine(ex.Message + "\n");
35 } // end catch
36
37 // display time after attempt to set invalid values
38 Console.WriteLine("After attempting invalid settings:");
39 Console.Write("Universal time: ");
40 Console.WriteLine();
41 Console.Write("Standard time: ");
42 Console.WriteLine();
43 } // end Main
44 } // end class Time1Test

The initial universal time is: 00:00:00
The initial standard time is: 12:00:00 AM

Universal time after SetTime is: 13:27:06
Standard time after SetTime is: 1:27:06 PM

Specified argument was out of the range of valid values.

Fig. 10.2 | Time1 object used in an app. (Part 1 of 2.)

Time1 time = new Time1(); // invokes Time1 constructor

time.ToUniversalString()

time.ToString()

time.SetTime(13, 27, 6);

time.ToUniversalString()

time.ToString()

time.SetTime(99, 99, 99);

time.ToUniversalString()

time.ToString()

376 Chapter 10 Classes and Objects: A Deeper Look

Calling Time Method SetTime with Invalid Values
To illustrate that method SetTime validates its arguments, line 30 calls method SetTime

with invalid arguments of 99 for the hour, minute and second. This statement is placed in
a try block (lines 28–31) in case SetTime throws an ArgumentOutOfRangeException,
which it will do since the arguments are all invalid. When this occurs, the exception is
caught at lines 32–35 and the exception’s Message property is displayed. Lines 38–42 out-
put the time again in both formats to confirm that SetTime did not change the time when
invalid arguments were supplied.

Notes on the Time1 Class Declaration
Consider several issues of class design with respect to class Time1. The instance variables
hour, minute and second are each declared private. The actual data representation used
within the class is of no concern to the class’s clients. For example, it would be perfectly
reasonable for Time1 to represent the time internally as the number of seconds since mid-
night or the number of minutes and seconds since midnight. Clients could use the same
public methods and properties to get the same results without being aware of this.
(Exercise 10.4 asks you to represent the time as the number of seconds since midnight and
show that indeed no change is visible to the clients of the class.)

10.3 Controlling Access to Members
The access modifiers public and private control access to a class’s variables, methods and
properties. (In Chapter 11, we’ll introduce the additional access modifier protected.) As
we stated in Section 10.2, the primary purpose of public methods is to present to the
class’s clients a view of the services the class provides (that is, the class’s public interface).
Clients of the class need not be concerned with how the class accomplishes its tasks. For

After attempting invalid settings:
Universal time: 13:27:06
Standard time: 1:27:06 PM

Software Engineering Observation 10.1
Classes simplify programming because the client can use only the public members exposed
by the class. Such members are usually client oriented rather than implementation
oriented. Clients are neither aware of, nor involved in, a class’s implementation. Clients
generally care about what the class does but not how the class does it. Clients do, of course,
care that the class operates correctly and efficiently.

Software Engineering Observation 10.2
Interfaces change less frequently than implementations. When an implementation
changes, implementation-dependent code must change accordingly. Hiding the
implementation reduces the possibility that other app parts become dependent on class-
implementation details.

Fig. 10.2 | Time1 object used in an app. (Part 2 of 2.)

10.4 Referring to the Current Object’s Members with the this Reference 377

this reason, a class’s private variables, properties and methods (i.e., the class’s implemen-
tation details) are not directly accessible to the class’s clients.

Figure 10.3 demonstrates that private class members are not directly accessible out-
side the class. Lines 9–11 attempt to directly access private instance variables hour,
minute and second of Time1 object time. When this app is compiled, the compiler gener-
ates error messages stating that these private members are not accessible. [Note: This app
uses the Time1 class from Fig. 10.1.]

Notice that members of a class—for instance, properties, methods and instance vari-
ables—do not need to be explicitly declared private. If a class member is not declared with
an access modifier, it has private access by default. For clarity, we always explicitly declare
private members.

10.4 Referring to the Current Object’s Members with the
this Reference
Every object can access a reference to itself with keyword this (also called the this refer-
ence). When a non-static method is called for a particular object, the method’s body im-
plicitly uses keyword this to refer to the object’s instance variables and other methods. As
you’ll see in Fig. 10.4, you can also use keyword this explicitly in a non-static method’s
body. Section 10.5 shows a more interesting use of keyword this. Section 10.9 explains
why keyword this cannot be used in a static method.

We now demonstrate implicit and explicit use of the this reference to enable class
ThisTest’s Main method to display the private data of a class SimpleTime object
(Fig. 10.4). For the sake of brevity, we declare two classes in one file—class ThisTest is
declared in lines 5–12, and class SimpleTime is declared in lines 15–48.

1 // Fig. 10.3: MemberAccessTest.cs
2 // Private members of class Time1 are not accessible outside the class.
3 public class MemberAccessTest
4 {
5 public static void Main(string[] args)
6 {
7 Time1 time = new Time1(); // create and initialize Time1 object
8
9 time.hour = 7; // error: hour has private access in Time1

10 time.minute = 15; // error: minute has private access in Time1
11 time.second = 30; // error: second has private access in Time1
12 } // end Main
13 } // end class MemberAccessTest

Fig. 10.3 | Private members of class Time1 are not accessible outside the class.

378 Chapter 10 Classes and Objects: A Deeper Look

1 // Fig. 10.4: ThisTest.cs
2 // this used implicitly and explicitly to refer to members of an object.
3 using System;
4
5 public class ThisTest
6 {
7 public static void Main(string[] args)
8 {
9 SimpleTime time = new SimpleTime(15, 30, 19);

10 Console.WriteLine(time.BuildString());
11 } // end Main
12 } // end class ThisTest
13
14 // class SimpleTime demonstrates the "this" reference
15 public class SimpleTime
16 {
17 private int hour; // 0-23
18 private int minute; // 0-59
19 private int second; // 0-59
20
21 // if the constructor uses parameter names identical to
22 // instance-variable names, the "this" reference is
23 // required to distinguish between names
24 public SimpleTime(int hour, int minute, int second)
25 {
26
27
28
29 } // end SimpleTime constructor
30
31 // use explicit and implicit "this" to call ToUniversalString
32 public string BuildString()
33 {
34 return string.Format("{0,24}: {1}\n{2,24}: {3}",
35 "this.ToUniversalString()", ,
36 "ToUniversalString()",);
37 } // end method BuildString
38
39 // convert to string in universal-time format (HH:MM:SS)
40 public string ToUniversalString()
41 {
42 // "this" is not required here to access instance variables,
43 // because method does not have local variables with same
44 // names as instance variables
45 return string.Format("{0:D2}:{1:D2}:{2:D2}",
46 , ,);
47 } // end method ToUniversalString
48 } // end class SimpleTime

this.ToUniversalString(): 15:30:19
ToUniversalString(): 15:30:19

Fig. 10.4 | this used implicitly and explicitly to refer to members of an object.

this.hour = hour; // set "this" object's hour instance variable
this.minute = minute; // set "this" object's minute
this.second = second; // set "this" object's second

this.ToUniversalString()
ToUniversalString()

this.hour this.minute this.second

10.5 Time Class Case Study: Overloaded Constructors 379

Class SimpleTime declares three private instance variables—hour, minute and second
(lines 17–19). The constructor (lines 24–29) receives three int arguments to initialize a
SimpleTime object. For the constructor we used parameter names that are identical to the
class’s instance-variable names (lines 17–19). We don’t recommend this practice, but we
intentionally did it here to hide the corresponding instance variables so that we could illus-
trate explicit use of the this reference. Recall from Section 7.11 that if a method contains
a local variable with the same name as a field, within that method the name refers to the
local variable rather than the field. In this case, the parameter hides the field in the method’s
scope. However, the method can use the this reference to refer to the hidden instance vari-
able explicitly, as shown in lines 26–28 for SimpleTime’s hidden instance variables.

Method BuildString (lines 32–37) returns a string created by a statement that uses
the this reference explicitly and implicitly. Line 35 uses the this reference explicitly to call
method ToUniversalString. Line 36 uses the this reference implicitly to call the same
method. Programmers typically do not use the this reference explicitly to reference other
methods in the current object. Also, line 46 in method ToUniversalString explicitly uses
the this reference to access each instance variable. This is not necessary here, because the
method does not have any local variables that hide the instance variables of the class.

Class ThisTest (lines 5–12) demonstrates class SimpleTime. Line 9 creates an
instance of class SimpleTime and invokes its constructor. Line 10 invokes the object’s
BuildString method, then displays the results.

10.5 Time Class Case Study: Overloaded Constructors
Next, we demonstrate a class with several overloaded constructors that enable objects of
that class to be conveniently initialized in different ways. To overload constructors, simply
provide multiple constructor declarations with different signatures.

Class Time2 with Overloaded Constructors
By default, instance variables hour, minute and second of class Time1 (Fig. 10.1) are initial-
ized to their default values of 0—midnight in universal time. Class Time1 doesn’t enable the
class’s clients to initialize the time with specific nonzero values. Class Time2 (Fig. 10.5) con-

Common Programming Error 10.1
It’s often a logic error when a method contains a parameter or local variable that has the
same name as an instance variable of the class. In such a case, use reference this if you
wish to access the instance variable of the class—otherwise, the method parameter or local
variable will be referenced.

Error-Prevention Tip 10.1
Avoid method-parameter names or local-variable names that conflict with field names.
This helps prevent subtle, hard-to-locate bugs.

Performance Tip 10.1
C# conserves memory by maintaining only one copy of each method per class—this method
is invoked by every object of the class. Each object, on the other hand, has its own copy of the
class’s instance variables (i.e., non-static variables). Each non-static method of the class
implicitly uses the this reference to determine the specific object of the class to manipulate.

380 Chapter 10 Classes and Objects: A Deeper Look

tains overloaded constructors. In this app, one constructor invokes the other constructor,
which in turn calls SetTime to set the hour, minute and second. The compiler invokes the
appropriate Time2 constructor by matching the number and types of the arguments speci-
fied in the constructor call with the number and types of the parameters specified in each
constructor declaration.

1 // Fig. 10.5: Time2.cs
2 // Time2 class declaration with overloaded constructors.
3 using System; // for class ArgumentOutOfRangeException
4
5 public class Time2
6 {
7 private int hour; // 0 - 23
8 private int minute; // 0 - 59
9 private int second; // 0 - 59

10
11 // constructor can be called with zero, one, two or three arguments
12
13
14
15
16
17 // Time2 constructor: another Time2 object supplied as an argument
18
19
20
21 // set a new time value using universal time; ensure that
22 // the data remains consistent by setting invalid values to zero
23 public void SetTime(int h, int m, int s)
24 {
25 Hour = h; // set the Hour property
26 Minute = m; // set the Minute property
27 Second = s; // set the Second property
28 } // end method SetTime
29
30 // property that gets and sets the hour
31 public int Hour
32 {
33 get

34 {
35 return hour;
36 } // end get
37 set

38 {
39 if (value >= 0 && value < 24)
40 hour = value;
41 else

42 throw new ArgumentOutOfRangeException(
43 "Hour", value, "Hour must be 0-23");
44 } // end set
45 } // end property Hour

Fig. 10.5 | Time2 class declaration with overloaded constructors. (Part 1 of 2.)

public Time2(int h = 0, int m = 0, int s = 0)
{

SetTime(h, m, s); // invoke SetTime to validate time
} // end Time2 three-argument constructor

public Time2(Time2 time)
: this(time.Hour, time.Minute, time.Second) { }

10.5 Time Class Case Study: Overloaded Constructors 381

46
47 // property that gets and sets the minute
48 public int Minute
49 {
50 get

51 {
52 return minute;
53 } // end get
54 set

55 {
56 if (value >= 0 && value < 60)
57 minute = value;
58 else

59 throw new ArgumentOutOfRangeException(
60 "Minute", value, "Minute must be 0-59");
61 } // end set
62 } // end property Minute
63
64 // property that gets and sets the second
65 public int Second
66 {
67 get

68 {
69 return second;
70 } // end get
71 set

72 {
73 if (value >= 0 && value < 60)
74 second = value;
75 else

76 throw new ArgumentOutOfRangeException(
77 "Second", value, "Second must be 0-59");
78 } // end set
79 } // end property Second
80
81 // convert to string in universal-time format (HH:MM:SS)
82 public string ToUniversalString()
83 {
84 return string.Format(
85 "{0:D2}:{1:D2}:{2:D2}", Hour, Minute, Second);
86 } // end method ToUniversalString
87
88 // convert to string in standard-time format (H:MM:SS AM or PM)
89 public override string ToString()
90 {
91 return string.Format("{0}:{1:D2}:{2:D2} {3}",
92 ((Hour == 0 || Hour == 12) ? 12 : Hour % 12),
93 Minute, Second, (Hour < 12 ? "AM" : "PM"));
94 } // end method ToString
95 } // end class Time2

Fig. 10.5 | Time2 class declaration with overloaded constructors. (Part 2 of 2.)

382 Chapter 10 Classes and Objects: A Deeper Look

Class Time2’s Parameterless Constructor
Lines 12–15 declare a constructor with three default parameters. This constructor is also
considered to be the class’s parameterless constructor because you can call the constructor
without arguments and the compiler will automatically provide the default parameter val-
ues. This constructor can also be called with one argument for the hour, two arguments
for the hour and minute, or three arguments for the hour, minute and second. This con-
structor calls SetTime to set the time.

Class Time2’s Constructor That Receives a Reference to Another Time2 Object
Lines 18–19 declare a Time2 constructor that receives a reference to a Time2 object. In this
case, the values from the Time2 argument are passed to the three-parameter constructor at
lines 12–15 to initialize the hour, minute and second. In this constructor, we use this in
a manner that’s allowed only in the constructor’s header. In line 19, the usual constructor
header is followed by a colon (:), then the keyword this. The this reference is used in
method-call syntax (along with the three int arguments) to invoke the Time2 constructor
that takes three int arguments (lines 12–15). The constructor passes the values of the time
argument’s Hour, Minute and Second properties to set the hour, minute and second of the
Time2 object being constructed. Additional initialization code can be placed in this con-
structor’s body and it will execute after the other constructor is called.

Constructor Initializers
The use of the this reference as shown in line 19 is called a constructor initializer. Con-
structor initializers are a popular way to reuse initialization code provided by one of the
class’s constructors rather than defining similar code in another constructor’s body. This
syntax makes the class easier to maintain, because one constructor reuses the other. If we
needed to change how objects of class Time2 are initialized, only the constructor at lines
12–15 would need to be modified. Even that constructor might not need modification—
it simply calls the SetTime method to perform the actual initialization, so it’s possible that
the changes the class might require would be localized to this method.

Line 19 could have directly accessed instance variables hour, minute and second of
the constructor’s time argument with the expressions time.hour, time.minute and
time.second—even though they’re declared as private variables of class Time2.

Class Time2’s SetTime Method
Method SetTime (lines 23–28) invokes the set accessors of the new properties Hour (lines
31–45), Minute (lines 48–62) and Second (lines 65–79), which ensure that the value sup-
plied for hour is in the range 0 to 23 and that the values for minute and second are each
in the range 0 to 59. If a value is out of range, each set accessor throws an ArgumentOutOf-

Common Programming Error 10.2
A constructor can call methods of its class. Be aware that the instance variables might not
yet be initialized, because the constructor is in the process of initializing the object. Using
instance variables before they have been initialized properly is a logic error.

Software Engineering Observation 10.3
When one object of a class has a reference to another object of the same class, the first object
can access all the second object’s data and methods (including those that are private).

10.5 Time Class Case Study: Overloaded Constructors 383

RangeException (lines 42–43, 59–60 and 76–77). In this example, we use the Argument-
OutOfRangeException constructor that receives three arguments—the name of the item
that was out of range, the value that was supplied for that item and an error message.

Notes Regarding Class Time2’s Methods, Properties and Constructors
Time2’s properties are accessed throughout the class’s body. Method SetTime assigns val-
ues to properties Hour, Minute and Second in lines 25–27, and methods ToUniversal-
String and ToString use properties Hour, Minute and Second in line 85 and lines 92–93,
respectively. These methods could have accessed the class’s private data directly. Howev-
er, consider changing the representation of the time from three int values (requiring 12
bytes of memory) to a single int value representing the total number of seconds that have
elapsed since midnight (requiring only 4 bytes of memory). If we make such a change, only
the bodies of the methods that access the private data directly would need to change—
in particular, the individual properties Hour, Minute and Second. There would be no need
to modify the bodies of methods SetTime, ToUniversalString or ToString, because they
do not access the private data directly. Designing the class in this manner reduces the
likelihood of programming errors when altering the class’s implementation.

Similarly, each constructor could be written to include a copy of the appropriate state-
ments from method SetTime. Doing so may be slightly more efficient, because the extra
constructor call and the call to SetTime are eliminated. However, duplicating statements
in multiple methods or constructors makes changing the class’s internal data representa-
tion more difficult and error-prone. Having one constructor call the other or even call
SetTime directly requires any changes to SetTime’s implementation to be made only once.

Using Class Time2’s Overloaded Constructors
Class Time2Test (Fig. 10.6) creates six Time2 objects (lines 9–13 and 42) to invoke the over-
loaded Time2 constructors. Lines 9–13 demonstrate passing arguments to the Time2 con-
structors. C# invokes the appropriate overloaded constructor by matching the number and
types of the arguments specified in the constructor call with the number and types of the pa-
rameters specified in each constructor declaration. Lines 9–12 each invoke the constructor
at lines 12–15 of Fig. 10.5. Line 9 of Fig. 10.6 invokes the constructor with no arguments,
which causes the compiler to supply the default value 0 for each of the three parameters. Line
10 invokes the constructor with one argument that represents the hour—the compiler sup-
plies the default value 0 for the minute and second. Line 11 invokes the constructor with two
arguments that represent the hour and minute—the compiler supplies the default value 0 for
the second. Line 12 invoke the constructor with values for all three parameters. Line 13 in-
vokes the constructor at lines 18–19 of Fig. 10.5. Lines 16–37 display the string represen-
tation of each initialized Time2 object to confirm that each was initialized properly.

Line 42 attempts to intialize t6 by creating a new Time2 object and passing three
invalid values to the constructor. When the constructor attempts to use the invalid hour
value to initialize the object’s Hour property, an ArgumentOutOfRangeException occurs.
We catch this exception at line 44 and display its Message property, which results in the
last three lines of the output in Fig. 10.6. Because we used the three-argument Argument-

Software Engineering Observation 10.4
When implementing a method of a class, using the class’s properties to access the class’s
private data simplifies code maintenance and reduces the likelihood of errors.

384 Chapter 10 Classes and Objects: A Deeper Look

OutOfRangeException constructor when the exception object was created, the exception’s
Message property also includes the information about the out-of-range value.

1 // Fig. 10.6: Time2Test.cs
2 // Overloaded constructors used to initialize Time2 objects.
3 using System;
4
5 public class Time2Test
6 {
7 public static void Main(string[] args)
8 {
9

10
11
12
13
14 Time2 t6; // initialized later in the program
15
16 Console.WriteLine("Constructed with:\n");
17 Console.WriteLine("t1: all arguments defaulted");
18 Console.WriteLine(" {0}", t1.ToUniversalString()); // 00:00:00
19 Console.WriteLine(" {0}\n", t1.ToString()); // 12:00:00 AM
20
21 Console.WriteLine(
22 "t2: hour specified; minute and second defaulted");
23 Console.WriteLine(" {0}", t2.ToUniversalString()); // 02:00:00
24 Console.WriteLine(" {0}\n", t2.ToString()); // 2:00:00 AM
25
26 Console.WriteLine(
27 "t3: hour and minute specified; second defaulted");
28 Console.WriteLine(" {0}", t3.ToUniversalString()); // 21:34:00
29 Console.WriteLine(" {0}\n", t3.ToString()); // 9:34:00 PM
30
31 Console.WriteLine("t4: hour, minute and second specified");
32 Console.WriteLine(" {0}", t4.ToUniversalString()); // 12:25:42
33 Console.WriteLine(" {0}\n", t4.ToString()); // 12:25:42 PM
34
35 Console.WriteLine("t5: Time2 object t4 specified");
36 Console.WriteLine(" {0}", t5.ToUniversalString()); // 12:25:42
37 Console.WriteLine(" {0}", t5.ToString()); // 12:25:42 PM
38
39 // attempt to initialize t6 with invalid values
40 try

41 {
42
43 } // end try
44 catch (ArgumentOutOfRangeException ex)
45 {
46 Console.WriteLine("\nException while initializing t6:");
47 Console.WriteLine(ex.Message);
48 } // end catch
49 } // end Main
50 } // end class Time2Test

Fig. 10.6 | Overloaded constructors used to initialize Time2 objects. (Part 1 of 2.)

Time2 t1 = new Time2(); // 00:00:00
Time2 t2 = new Time2(2); // 02:00:00
Time2 t3 = new Time2(21, 34); // 21:34:00
Time2 t4 = new Time2(12, 25, 42); // 12:25:42
Time2 t5 = new Time2(t4); // 12:25:42

t6 = new Time2(27, 74, 99); // invalid values

10.6 Default and Parameterless Constructors 385

10.6 Default and Parameterless Constructors
Every class must have at least one constructor. Recall from Section 4.10 that if you do not
provide any constructors in a class’s declaration, the compiler creates a default constructor
that takes no arguments when it’s invoked. In Section 11.4.1, you’ll learn that the default
constructor implicitly performs a special task.

The compiler will not create a default constructor for a class that explicitly declares at
least one constructor. In this case, if you want to be able to invoke the constructor with no
arguments, you must declare a parameterless constructor—as in line 12 of Fig. 10.5. Like a
default constructor, a parameterless constructor is invoked with empty parentheses. The
Time2 parameterless constructor explicitly initializes a Time2 object by passing to SetTime
0 for each parameter. If we omit the parameterless constructor, clients of this class would
not be able to create a Time2 object with the expression new Time2().

Constructed with:

t1: all arguments defaulted
00:00:00
12:00:00 AM

t2: hour specified; minute and second defaulted
02:00:00
2:00:00 AM

t3: hour and minute specified; second defaulted
21:34:00
9:34:00 PM

t4: hour, minute and second specified
12:25:42
12:25:42 PM

t5: Time2 object t4 specified
12:25:42
12:25:42 PM

Exception while initializing t6:
hour must be 0-23
Parameter name: hour
Actual value was 27.

Common Programming Error 10.3
If a class has constructors, but none of the public constructors are parameterless construc-
tors, and an attempt is made to call a parameterless constructor to initialize an object of
the class, a compilation error occurs. A constructor can be called with no arguments only
if the class does not have any constructors (in which case the default constructor is called)
or if the class has a parameterless constructor.

Fig. 10.6 | Overloaded constructors used to initialize Time2 objects. (Part 2 of 2.)

386 Chapter 10 Classes and Objects: A Deeper Look

10.7 Composition
A class can have references to objects of other classes as members. This is called composi-
tion and is sometimes referred to as a has-a relationship. For example, an object of class
AlarmClock needs to know the current time and the time when it’s supposed to sound its
alarm, so it’s reasonable to include two references to Time objects in an AlarmClock object.

Class Date
Our example of composition contains three classes—Date (Fig. 10.7), Employee (Fig. 10.8)
and EmployeeTest (Fig. 10.9). Class Date (Fig. 10.7) declares instance variables month and
day (lines 7–8) and auto-implemented property Year (line 11) to represent a date. The con-
structor receives three int parameters. Line 17 invokes the set accessor of property Month
(lines 24–38) to validate the month—if the value is out-of-range the accessor throws an ex-
ception. Line 18 uses property Year to set the year. Since Year is an auto-implemented prop-
erty, we’re assuming in this example that the value for Year is correct. Line 19 uses property
Day (lines 41–63), which validates and assigns the value for day based on the current month
and Year (by using properties Month and Year in turn to obtain the values of month and
Year). The order of initialization is important, because the set accessor of property Day vali-
dates the value for day based on the assumption that month and Year are correct. Line 53
determines whether the day is correct based on the number of days in the particular Month.
If the day is not correct, lines 56–57 determine whether the Month is February, the day is 29
and the Year is a leap year. Otherwise, if the parameter value does not contain a correct val-
ue for day, the set accessor throws an exception. Line 20 in the constructor outputs the this
reference as a string. Since this is a reference to the current Date object, the object’s To-
Stringmethod (lines 66–69) is called implicitly to obtain the object’s string representation.

Software Engineering Observation 10.5
One form of software reuse is composition, in which a class contains references to other
objects. A class can have a property of its own type—for example, a Person class could have
a Mom property of type Person.

1 // Fig. 10.7: Date.cs
2 // Date class declaration.
3 using System;
4
5 public class Date
6 {
7 private int month; // 1-12
8 private int day; // 1-31 based on month
9

10 // auto-implemented property Year
11 public int Year { get; }
12
13 // constructor: use property Month to confirm proper value for month;
14 // use property Day to confirm proper value for day
15 public Date(int theMonth, int theDay, int theYear)
16 {
17 Month = theMonth; // validate month

Fig. 10.7 | Date class declaration. (Part 1 of 2.)

private set;

10.7 Composition 387

18 Year = theYear; // could validate year
19 Day = theDay; // validate day
20 Console.WriteLine("Date object constructor for date {0}", this);
21 } // end Date constructor
22
23 // property that gets and sets the month
24 public int Month
25 {
26 get

27 {
28 return month;
29 } // end get
30 // make writing inaccessible outside the class
31 {
32 if (value > 0 && value <= 12) // validate month
33 month = value;
34 else // month is invalid
35 throw new ArgumentOutOfRangeException(
36 "Month", value, "Month must be 1-12");
37 } // end set
38 } // end property Month
39
40 // property that gets and sets the day
41 public int Day
42 {
43 get

44 {
45 return day;
46 } // end get
47 // make writing inaccessible outside the class
48 {
49 int[] daysPerMonth = { 0, 31, 28, 31, 30, 31, 30,
50 31, 31, 30, 31, 30, 31 };
51
52 // check if day in range for month
53 if (value > 0 && value <= daysPerMonth[Month])
54 day = value;
55 // check for leap year
56 else if (Month == 2 && value == 29 &&
57 (Year % 400 == 0 || (Year % 4 == 0 && Year % 100 != 0)))
58 day = value;
59 else // day is invalid
60 throw new ArgumentOutOfRangeException(
61 "Day", value, "Day out of range for current month/year");
62 } // end set
63 } // end property Day
64
65 // return a string of the form month/day/year
66 public override string ToString()
67 {
68 return string.Format("{0}/{1}/{2}", Month, Day, Year);
69 } // end method ToString
70 } // end class Date

Fig. 10.7 | Date class declaration. (Part 2 of 2.)

private set

private set

388 Chapter 10 Classes and Objects: A Deeper Look

Class Date’s private set Accessors
Class Date uses access modifiers to ensure that clients of the class must use the appropriate
methods and properties to access private data. In particular, the properties Year, Month
and Day declare private set accessors (lines 11, 30 and 47, respectively) to restrict the use
of the set accessors to members of the class. We declare these private for the same reasons
that we declare the instance variables private—to simplify code maintenance and control
access to the class’s data. Although the constructor, method and properties in class Date
still have all the advantages of using the set accessors to perform validation, clients of the
class must use the class’s constructor to initialize the data in a Date object. The get acces-
sors of properties Year, Month and Day are implicitly declared public because their prop-
erties are declared public—when there’s no access modifier before a get or set accessor,
the accessor inherits the access modifier preceding the property name.

Class Employee
Class Employee (Fig. 10.8) has public auto-implemented properties FirstName, Last-
Name, BirthDate and HireDate. BirthDate and HireDate (lines 7–8) manipulate Date ob-
jects, demonstrating that a class can have references to objects of other classes as members. This,
of course, is also true of the properties FirstName and LastName, which manipulate String
objects. The Employee constructor (lines 11–18) takes four parameters—first, last,
dateOfBirth and dateOfHire. The objects referenced by parameters dateOfBirth and
dateOfHire are assigned to the Employee object’s BirthDate and HireDate properties,
respectively. When class Employee’s ToString method is called, it returns a string con-
taining the string representations of the two Date objects. Each of these strings is ob-
tained with an implicit call to the Date class’s ToString method.

1 // Fig. 10.8: Employee.cs
2 // Employee class with references to other objects.
3 public class Employee
4 {
5 public string FirstName { get; private set; }
6 public string LastName { get; private set; }
7
8
9

10 // constructor to initialize name, birth date and hire date
11 public Employee(string first, string last,
12 Date dateOfBirth, Date dateOfHire)
13 {
14 firstName = first;
15 lastName = last;
16 birthDate = dateOfBirth;
17 hireDate = dateOfHire;
18 } // end Employee constructor
19
20 // convert Employee to string format
21 public override string ToString()
22 {

Fig. 10.8 | Employee class with references to other objects. (Part 1 of 2.)

public Date BirthDate { get; private set; }
public Date HireDate { get; private set; }

10.8 Garbage Collection and Destructors 389

Class EmployeeTest
Class EmployeeTest (Fig. 10.9) creates two Date objects (lines 9–10) to represent an Em-

ployee’s birthday and hire date, respectively. Line 11 creates an Employee and initializes
its instance variables by passing to the constructor two strings (representing the Employ-
ee’s first and last names) and two Date objects (representing the birthday and hire date).
Line 13 implicitly invokes the Employee’s ToString method to display the values of its in-
stance variables and demonstrate that the object was initialized properly.

10.8 Garbage Collection and Destructors
Every object you create uses various system resources, such as memory. In many program-
ming languages, these system resources are reserved for the object’s use until they’re explic-
itly released by the programmer. If all the references to the object that manages the
resource are lost before the resource is explicitly released, the app can no longer access the
resource to release it. This is known as a resource leak.

We need a disciplined way to give resources back to the system when they’re no longer
needed, thus avoiding resource leaks. The Common Language Runtime (CLR) performs
automatic memory management by using a garbage collector to reclaim the memory occu-
pied by objects that are no longer in use, so the memory can be used for other objects. When
there are no more references to an object, the object becomes eligible for destruction. Every

23 return string.Format("{0}, {1} Hired: {2} Birthday: {3}",
24 lastName, firstName, hireDate, birthDate);
25 } // end method ToString
26 } // end class Employee

1 // Fig. 10.9: EmployeeTest.cs
2 // Composition demonstration.
3 using System;
4
5 public class EmployeeTest
6 {
7 public static void Main(string[] args)
8 {
9 Date birth = new Date(7, 24, 1949);

10 Date hire = new Date(3, 12, 1988);
11
12
13
14 } // end Main
15 } // end class EmployeeTest

Date object constructor for date 7/24/1949
Date object constructor for date 3/12/1988
Blue, Bob Hired: 3/12/1988 Birthday: 7/24/1949

Fig. 10.9 | Composition demonstration.

Fig. 10.8 | Employee class with references to other objects. (Part 2 of 2.)

Employee employee = new Employee("Bob", "Blue", birth, hire);

Console.WriteLine(employee);

390 Chapter 10 Classes and Objects: A Deeper Look

object has a special member, called a destructor, that’s invoked by the garbage collector to
perform termination housekeeping on an object before the garbage collector reclaims the
object’s memory. A destructor is declared like a parameterless constructor, except that its
name is the class name, preceded by a tilde (~), and it has no access modifier in its header.
After the garbage collector calls the object’s destructor, the object becomes eligible for gar-
bage collection. The memory for such an object can be reclaimed by the garbage collector.

Memory leaks, which are common in other languages such as C and C++ (because
memory is not automatically reclaimed in those languages), are less likely in C# (but some
can still happen in subtle ways). Other types of resource leaks can occur. For example, an
app could open a file on disk to modify its contents. If the app does not close the file, no
other app can modify (or possibly even use) the file until the app that opened it terminates.

A problem with the garbage collector is that it doesn’t guarantee that it will perform
its tasks at a specified time. Therefore, the garbage collector may call the destructor any
time after the object becomes eligible for destruction, and may reclaim the memory any
time after the destructor executes. In fact, it’s possible that neither will happen before the
app terminates. Thus, it’s unclear whether, or when, the destructor will be called. For this
reason, destructors are rarely used.

10.9 static Class Members
Every object has its own copy of all the instance variables of the class. In certain cases, only
one copy of a particular variable should be shared by all objects of a class. A static variable
is used in such cases. A static variable represents classwide information—all objects of
the class share the same piece of data. The declaration of a static variable begins with the
keyword static.

Let’s motivate static data with an example. Suppose that we have a video game with
Martians and other space creatures. Each Martian tends to be brave and willing to attack
other space creatures when it’s aware that there are at least four other Martians present. If
fewer than five Martians are present, each Martian becomes cowardly. Thus each Martian
needs to know the martianCount. We could endow class Martian with martianCount as
an instance variable. If we do this, every Martian will have a separate copy of the instance
variable, and every time we create a new Martian, we’ll have to update the instance variable
martianCount in every Martian. This wastes space on redundant copies, wastes time
updating the separate copies and is error prone. Instead, we declare martianCount to be
static, making martianCount classwide data. Every Martian can access the martian-
Count, but only one copy of the static martianCount is maintained. This saves space. We
save time by having the Martian constructor increment the static martianCount—
there’s only one copy, so we do not have to increment separate copies of martianCount for
each Martian object.

Software Engineering Observation 10.6
A class that uses resources, such as files on disk, should provide a method to eventually
release the resources. Many Framework Class Library classes provide Close or Dispose
methods for this purpose. Section 13.6 introduces the Dispose method, which is then used
in many later examples. Close methods are typically used with objects that are associated
with files (Chapter 17) and other types of so-called streams of data.

10.9 static Class Members 391

The scope of a static variable is the body of its class. A class’s public static mem-
bers can be accessed by qualifying the member name with the class name and the member
access (.) operator, as in Math.PI. A class’s private static class members can be accessed
only through the methods and properties of the class. Actually, static class members exist
even when no objects of the class exist—they’re available as soon as the class is loaded into
memory at execution time. To access a private static member from outside its class, a
public static method or property can be provided.

Class Employee
Our next app declares two classes—Employee (Fig. 10.10) and EmployeeTest (Fig. 10.11).
Class Employee declares private static auto-implemented property Count. We declare
Count’s set accessor private, because we don’t want clients of the class to be able to modify
the property’s value. The compiler automatically creates a private static variable that
property Count will manage. If a static variable is not initialized, the compiler assigns a
default value to the variable—in this case, the static variable for the auto-implemented
Count property is initialized to 0, the default value for type int. Property Count maintains
a count of the number of objects of class Employee that have been created.

When Employee objects exist, Count can be used in any method of an Employee

object—this example increments Count in the constructor (Fig. 10.10, line 22). Client
code can access the Count with the expression Employee.Count, which evaluates to the
number of Employee objects that have been created.

Software Engineering Observation 10.7
Use a static variable when all objects of a class must share the same copy of the variable.

Common Programming Error 10.4
It’s a compilation error to access or invoke a static member by referencing it through an
instance of the class, like a non-static member.

Software Engineering Observation 10.8
Static variables, methods and properties exist, and can be used, even if no objects of that
class have been instantiated.

1 // Fig. 10.10: Employee.cs
2 // Static variable used to maintain a count of the number of
3 // Employee objects that have been created.
4 using System;
5
6 public class Employee
7 {
8 public static int Count { get; private set; } // objects in memory
9

10 // read-only auto-implemented property FirstName
11 public string FirstName { get; private set; }

Fig. 10.10 | static property used to maintain a count of the number of Employee objects that
have been created. (Part 1 of 2.)

392 Chapter 10 Classes and Objects: A Deeper Look

Class EmployeeTest
EmployeeTest method Main (Fig. 10.11) instantiates two Employee objects (lines 14–15).
When each object’s constructor is invoked, lines 20–21 of Fig. 10.10 assign the Employee’s
first name and last name to properties FirstName and LastName. These two statements do
not make copies of the original string arguments. Actually, string objects in C# are immu-
table—they cannot be modified after they’re created. Therefore, it’s safe to have many refer-
ences to one string. This is not normally the case for objects of most other classes. If string
objects are immutable, you might wonder why we’re able to use operators + and += to con-
catenate string objects. String-concatenation operations actually result in a new string ob-
ject containing the concatenated values. The original string objects are not modified.

12
13 // read-only auto-implemented property LastName
14 public string LastName { get; private set; }
15
16 // initialize employee, add 1 to static Count and
17 // output string indicating that constructor was called
18 public Employee(string first, string last)
19 {
20 FirstName = first;
21 LastName = last;
22 ++Count; // increment static count of employees
23 Console.WriteLine("Employee constructor: {0} {1}; Count = {2}",
24 FirstName, LastName, Count);
25 } // end Employee constructor
26 } // end class Employee

1 // Fig. 10.11: EmployeeTest.cs
2 // Static member demonstration.
3 using System;
4
5 public class EmployeeTest
6 {
7 public static void Main(string[] args)
8 {
9 // show that Count is 0 before creating Employees

10 Console.WriteLine("Employees before instantiation: {0}",
11 Employee.Count);
12
13 // create two Employees; Count should become 2
14
15
16
17 // show that Count is 2 after creating two Employees
18 Console.WriteLine("\nEmployees after instantiation: {0}",
19);

Fig. 10.11 | static member demonstration. (Part 1 of 2.)

Fig. 10.10 | static property used to maintain a count of the number of Employee objects that
have been created. (Part 2 of 2.)

Employee e1 = new Employee("Susan", "Baker");
Employee e2 = new Employee("Bob", "Blue");

Employee.Count

10.10 readonly Instance Variables 393

Lines 18–19 of Fig. 10.11 display the updated Count. When Main has finished using
the two Employee objects, references e1 and e2 are set to null at lines 29–30, so they no
longer refer to the objects that were instantiated in lines 14–15. The objects become eli-
gible for destruction because there are no more references to them in the app. After the objects’
destructors are called, the objects become eligible for garbage collection.

Eventually, the garbage collector might reclaim the memory for these objects (or the
operating system will reclaim the memory when the app terminates). C# does not guarantee
when, or even whether, the garbage collector will execute. When the garbage collector does
run, it’s possible that no objects or only a subset of the eligible objects will be collected.

A method declared static cannot access non-static class members directly, because
a staticmethod can be called even when no objects of the class exist. For the same reason,
the this reference cannot be used in a static method—the this reference must refer to
a specific object of the class, and when a static method is called, there might not be any
objects of its class in memory.

10.10 readonly Instance Variables
The principle of least privilege is fundamental to good software engineering. In the con-
text of an app, the principle states that code should be granted the amount of privilege and
access needed to accomplish its designated task, but no more. Let’s see how this principle ap-
plies to instance variables.

Some instance variables need to be modifiable, and some do not. In Section 8.4, we
used keyword const for declaring constants. These constants must be initialized to a con-
stant value when they’re declared. Suppose, however, we want to initialize in the object’s

20
21 // get names of Employees
22 Console.WriteLine("\nEmployee 1: {0} {1}\nEmployee 2: {2} {3}\n",
23 e1.FirstName, e1.LastName,
24 e2.FirstName, e2.LastName);
25
26
27
28
29
30
31 } // end Main
32 } // end class EmployeeTest

Employees before instantiation: 0
Employee constructor: Susan Baker; Count = 1
Employee constructor: Bob Blue; Count = 2

Employees after instantiation: 2

Employee 1: Susan Baker
Employee 2: Bob Blue

Fig. 10.11 | static member demonstration. (Part 2 of 2.)

// in this example, there is only one reference to each Employee,
// so the following statements cause the CLR to mark each
// Employee object as being eligible for garbage collection
e1 = null; // mark object referenced by e1 as no longer needed
e2 = null; // mark object referenced by e2 as no longer needed

394 Chapter 10 Classes and Objects: A Deeper Look

constructor a constant belonging to a specific object of the class. C# provides keyword
readonly to specify that an instance variable of an object is not modifiable and that any
attempt to modify it after the object is constructed is an error. For example,

declares readonly instance variable INCREMENT of type int. Like constants, readonly vari-
ables are declared with all capital letters by convention. Although readonly instance vari-
ables can be initialized when they’re declared, this isn’t required. Readonly variables
should be initialized by each of the class’s constructors. Each constructor can assign values
to a readonly instance variable multiple times—the variable doesn’t become unmodifiable
until after the constructor completes execution. If a constructor does not initialize the
readonly variable, the variable receives the same default value as any other instance vari-
able (0 for numeric simple types, false for bool type and null for reference types), and
the compiler generates a warning.

Members that are declared as const must be assigned values at compile time. There-
fore, const members can be initialized only with other constant values, such as integers,
string literals, characters and other const members. Constant members with values that
cannot be determined at compile time must be declared with keyword readonly, so they
can be initialized at execution time. Variables that are readonly can be initialized with more
complex expressions, such as an array initializer or a method call that returns a value or a
reference to an object.

10.11 Data Abstraction and Encapsulation
Classes normally hide the details of their implementation from their clients. This is called
information hiding. As an example, let’s consider the stack data structure introduced in

private readonly int INCREMENT;

Software Engineering Observation 10.9
Declaring an instance variable as readonly helps enforce the principle of least privilege.
If an instance variable should not be modified after the object is constructed, declare it to
be readonly to prevent modification.

Common Programming Error 10.5
Attempting to modify a readonly instance variable anywhere but in its declaration or the
object’s constructors is a compilation error.

Error-Prevention Tip 10.2
Attempts to modify a readonly instance variable are caught at compilation time rather
than causing execution-time errors. It’s always preferable to get bugs out at compile time,
if possible, rather than allowing them to slip through to execution time (where studies
have found that repairing bugs is often much more costly).

Software Engineering Observation 10.10
If a readonly instance variable is initialized to a constant only in its declaration, it’s not
necessary to have a separate copy of the instance variable for every object of the class. The
variable should be declared const instead. Constants declared with const are implicitly
static, so there will only be one copy for the entire class.

10.11 Data Abstraction and Encapsulation 395

Section 7.6. Recall that a stack is a last-in, first-out (LIFO) data structure—the last item
pushed (inserted) on the stack is the first item popped (removed) off the stack.

Data Abstraction
Stacks can be implemented with arrays and with other data structures, such as linked lists.
(We discuss stacks and linked lists in Chapters 19 and 21.) A client of a stack class need
not be concerned with the stack’s implementation. The client knows only that when data
items are placed in the stack, they’ll be recalled in last-in, first-out order. The client cares
about what functionality a stack offers, not about how that functionality is implemented.
This concept is referred to as data abstraction. Even if you know the details of a class’s
implementation, you shouldn’t write code that depends on these details as they may later
change. This enables a particular class (such as one that implements a stack and its push
and pop operations) to be replaced with another version—perhaps one that runs faster or
uses less memory—without affecting the rest of the system. As long as the public services
of the class do not change (i.e., every original method still has the same name, return type
and parameter list in the new class declaration), the rest of the system is not affected.

Abstract Data Types (ADTs)
Earlier non-object-oriented programming languages like C emphasize actions. In these
languages, data exists to support the actions that apps must take. Data is “less interesting”
than actions. Data is “crude.” Only a few simple types exist, and it’s difficult for program-
mers to create their own types. C# and the object-oriented style of programming elevate
the importance of data. The primary activities of object-oriented programming in C# are
creating types (e.g., classes) and expressing the interactions among objects of those types.
To create languages that emphasize data, the programming-languages community needed
to formalize some notions about data. The formalization we consider here is the notion of
abstract data types (ADTs), which improve the app-development process.

Consider the type int, which most people associate with an integer in mathematics.
Actually, an int is an abstract representation of an integer. Unlike mathematical integers,
computer ints are fixed in size. Type int in C# is limited to the range –2,147,483,648 to
+2,147,483,647. If the result of a calculation falls outside this range, an error occurs, and
the computer responds in some appropriate manner. It might produce an incorrect result,
such as a value too large to fit in an int variable—commonly called arithmetic overflow.
It also might throw an exception, called an OverflowException. (We show how to deal
with arithmetic overflow in Section 13.8.) Mathematical integers do not have this
problem. Therefore, the computer int is only an approximation of the real-world integer.
Simple types like int, double, and char are all examples of abstract data types—represen-
tations of real-world concepts to some satisfactory level of precision within a computer system.

An ADT actually captures two notions: a data representation and the operations that
can be performed on that data. For example, in C#, an int contains an integer value (data)
and provides addition, subtraction, multiplication, division and remainder operations—
division by zero is undefined.

Software Engineering Observation 10.11
Programmers create types through the class mechanism. Although the language is easy to
extend via new types, you cannot alter the base language itself.

396 Chapter 10 Classes and Objects: A Deeper Look

Queue Abstract Data Type
Another ADT we discuss is a queue, which is similar to a “waiting line.” Computer sys-
tems use many queues internally. A queue offers well-understood behavior to its clients:
Clients place items in a queue one at a time via an enqueue operation, then retrieve them
one at a time via a dequeue operation. A queue returns items in first-in, first-out (FIFO)
order—the first item inserted in a queue is the first removed. Conceptually, a queue can
become infinitely long, but real queues are finite.

The queue hides an internal data representation that keeps track of the items currently
waiting in line. The clients are not concerned about the implementation of the queue—
they simply depend on the queue to operate “as advertised.” When a client enqueues an
item, the queue should accept that item and place it in some kind of internal FIFO data
structure. Similarly, when the client wants the next item from the front of the queue, the
queue should remove the item from its internal representation and deliver it in FIFO
order—the item that has been in the queue the longest should be returned by the next
dequeue operation.

The queue ADT guarantees the integrity of its internal data structure. Clients cannot
manipulate this data structure directly—only the queue ADT has access to its internal
data. Clients are able to perform only allowable operations on the data representation—
the ADT rejects operations that its public interface does not provide. We’ll discuss stacks
and queues in greater depth in Chapter 19, Data Structures.

10.12 Class View and Object Browser
Now that we have introduced key concepts of object-oriented programming, we present
two features that Visual Studio provides to facilitate the design of object-oriented apps—
Class View and Object Browser.

Using the Class View Window
The Class View displays the fields, methods and properties for all classes in a project. Select
VIEW > Class View to display the Class View as a tab in the same position within the IDE as
the Solution Explorer. Figure 10.12 shows the Class View for the Time1 project of Fig. 10.1
(class Time1) and Fig. 10.2 (class Time1Test). The view follows a hierarchical structure, po-
sitioning the project name (Time1) as the root and including a series of nodes that represent
the classes, variables, methods and properties in the project. If a appears to the left of a
node, that node can be expanded to show other nodes. If a appears to the left of a node,
that node can be collapsed. According to the Class View, project Time1 contains class Time1
and class Time1Test as children. When class Time1 is selected, the class’s members appear
in the lower half of the window. Class Time1 contains methods SetTime, ToString and
ToUniversalString (indicated by purple boxes,) and instance variables hour, minute
and second (indicated by blue boxes,). The lock icons to the right of the blue box icons
for the instance variables specify that the variables are private. Both class Time1 and class
Time1Test contain the Base Types node. If you expand this node, you’ll see class Object in
each case, because each class inherits from class System.Object (discussed in Chapter 11).

Using the Object Browser
Visual Studio’s Object Browser lists all classes in the .NET library. You can use the Object
Browser to learn about the functionality provided by a specific class. To open the Object

10.12 Class View and Object Browser 397

Browser, select VIEW > Object Browser. Figure 10.13 depicts the Object Browser when the
user navigates to the Math class in namespace System. To do this, we expanded the node
for mscorlib (Microsoft Core Library) in the upper-left pane of the Object Browser, then
expanded its subnode for System. [Note: The most common classes from the System

namespace, such as System.Math, are in mscorlib.]

The Object Browser lists all methods provided by class Math in the upper-right
frame—this offers you “instant access” to information regarding the functionality of var-
ious objects. If you click the name of a member in the upper-right frame, a description of
that member appears in the lower-right frame. The Object Browser can be a quick mech-
anism to learn about a class or one of its methods. You can also view the complete descrip-

Fig. 10.12 | Class View of class Time1 (Fig. 10.1) and class Time1Test (Fig. 10.2).

Fig. 10.13 | Object Browser for class Math.

398 Chapter 10 Classes and Objects: A Deeper Look

tion of a class or a method in the online documentation by selecting the type or member
in the Object Browser and pressing F1.

10.13 Object Initializers
Visual C# provides object initializers that allow you to create an object and initialize its
public properties (and public instance variables, if any) in the same statement. This can
be useful when a class does not provide an appropriate constructor to meet your needs, but
does provide properties that you can use to manipulate the class’s data. The following
statements demonstrate object initializers using the class Time2 from Fig. 10.5.

The first statement creates a Time2 object (aTime), initializes it with class Time2’s construc-
tor that can be called with no arguments, then uses an object initializer to set its Hour, Min-
ute and Second properties. Notice that new Time2 is immediately followed by an object-
initializer list—a comma-separated list in curly braces ({ }) of properties and their values.
Each property name can appear only once in the object-initializer list. The object initializer
executes the property initializers in the order in which they appear.

The second statement creates a new Time2 object (anotherTime), initializes it with class
Time2’s constructor that can be called with no arguments, then sets only its Minute property
using an object initializer. When the Time2 constructor is called with no arguments, it ini-
tializes the time to midnight. The object initializer then sets each specified property to the
supplied value. In this case, the Minute property is set to 45. The Hour and Second properties
retain their default values, because no values are specified for them in the object initializer.

10.14 Wrap-Up
In this chapter, we discussed additional class concepts. The Time class case study presented
a complete class declaration consisting of private data, overloaded public constructors
for initialization flexibility, properties for manipulating the class’s data and methods that
returned string representations of a Time object in two different formats. You learned
that every class can declare a ToString method that returns a string representation of an
object of the class and that this method is invoked implicitly when an object of a class is
output as a string or concatenated with a string.

You learned that the this reference is used implicitly in a class’s non-static methods
to access the class’s instance variables and other non-static methods. You saw explicit
uses of the this reference to access the class’s members (including hidden fields) and
learned how to use keyword this in a constructor to call another constructor of the class.

You saw that composition enables a class to have references to objects of other classes
as members. You learned about C#’s garbage-collection capability and how it reclaims the
memory of objects that are no longer used. We explained the motivation for static vari-
ables in a class and demonstrated how to declare and use static variables and methods in
your own classes. You also learned how to declare and initialize readonly variables.

We also showed how to use Visual Studio’s Class View and Object Browser windows
to navigate the classes of the Framework Class Library and your own apps to discover

// create a Time2 object and initialize its properties
Time2 aTime = new Time2 { Hour = 14, Minute = 30, Second = 12 };

// create a Time2 object and initialize only its Minute property
Time2 anotherTime = new Time2 { Minute = 45 };

10.14 Wrap-Up 399

information about those classes. Finally, you learned how to initialize an object’s proper-
ties as you create it with an object-initializer list.

In the next chapter, you’ll learn about inheritance. You’ll see that all classes in C# are
related directly or indirectly to the object class and begin to understand how inheritance
enables you to build more powerful apps faster.

Summary
Section 10.2 Time Class Case Study
• The public methods of a class are part of the public services or the public interface that the class

provides to its clients.

• Methods and properties that modify the values of private variables should verify that the intend-
ed new values are valid.

• A class’s methods and properties can throw exceptions to indicate invalid data.

• The actual data representation used within the class is of no concern to the class’s clients. This
allows you to change the implementation of the class. Clients could use the same publicmethods
and properties to get the same results without being aware of this change.

• Clients are neither aware of, nor involved in, a class’s implementation. Clients generally care
about what the class does but not how the class does it.

Section 10.3 Controlling Access to Members
• Access modifiers public and private control access to a class’s variables, methods and properties.

A class’s private variables, methods and properties are not directly accessible to the class’s clients.

• If a client attempts to use the private members of another class, the compiler generates error
messages stating that these private members are not accessible.

• If a class member is not declared with an access modifier, it has private access by default.

Section 10.4 Referring to the Current Object’s Members with the this Reference
• Every object can access a reference to itself with keyword this. When a non-static method is

called for a particular object, the method’s body implicitly uses keyword this to refer to the ob-
ject’s instance variables, other methods and properties.

• If a method contains a local variable with the same name as a field, that method will refer to the
local variable rather than the field. However, a non-static method can use the this reference to
refer to a hidden instance variable explicitly.

• Avoid method-parameter names or local-variable names that conflict with field names. This
helps prevent subtle, hard-to-locate bugs.

Section 10.5 Time Class Case Study: Overloaded Constructors
• To overload constructors, provide multiple constructor declarations with different signatures.

• Following the constructor header with the constructor initializer : this (args) invokes the
matching overloaded constructor in the same class.

• Constructor initializers are a popular way to reuse initialization code provided by one of the
class’s constructors rather than defining similar code in another constructor’s body.

• When one object of a class has a reference to another object of the same class, the first object can
access all the second object’s data and methods (including those that are private).

• When implementing a method of a class, use the class’s properties to access the class’s private
data. This simplifies code maintenance and reduces the likelihood of errors.

400 Chapter 10 Classes and Objects: A Deeper Look

• The ArgumentOutOfRangeException constructor with three arguments lets you specify the name
of the item that’s out of range, the value that was out of range and an error message.

Section 10.6 Default and Parameterless Constructors
• Every class must have at least one constructor. If there are no constructors in a class’s declaration,

the compiler creates a default constructor for the class.

• The compiler will not create a default constructor for a class that explicitly declares at least one
constructor. In this case, if you want to be able to invoke the constructor with no arguments, you
must declare a parameterless constructor.

Section 10.7 Composition
• A class can have references to objects of other classes as members. Such a capability is called com-

position and is sometimes referred to as a has-a relationship.

Section 10.8 Garbage Collection and Destructors
• Every object you create uses various system resources, such as memory. The CLR performs au-

tomatic memory management by using a garbage collector to reclaim the memory occupied by
objects that are no longer in use.

• The destructor is invoked by the garbage collector to perform termination housekeeping on an
object before the garbage collector reclaims the object’s memory.

• Memory leaks, which are common in other languages like C and C++ (because memory is not
automatically reclaimed in those languages), are less likely in C#.

• A problem with the garbage collector is that it’s not guaranteed to perform its tasks at a specified
time. Therefore, the garbage collector may call the destructor any time after the object becomes
eligible for destruction, making it unclear when, or whether, the destructor will be called.

Section 10.9 static Class Members
• A static variable represents classwide information—all objects of the class share the variable.

• The scope of a static variable is the body of its class. A class’s public static members can be
accessed by qualifying the member name with the class name and the member access (.) operator.

• Static class members exist even when no objects of the class exist—they’re available as soon as the
class is loaded into memory at execution time.

• String objects in C# are immutable—they cannot be modified after they’re created. Therefore,
it’s safe to have many references to one string object.

• It’s possible that no objects or only a subset of the eligible objects will be collected.

• A method declared static cannot access non-static class members directly, because a static
method can be called even when no objects of the class exist. For the same reason, the this ref-
erence cannot be used in a static method.

Section 10.10 readonly Instance Variables
• The principle of least privilege is fundamental to good software engineering. In the context of an

app, the principle states that code should be granted only the amount of privilege and access
needed to accomplish its designated task, but no more.

• Any attempt to modify a readonly instance variable after its object is constructed is an error.

• Although readonly instance variables can be initialized when they’re declared, this is not re-
quired. A readonly variable can be initialized by each of the class’s constructors.

• Members that are declared as const must be assigned values at compile time. Constant members
with values that cannot be determined at compile time must be declared with keyword readonly,
so they can be initialized at execution time.

Terminology 401

Section 10.11 Data Abstraction and Encapsulation
• Classes use information hiding to hide the details of their implementation from their clients.

• The client cares about what functionality a class offers, not about how that functionality is im-
plemented. This is referred to as data abstraction. Programmers should not write code that de-
pends on these details as the details may later change.

• The primary activities of object-oriented programming in C# are the creation of types (e.g., class-
es) and the expression of the interactions among objects of those types.

• Types like int, double, and char are all examples of abstract data types. They’re representations
of real-world notions to some satisfactory level of precision within a computer system.

• An ADT actually captures two notions: a data representation and the operations that can be per-
formed on that data.

Section 10.12 Class View and Object Browser
• The Class View displays the variables, methods and properties for all classes in a project. The view

follows a hierarchical structure, positioning the project name as the root and including a series
of nodes that represent the classes, variables, methods and properties in the project.

• The Object Browser lists all classes of the Framework Class Library. The Object Browser can be a
quick mechanism to learn about a class or method of a class.

Section 10.13 Object Initializers
• Object initializers allow you to create an object and initialize its public properties (and public

instance variables, if any) in the same statement.

• An object-initializer list is a comma-separated list in curly braces ({}) of properties and their values.

• Each property and instance variable name can appear only once in the object-initializer list.

• An object initializer first calls the class’s constructor, then sets the value of each property and vari-
able specified in the object-initializer list.

Terminology
abstract data type (ADT)
ArgumentOutOfRangeException class
arithmetic overflow
attribute (in the UML)
Class View
classwide information
composition
constructor initializer
data abstraction
data representation
destructor
eligible for destruction
eligible for garbage collection
first-in, first-out (FIFO) data structure
Format method of class string
garbage collector
has-a relationship
immutable
information hiding
last-in, first-out (LIFO) data structure

memory leak
Object Browser
object initializer
object-initializer list
overloaded constructors
parameterless constructor
principle of least privilege
public interface
public service
queue data structure
readonly instance variable
resource leak
service of a class
simple name of a class, field or method
static variable
stack data structure
termination housekeeping
this keyword
throw an exception
unmodifiable variable

402 Chapter 10 Classes and Objects: A Deeper Look

Self-Review Exercises
10.1 Fill in the blanks in each of the following statements:

a) string class static method is similar to method Console.Write, but returns
a formatted string rather than displaying a string in a console window.

b) If a method contains a local variable with the same name as one of its class’s fields, the
local variable the field in that method’s scope.

c) The is called by the garbage collector before it reclaims an object’s memory.
d) If a class declares constructors, the compiler will not create a(n) .
e) An object’s method can be called implicitly when an object appears in code

where a string is needed.
f) Composition is sometimes referred to as a(n) relationship.
g) A(n) variable represents classwide information that’s shared by all the objects

of the class.
h) The states that code should be granted only the amount of access needed to

accomplish its designated task.
i) Declaring an instance variable with keyword specifies that the variable is not

modifiable.
j) A(n) consists of a data representation and the operations that can be per-

formed on the data.
k) The public members of a class are also known as the class’s or .

10.2 Suppose class Book defines properties Title, Author and Year. Use an object initializer to
create an object of class Book and initialize its properties.

Answers to Self-Review Exercises
10.1 a) Format. b) hides. c) destructor. d) default constructor. e) ToString. f) has-a. g) static.
h) principle of least privilege. i) readonly. j) abstract data type (ADT). k) public services, public in-
terface.

10.2 new Book { Title = "Visual C# 2012 HTP",

Author = "Deitel", Year = 2013 }

Exercises
10.3 (Rectangle Class) Create class Rectangle. The class has attributes length and width, each of
which defaults to 1. It has read-only properties that calculate the Perimeter and the Area of the
rectangle. It has properties for both length and width. The set accessors should verify that length
and width are each floating-point numbers greater than 0.0 and less than 20.0. Write an app to test
class Rectangle.

10.4 (Modifying the Internal Data Representation of a Class) It would be perfectly reasonable
for the Time2 class of Fig. 10.5 to represent the time internally as the number of seconds since mid-
night rather than the three integer values hour, minute and second. Clients could use the same pub-
lic methods and properties to get the same results. Modify the Time2 class of Fig. 10.5 to
implement the Time2 as the number of seconds since midnight and show that no change is visible
to the clients of the class by using the same test app from Fig. 10.6.

10.5 (Savings-Account Class) Create the class SavingsAccount. Use the static variable annual-
InterestRate to store the annual interest rate for all account holders. Each object of the class contains
a private instance variable savingsBalance, indicating the amount the saver currently has on deposit.
Provide method CalculateMonthlyInterest to calculate the monthly interest by multiplying the sav-
ingsBalance by annualInterestRate divided by 12—this interest should be added to savingsBal-

Exercises 403

ance. Provide static method ModifyInterestRate to set the annualInterestRate to a new value.
Write an app to test class SavingsAccount. Create two savingsAccount objects, saver1 and saver2,
with balances of $2000.00 and $3000.00, respectively. Set annualInterestRate to 4%, then calculate
the monthly interest and display the new balances for both savers. Then set the annualInterestRate
to 5%, calculate the next month’s interest and display the new balances for both savers.

10.6 (Enhancing Class Date) Modify class Date of Fig. 10.7 to perform error checking on the ini-
tializer values for instance variables month, day and year (class Date currently validates only the
month and day). You’ll need to convert the auto-implemented property Year into instance variable
yearwith an associated Year property. Provide method NextDay to increment the day by 1. The Date
object should always maintain valid data and throw exceptions when attempts are made to set in-
valid values. Write an app that tests the NextDay method in a loop that displays the date during each
iteration of the loop to illustrate that the NextDay method works correctly. Test the following cases:

a) incrementing to the next month and
b) incrementing to the next year.

10.7 (Complex Numbers) Create a class called Complex for performing arithmetic with complex
numbers. Complex numbers have the form realPart + imaginaryPart * i where i is . Write an
app to test your class. Use floating-point variables to represent the private data of the class. Provide
a constructor that enables an object of this class to be initialized when it’s declared. Provide a pa-
rameterless constructor with default values in case no initializers are provided. Provide publicmeth-
ods that perform the following operations:

a) Add two Complex numbers: The real parts are added together and the imaginary parts
are added together.

b) Subtract two Complex numbers: The real part of the right operand is subtracted from
the real part of the left operand, and the imaginary part of the right operand is sub-
tracted from the imaginary part of the left operand.

c) Return a string representation of a Complex number in the form (a, b), where a is the
real part and b is the imaginary part.

10.8 (Set of Integers) Create class IntegerSet. Each IntegerSet object can hold integers in the
range 0–100. The set is represented by an array of bools. Array element a[i] is true if integer i is
in the set. Array element a[j] is false if integer j is not in the set. The parameterless constructor
initializes the array to the “empty set” (i.e., a set whose array representation contains all false val-
ues).

Provide the following methods:
a) Method Union creates a third set that’s the set-theoretic union of two existing sets (i.e.,

an element of the third set’s array is set to true if that element is true in either or both
of the existing sets—otherwise, the element of the third set is set to false).

b) Method Intersection creates a third set which is the set-theoretic intersection of two ex-
isting sets (i.e., an element of the third set’s array is set to false if that element is false in
either or both of the existing sets—otherwise, the element of the third set is set to true).

c) Method InsertElement inserts a new integer k into a set (by setting a[k] to true).
d) Method DeleteElement deletes integer m (by setting a[m] to false).
e) Method ToString returns a string containing a set as a list of numbers separated by spaces.

Include only those elements that are present in the set. Use --- to represent an empty set.
f) Method IsEqualTo determines whether two sets are equal.

Write an app to test class IntegerSet. Instantiate several IntegerSet objects. Test that all your
methods work properly.

10.9 (Rational Numbers) Create a class called Rational for performing arithmetic with fractions.
Write an app to test your class. Use integer variables to represent the private instance variables of
the class—the numerator and the denominator. Provide a constructor that enables an object of this

1–

404 Chapter 10 Classes and Objects: A Deeper Look

class to be initialized when it’s declared. The constructor should store the fraction in reduced form.
The fraction

2/4

is equivalent to 1/2 and would be stored in the object as 1 in the numerator and 2 in the denomina-
tor. Provide a parameterless constructor with default values in case no initializers are provided.
Provide public methods that perform each of the following operations (all calculation results
should be stored in a reduced form):

a) Add two Rational numbers.
b) Subtract two Rational numbers.
c) Multiply two Rational numbers.
d) Divide two Rational numbers.
e) Display Rational numbers in the form a/b, where a is the numerator and b is the de-

nominator.
f) Display Rational numbers in floating-point format. (Consider providing formatting

capabilities that enable the user of the class to specify the number of digits of precision
to the right of the decimal point.)

10.10 (HugeInteger Class) Create a class HugeInteger which uses a 40-element array of digits to
store integers as large as 40 digits each. Provide methods Input, ToString, Add and Subtract. For
comparing HugeInteger objects, provide the following methods: IsEqualTo, IsNotEqualTo, IsGrea-
terThan, IsLessThan, IsGreaterThanOrEqualTo and IsLessThanOrEqualTo. Each of these is a meth-
od that returns true if the relationship holds between the two HugeInteger objects and returns
false if the relationship does not hold. Provide method IsZero. If you feel ambitious, also provide
methods Multiply, Divide and Remainder. In the Input method, use the string method ToChar-

Array to convert the input string into an array of characters, then iterate through these characters
to create your HugeInteger. [Note: The .NET Framework Class Library includes type BigInteger
for arbitrary sized integer values.]

10.11 (Tic-Tac-Toe) Create class TicTacToe that will enable you to write a complete app to play
the game of Tic-Tac-Toe. The class contains a private 3-by-3 rectangular array of integers. The
constructor should initialize the empty board to all 0s. Allow two human players. Wherever the first
player moves, place a 1 in the specified square, and place a 2 wherever the second player moves. Each
move must be to an empty square. After each move, determine whether the game has been won and
whether it’s a draw. If you feel ambitious, modify your app so that the computer makes the moves
for one of the players. Also, allow the player to specify whether he or she wants to go first or second.
If you feel exceptionally ambitious, develop an app that will play three-dimensional Tic-Tac-Toe
on a 4-by-4-by-4 board.

10.12 What happens when a return type, even void, is specified for a constructor?

11Object-Oriented
Programming: Inheritance

Say not you know another
entirely, till you have divided an
inheritance with him.
—Johann Kasper Lavater

This method is to define as the
number of a class the class of all
classes similar to the given class.
—Bertrand Russell

O b j e c t i v e s
In this chapter you’ll learn:

� How inheritance promotes
software reusability.

� To create a derived class that
inherits attributes and
behaviors from a base class.

� To use access modifier
protected to give derived-
class methods access to
base-class members.

� To access base-class
members with base.

� How constructors are used in
inheritance hierarchies.

� The methods of class
object, the direct or indirect
base class of all classes.

406 Chapter 11 Object-Oriented Programming: Inheritance

11.1 Introduction
This chapter continues our discussion of object-oriented programming (OOP) by intro-
ducing one of its primary features—inheritance, a form of software reuse in which a new
class is created by absorbing an existing class’s members and enhancing them with new or
modified capabilities. Inheritance lets you save time during app development by reusing
proven and debugged high-quality software. This also increases the likelihood that a sys-
tem will be implemented effectively.

The existing class from which a new class inherits members is called the base class,
and the new class is the derived class. Each derived class can become the base class for
future derived classes.

A derived class normally adds its own fields and methods. Therefore, it’s more specific
than its base class and represents a more specialized group of objects. Typically, the derived
class exhibits the behaviors of its base class and additional ones that are specific to itself.

The direct base class is the base class from which the derived class explicitly inherits.
An indirect base class is any class above the direct base class in the class hierarchy, which
defines the inheritance relationships among classes. The class hierarchy begins with class
object (which is the C# alias for System.Object in the Framework Class Library), which
every class directly or indirectly extends (or “inherits from”). Section 11.7 lists the
methods of class object, which every other class inherits. In the case of single inheritance,
a class is derived from one direct base class. C# supports only single inheritance. In
Chapter 12, OOP: Polymorphism, Interfaces and Operator Overloading, we explain how
you can use interfaces to realize many of the benefits of multiple inheritance while
avoiding the associated problems.

Experience in building software systems indicates that significant amounts of code deal
with closely related special cases. When you’re preoccupied with special cases, the details can
obscure the big picture. With object-oriented programming, you can, when appropriate,
focus on the commonalities among objects in the system rather than the special cases.

We distinguish between the is-a relationship and the has-a relationship. Is-a repre-
sents inheritance. In an is-a relationship, an object of a derived class can also be treated as

11.1 Introduction
11.2 Base Classes and Derived Classes
11.3 protected Members
11.4 Relationship between Base Classes

and Derived Classes
11.4.1 Creating and Using a

CommissionEmployee Class
11.4.2 Creating a

BasePlusCommissionEmployee
Class without Using Inheritance

11.4.3 Creating a CommissionEmployee–
BasePlusCommissionEmployee
Inheritance Hierarchy

11.4.4 CommissionEmployee–
BasePlusCommissionEmployee
Inheritance Hierarchy Using
protected Instance Variables

11.4.5 CommissionEmployee–
BasePlusCommissionEmployee
Inheritance Hierarchy Using private
Instance Variables

11.5 Constructors in Derived Classes
11.6 Software Engineering with

Inheritance
11.7 Class object
11.8 Wrap-Up

Summary | Terminology | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

11.2 Base Classes and Derived Classes 407

an object of its base class. For example, a car is a vehicle, and a truck is a vehicle. By con-
trast, has-a represents composition (see Chapter 10). In a has-a relationship, an object con-
tains as members references to other objects. For example, a car has a steering wheel, and
a car object has a reference to a steering-wheel object.

New classes can inherit from classes in class libraries. Organizations develop their
own class libraries and can take advantage of others available worldwide. Some day, most
new software likely will be constructed from standardized reusable components, just as
automobiles and most computer hardware are constructed today. This will facilitate the
development of more powerful, abundant and economical software.

11.2 Base Classes and Derived Classes
Often, an object of one class is an object of another class as well. For example, in geometry,
a rectangle is a quadrilateral (as are squares, parallelograms and trapezoids). Thus, class
Rectangle can be said to inherit from class Quadrilateral. In this context, class Quadri-
lateral is a base class and class Rectangle is a derived class. A rectangle is a specific type
of quadrilateral, but it’s incorrect to claim that every quadrilateral is a rectangle—the
quadrilateral could be a parallelogram or some other shape. Figure 11.1 lists several simple
examples of base classes and derived classes—base classes tend to be more general, and de-
rived classes tend to be more specific.

Because every derived-class object is an object of its base class, and one base class can
have many derived classes, the set of objects represented by a base class is typically larger
than the set of objects represented by any of its derived classes. For example, the base class
Vehicle represents all vehicles—cars, trucks, boats, bicycles and so on. By contrast,
derived class Car represents a smaller, more specific subset of vehicles.

Inheritance relationships form treelike hierarchical structures (Figs. 11.2 and 11.3). A
base class exists in a hierarchical relationship with its derived classes. When classes partic-
ipate in inheritance relationships, they become “affiliated” with other classes. A class
becomes either a base class, supplying members to other classes, or a derived class, inher-
iting its members from another class. Sometimes, a class is both a base and a derived class.

Let us develop a sample class hierarchy, also called an inheritance hierarchy
(Fig. 11.2). The UML class diagram of Fig. 11.2 shows a university community that has
many types of members, including employees, students and alumni. Employees are either
faculty members or staff members. Faculty members are either administrators (such as
deans and department chairpersons) or teachers. The hierarchy could contain many other

Base class Derived classes

Student GraduateStudent, UndergraduateStudent
Shape Circle, Triangle, Rectangle
Loan CarLoan, HomeImprovementLoan, MortgageLoan
Employee Faculty, Staff, HourlyWorker, CommissionWorker
BankAccount CheckingAccount, SavingsAccount

Fig. 11.1 | Inheritance examples.

408 Chapter 11 Object-Oriented Programming: Inheritance

classes. For example, students can be graduate or undergraduate students. Undergraduate
students can be freshmen, sophomores, juniors or seniors.

Each arrow with a hollow triangular arrowhead in the hierarchy diagram represents an
is-a relationship. As we follow the arrows, we can state, for instance, that “an Employee is
a CommunityMember” and “a Teacher is a Facultymember.” CommunityMember is the direct
base class of Employee, Student and Alumnus and is an indirect base class of all the other
classes in the diagram. Starting from the bottom, you can follow the arrows and apply the
is-a relationship up to the topmost base class. For example, an Administrator is a Faculty
member, is an Employee and is a CommunityMember.

Now consider the Shape hierarchy in Fig. 11.3, which begins with base class Shape. This
class is extended by derived classes TwoDimensionalShape and ThreeDimensionalShape—a
Shape is either a TwoDimensionalShape or a ThreeDimensionalShape. The third level of this
hierarchy contains specific TwoDimensionalShapes and ThreeDimensionalShapes. We can
follow the arrows from the bottom to the topmost base class in this hierarchy to identify the
is-a relationships. For instance, a Triangle is a TwoDimensionalShape and is a Shape, while
a Sphere is a ThreeDimensionalShape and is a Shape. This hierarchy could contain many
other classes. For example, ellipses and trapezoids also are TwoDimensionalShapes.

Fig. 11.2 | UML class diagram showing an inheritance hierarchy for university
CommunityMembers.

Fig. 11.3 | UML class diagram showing an inheritance hierarchy for Shapes.

Student

CommunityMember

Administrator

AlumnusEmployee

StaffFaculty

Teacher

ThreeDimensionalShape

TetrahedronCubeSphereSquare TriangleCircle

Shape

TwoDimensionalShape

11.3 protected Members 409

Not every class relationship is an inheritance relationship. In Chapter 10 we discussed
the has-a relationship, in which classes have members that are references to objects of other
classes. Such relationships create classes by composition of existing classes. For example,
given the classes Employee, BirthDate and TelephoneNumber, it’s improper to say that an
Employee is a BirthDate or that an Employee is a TelephoneNumber. However, an
Employee has a BirthDate, and an Employee has a TelephoneNumber.

It’s possible to treat base-class objects and derived-class objects similarly—their com-
monalities are expressed in the base class’s members. Objects of all classes that extend a
common base class can be treated as objects of that base class—such objects have an is-a
relationship with the base class. However, base-class objects cannot be treated as objects of
their derived classes. For example, all cars are vehicles, but not all vehicles are cars (other
vehicles could be trucks, planes, bicycles, etc.). This chapter and Chapter 12 consider
many examples of is-a relationships.

A derived class can customize methods it inherits from its base class. In such cases, the
derived class can override (redefine) the base-class method with an appropriate implemen-
tation, as we’ll see often in the chapter’s code examples.

11.3 protected Members
Chapter 10 discussed access modifiers public and private. A class’s public members are
accessible wherever the app has a reference to an object of that class or one of its derived
classes. A class’s private members are accessible only within the class itself. A base class’s
private members are inherited by its derived classes, but are not directly accessible by de-
rived-class methods and properties. In this section, we introduce access modifier protect-
ed. Using protected access offers an intermediate level of access between public and
private. A base class’s protected members can be accessed by members of that base class
and by members of its derived classes.

All non-private base-class members retain their original access modifier when they
become members of the derived class—public members of the base class become public
members of the derived class, and protectedmembers of the base class become protected
members of the derived class.

Derived-class methods can refer to public and protected members inherited from
the base class simply by using the member names. When a derived-class method overrides
a base-class method, the base-class version can be accessed from the derived class by pre-
ceding the base-class method name with the keyword base and the member access (.)
operator. We discuss accessing overridden members of the base class in Section 11.4.

Software Engineering Observation 11.1
Properties and methods of a derived class cannot directly access private members of the
base class. A derived class can change the state of private base-class fields only through
non-private methods and properties provided in the base class.

Software Engineering Observation 11.2
Declaring private fields in a base class helps you test, debug and correctly modify systems.
If a derived class could access its base class’s private fields, classes that inherit from that
derived class could access the fields as well. This would propagate access to what should be
private fields, and the benefits of information hiding would be lost.

410 Chapter 11 Object-Oriented Programming: Inheritance

11.4 Relationship between Base Classes and Derived
Classes
In this section, we use an inheritance hierarchy containing types of employees in a com-
pany’s payroll app to discuss the relationship between a base class and its derived classes.
In this company, commission employees (who will be represented as objects of a base class)
are paid a percentage of their sales, while base-salaried commission employees (who will be
represented as objects of a derived class) receive a base salary plus a percentage of their sales.

We divide our discussion of the relationship between commission employees and
base-salaried commission employees into five examples:

1. The first creates class CommissionEmployee, which directly inherits from class ob-
ject and declares as private instance variables a first name, last name, social se-
curity number, commission rate and gross (i.e., total) sales amount.

2. The second declares class BasePlusCommissionEmployee, which also directly in-
herits from object and declares as private instance variables a first name, last
name, social security number, commission rate, gross sales amount and base salary.
We create the class by writing every line of code the class requires—we’ll soon see
that it’s more efficient to create this class by inheriting from CommissionEmployee.

3. The third declares a separate BasePlusCommissionEmployee class that extends class
CommissionEmployee (i.e., a BasePlusCommissionEmployee is a Commission-

Employeewho also has a base salary). We show that base-class methods must be ex-
plicitly declared virtual if they’re to be overridden by methods in derived classes.
BasePlusCommissionEmployee attempts to access class CommissionEmployee’s
privatemembers, but this results in compilation errors because a derived class can-
not access its base class’s private instance variables.

4. The fourth shows that if base class CommissionEmployee’s instance variables are
declared as protected, a BasePlusCommissionEmployee class that inherits from
class CommissionEmployee can access that data directly. For this purpose, we de-
clare class CommissionEmployee with protected instance variables.

5. The fifth example demonstrates best practice by setting the CommissionEmployee
instance variables back to private in class CommissionEmployee to enforce good
software engineering. Then we show how a separate BasePlusCommissionEm-
ployee class, which inherits from class CommissionEmployee, can use Commis-
sionEmployee’s public methods to manipulate CommissionEmployee’s private
instance variables.

11.4.1 Creating and Using a CommissionEmployee Class
We begin by declaring class CommissionEmployee (Fig. 11.4). Line 5 begins the class decla-
ration. The colon (:) followed by class name object at the end of the declaration header in-
dicates that class CommissionEmployee extends (i.e., inherits from) class object

(System.Object in the Framework Class Library). C# programmers use inheritance to cre-
ate classes from existing classes. In fact, every class in C# (except object) extends an existing
class. Because class CommissionEmployee extends class object, class CommissionEmployee
inherits the methods of class object—class object has no fields. Every C# class directly or
indirectly inherits object’s methods. If a class does not specify that it inherits from another

11.4 Relationship between Base Classes and Derived Classes 411

class, the new class implicitly inherits from object. For this reason, you typically do not in-
clude “: object” in your code—we do so in this example for demonstration purposes.

1 // Fig. 11.4: CommissionEmployee.cs
2 // CommissionEmployee class represents a commission employee.
3 using System;
4
5 public class CommissionEmployee : object

6 {
7
8
9

10
11
12
13 // five-parameter constructor
14
15
16
17
18
19
20
21
22
23
24
25 // read-only property that gets commission employee's first name
26 public string FirstName
27 {
28 get

29 {
30 return firstName;
31 } // end get
32 } // end property FirstName
33
34 // read-only property that gets commission employee's last name
35 public string LastName
36 {
37 get

38 {
39 return lastName;
40 } // end get
41 } // end property LastName
42
43 // read-only property that gets
44 // commission employee's social security number
45 public string SocialSecurityNumber
46 {
47 get

48 {
49 return socialSecurityNumber;

Fig. 11.4 | CommissionEmployee class represents a commission employee. (Part 1 of 2.)

private string firstName;
private string lastName;
private string socialSecurityNumber;
private decimal grossSales; // gross weekly sales
private decimal commissionRate; // commission percentage

public CommissionEmployee(string first, string last, string ssn,
decimal sales, decimal rate)

{
// implicit call to object constructor occurs here
firstName = first;
lastName = last;
socialSecurityNumber = ssn;
GrossSales = sales; // validate gross sales via property
CommissionRate = rate; // validate commission rate via property

} // end five-parameter CommissionEmployee constructor

412 Chapter 11 Object-Oriented Programming: Inheritance

50 } // end get
51 } // end property SocialSecurityNumber
52
53 // property that gets and sets commission employee's gross sales
54 public decimal GrossSales
55 {
56 get

57 {
58 return grossSales;
59 } // end get
60 set

61 {
62 if (value >= 0)
63 grossSales = value;
64 else

65 throw new ArgumentOutOfRangeException(
66 "GrossSales", value, "GrossSales must be >= 0");
67 } // end set
68 } // end property GrossSales
69
70 // property that gets and sets commission employee's commission rate
71 public decimal CommissionRate
72 {
73 get

74 {
75 return commissionRate;
76 } // end get
77 set

78 {
79 if (value > 0 && value < 1)
80 commissionRate = value;
81 else

82 throw new ArgumentOutOfRangeException("CommissionRate",
83 value, "CommissionRate must be > 0 and < 1");
84 } // end set
85 } // end property CommissionRate
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102 } // end class CommissionEmployee

Fig. 11.4 | CommissionEmployee class represents a commission employee. (Part 2 of 2.)

// calculate commission employee's pay
public decimal Earnings()
{

return commissionRate * grossSales;
} // end method Earnings

// return string representation of CommissionEmployee object
public override string ToString()
{

return string.Format(
"{0}: {1} {2}\n{3}: {4}\n{5}: {6:C}\n{7}: {8:F2}",
"commission employee", FirstName, LastName,
"social security number", SocialSecurityNumber,
"gross sales", GrossSales, "commission rate", CommissionRate);

} // end method ToString

11.4 Relationship between Base Classes and Derived Classes 413

CommissionEmployee Class Overview
CommissionEmployee’s public services include a constructor (lines 14–23), methods
Earnings (lines 88–91) and ToString (lines 94–101), and the public properties (lines
26–85) for manipulating the class’s instance variables firstName, lastName, socialSecu-
rityNumber, grossSales and commissionRate (declared in lines 7–11). Each of its in-
stance variable is private, so objects of other classes cannot directly access these variables.
Declaring instance variables as private and providing public properties to manipulate
and validate them helps enforce good software engineering. The set accessors of proper-
ties GrossSales and CommissionRate, for example, validate their arguments before assign-
ing the values to instance variables grossSales and commissionRate, respectively.

CommissionEmployee Constructor
Constructors are not inherited, so class CommissionEmployee does not inherit class object’s
constructor. However, class CommissionEmployee’s constructor calls class object’s construc-
tor implicitly. In fact, before executing the code in its own body, the derived class’s construc-
tor calls its direct base class’s constructor, either explicitly or implicitly (if no constructor call
is specified), to ensure that the instance variables inherited from the base class are initialized
properly. The syntax for calling a base-class constructor explicitly is discussed in
Section 11.4.3. If the code does not include an explicit call to the base-class constructor, the
compiler generates an implicit call to the base class’s default or parameterless constructor. The
comment in line 17 indicates where the implicit call to the base class object’s default con-
structor is made (you do not write the code for this call). Class object’s default (empty) con-
structor does nothing. Even if a class does not have constructors, the default constructor that
the compiler implicitly declares for the class will call the base class’s default or parameterless
constructor. Class object is the only class that does not have a base class.

After the implicit call to object’s constructor occurs, lines 18–22 in the constructor
assign values to the class’s instance variables. We do not validate the values of arguments
first, last and ssn before assigning them to the corresponding instance variables. We
certainly could validate the first and last names—perhaps by ensuring that they’re of a rea-
sonable length. Similarly, a social security number could be validated to ensure that it con-
tains nine digits, with or without dashes (e.g., 123-45-6789 or 123456789).

CommissionEmployee Method Earnings

Method Earnings (lines 88–91) calculates a CommissionEmployee’s earnings. Line 90
multiplies the commissionRate by the grossSales and returns the result.

CommissionEmployee Method ToString

Method ToString (lines 94–101) is special—it’s one of the methods that every class inherits
directly or indirectly from class object, which is the root of the C# class hierarchy.
Section 11.7 summarizes class object’s methods. Method ToString returns a string repre-
senting an object. It’s called implicitly by an app whenever an object must be converted to a
string representation, such as in Console’s Write method or string method Format using
a format item. Class object’s ToString method returns a string that includes the name of
the object’s class. It’s primarily a placeholder that can be (and typically should be) overridden
by a derived class to specify an appropriate string representation of the data in a derived
class object. Method ToString of class CommissionEmployee overrides (redefines) class ob-
ject’s ToString method. When invoked, CommissionEmployee’s ToString method uses

414 Chapter 11 Object-Oriented Programming: Inheritance

string method Format to return a string containing information about the Commission-
Employee. Line 97 uses the format specifier C (in "{6:C}") to format grossSales as currency
and the format specifier F2 (in "{8:F2}") to format the commissionRate with two digits of
precision to the right of the decimal point. To override a base-class method, a derived class
must declare a method with keyword override and with the same signature (method name,
number of parameters and parameter types) and return type as the base-class method—
object’s ToString method takes no parameters and returns type string, so CommissionEm-
ployee declares ToString with the same parameter list and return type.

Class CommissionEmployeeTest
Figure 11.5 tests class CommissionEmployee. Lines 10–11 create a CommissionEmployee
object and invoke its constructor (lines 14–23 of Fig. 11.4) to initialize it. We append the
M suffix to the gross sales amount and the commission rate to indicate that the compiler
should treate these as decimal literals, rather than doubles. Lines 16–22 use Commission-
Employee’s properties to retrieve the object’s instance-variable values for output. Line 23
outputs the amount calculated by the Earnings method. Lines 25–26 invoke the set ac-
cessors of the object’s GrossSales and CommissionRate properties to change the values of
instance variables grossSales and commissionRate. Lines 28–29 output the string rep-
resentation of the updated CommissionEmployee. When an object is output using a format
item, the object’s ToString method is invoked implicitly to obtain the object’s string rep-
resentation. Line 30 outputs the earnings again.

Common Programming Error 11.1
It’s a compilation error to override a method with one that has a different access modifier.
Overriding a method with a more restrictive access modifier would break the is-a rela-
tionship. If a public method could be overridden as a protected or private method, the
derived-class objects would not be able to respond to the same method calls as base-class
objects. Once a method is declared in a base class, the method must have the same access
modifier for all that class’s direct and indirect derived classes.

1 // Fig. 11.5: CommissionEmployeeTest.cs
2 // Testing class CommissionEmployee.
3 using System;
4
5 public class CommissionEmployeeTest
6 {
7 public static void Main(string[] args)
8 {
9 // instantiate CommissionEmployee object

10
11
12
13 // display CommissionEmployee data
14 Console.WriteLine(
15 "Employee information obtained by properties and methods: \n");
16 Console.WriteLine("First name is {0}",);
17 Console.WriteLine("Last name is {0}",);

Fig. 11.5 | Testing class CommissionEmployee. (Part 1 of 2.)

CommissionEmployee employee = new CommissionEmployee("Sue",
"Jones", "222-22-2222", 10000.00M, .06M);

employee.FirstName
employee.LastName

11.4 Relationship between Base Classes and Derived Classes 415

11.4.2 Creating a BasePlusCommissionEmployee Class without
Using Inheritance
We now discuss the second part of our introduction to inheritance by declaring and testing
the (completely new and independent) class BasePlusCommissionEmployee (Fig. 11.6),
which contains a first name, last name, social security number, gross sales amount, com-
mission rate and base salary—“Base” in the class name stands for “base salary” not base
class. Class BasePlusCommissionEmployee’s public services include a BasePlusCommis-
sionEmployee constructor (lines 16–26), methods Earnings (lines 113–116) and To-

String (lines 119–127), and public properties (lines 30–110) for the class’s private
instance variables firstName, lastName, socialSecurityNumber, grossSales, commis-
sionRate and baseSalary (declared in lines 8–13). These variables, properties and meth-
ods encapsulate all the necessary features of a base-salaried commission employee. Note
the similarity between this class and class CommissionEmployee (Fig. 11.4)—in this exam-
ple, we do not yet exploit that similarity.

Class BasePlusCommissionEmployee does not specify that it extends object with the
syntax “: object” in line 6, so the class implicitly extends object. Also, like class Commis-
sionEmployee’s constructor (lines 14–23 of Fig. 11.4), class BasePlusCommissionEm-

18 Console.WriteLine("Social security number is {0}",
19);
20 Console.WriteLine("Gross sales are {0:C}",);
21 Console.WriteLine("Commission rate is {0:F2}",
22);
23 Console.WriteLine("Earnings are {0:C}",);
24
25
26
27
28
29
30
31 } // end Main
32 } // end class CommissionEmployeeTest

Employee information obtained by properties and methods:

First name is Sue
Last name is Jones
Social security number is 222-22-2222
Gross sales are $10,000.00
Commission rate is 0.06
Earnings are $600.00

Updated employee information obtained by ToString:

commission employee: Sue Jones
social security number: 222-22-2222
gross sales: $5,000.00
commission rate: 0.10
earnings: $500.00

Fig. 11.5 | Testing class CommissionEmployee. (Part 2 of 2.)

employee.SocialSecurityNumber
employee.GrossSales

employee.CommissionRate
employee.Earnings()

employee.GrossSales = 5000.00M; // set gross sales
employee.CommissionRate = .1M; // set commission rate

Console.WriteLine("\n{0}:\n\n{1}",
"Updated employee information obtained by ToString", employee);

Console.WriteLine("earnings: {0:C}", employee.Earnings());

416 Chapter 11 Object-Oriented Programming: Inheritance

ployee’s constructor invokes class object’s default constructor implicitly, as noted in the
comment in line 19 of Fig. 11.6.

1 // Fig. 11.6: BasePlusCommissionEmployee.cs
2 // BasePlusCommissionEmployee class represents an employee that receives
3 // a base salary in addition to a commission.
4 using System;
5
6 public class BasePlusCommissionEmployee
7 {
8 private string firstName;
9 private string lastName;

10 private string socialSecurityNumber;
11 private decimal grossSales; // gross weekly sales
12 private decimal commissionRate; // commission percentage
13
14
15 // six-parameter constructor
16 public BasePlusCommissionEmployee(string first, string last,
17 string ssn, decimal sales, decimal rate, decimal salary)
18 {
19 // implicit call to object constructor occurs here
20 firstName = first;
21 lastName = last;
22 socialSecurityNumber = ssn;
23 GrossSales = sales; // validate gross sales via property
24 CommissionRate = rate; // validate commission rate via property
25
26 } // end six-parameter BasePlusCommissionEmployee constructor
27
28 // read-only property that gets
29 // BasePlusCommissionEmployee's first name
30 public string FirstName
31 {
32 get

33 {
34 return firstName;
35 } // end get
36 } // end property FirstName
37
38 // read-only property that gets
39 // BasePlusCommissionEmployee's last name
40 public string LastName
41 {
42 get

43 {
44 return lastName;
45 } // end get
46 } // end property LastName
47

Fig. 11.6 | BasePlusCommissionEmployee class represents an employee that receives a base
salary in addition to a commission. (Part 1 of 3.)

private decimal baseSalary; // base salary per week

BaseSalary = salary; // validate base salary via property

11.4 Relationship between Base Classes and Derived Classes 417

48 // read-only property that gets
49 // BasePlusCommissionEmployee's social security number
50 public string SocialSecurityNumber
51 {
52 get

53 {
54 return socialSecurityNumber;
55 } // end get
56 } // end property SocialSecurityNumber
57
58 // property that gets and sets
59 // BasePlusCommissionEmployee's gross sales
60 public decimal GrossSales
61 {
62 get

63 {
64 return grossSales;
65 } // end get
66 set

67 {
68 if (value >= 0)
69 grossSales = value;
70 else

71 throw new ArgumentOutOfRangeException(
72 "GrossSales", value, "GrossSales must be >= 0");
73 } // end set
74 } // end property GrossSales
75
76 // property that gets and sets
77 // BasePlusCommissionEmployee's commission rate
78 public decimal CommissionRate
79 {
80 get

81 {
82 return commissionRate;
83 } // end get
84 set

85 {
86 if (value > 0 && value < 1)
87 commissionRate = value;
88 else

89 throw new ArgumentOutOfRangeException("CommissionRate",
90 value, "CommissionRate must be > 0 and < 1");
91 } // end set
92 } // end property CommissionRate
93
94 // property that gets and sets
95 // BasePlusCommissionEmployee's base salary
96
97
98
99

Fig. 11.6 | BasePlusCommissionEmployee class represents an employee that receives a base
salary in addition to a commission. (Part 2 of 3.)

public decimal BaseSalary
{

get

{

418 Chapter 11 Object-Oriented Programming: Inheritance

Class BasePlusCommissionEmployee’s Earnings method (lines 113–116) computes
the earnings of a base-salaried commission employee. Line 115 adds the employee’s base
salary to the product of the commission rate and the gross sales, and returns the result.

Class BasePlusCommissionEmployee overrides object method ToString to return a
string containing the BasePlusCommissionEmployee’s information (lines 119–127).
Once again, we use format specifier C to format the gross sales and base salary as currency
and format specifier F2 to format the commission rate with two digits of precision to the
right of the decimal point (line 122).

Class BasePlusCommissionEmployeeTest
Figure 11.7 tests class BasePlusCommissionEmployee. Lines 10–12 instantiate a Base-

PlusCommissionEmployee object and pass "Bob", "Lewis", "333-33-3333", 5000.00M,
.04M and 300.00M to the constructor as the first name, last name, social security number,
gross sales, commission rate and base salary, respectively. Lines 17–25 use BasePlusCom-
missionEmployee’s properties and methods to retrieve the values of the object’s instance
variables and calculate the earnings for output. Line 27 invokes the object’s BaseSalary
property to change the base salary. Property BaseSalary’s set accessor (Fig. 11.6, lines
102–109) ensures that instance variable baseSalary is not assigned a negative value, be-

100
101
102
103
104
105
106
107
108
109
110
111
112 // calculate earnings
113 public decimal Earnings()
114 {
115
116 } // end method Earnings
117
118 // return string representation of BasePlusCommissionEmployee
119 public override string ToString()
120 {
121 return string.Format(
122 "{0}: {1} {2}\n{3}: {4}\n{5}: {6:C}\n{7}: {8:F2}\n{9}: {10:C}",
123 "base-salaried commission employee", firstName, lastName,
124 "social security number", socialSecurityNumber,
125 "gross sales", grossSales, "commission rate", commissionRate,
126);
127 } // end method ToString
128 } // end class BasePlusCommissionEmployee

Fig. 11.6 | BasePlusCommissionEmployee class represents an employee that receives a base
salary in addition to a commission. (Part 3 of 3.)

return baseSalary;
} // end get
set

{
if (value >= 0)

baseSalary = value;
else

throw new ArgumentOutOfRangeException("BaseSalary",
value, "BaseSalary must be >= 0");

} // end set
} // end property BaseSalary

return baseSalary + (commissionRate * grossSales);

"base salary", baseSalary

11.4 Relationship between Base Classes and Derived Classes 419

cause an employee’s base salary cannot be negative. Lines 29–30 of Fig. 11.7 invoke the ob-
ject’s ToString method implicitly to get the object’s string representation.

1 // Fig. 11.7: BasePlusCommissionEmployeeTest.cs
2 // Testing class BasePlusCommissionEmployee.
3 using System;
4
5 public class BasePlusCommissionEmployeeTest
6 {
7 public static void Main(string[] args)
8 {
9 // instantiate BasePlusCommissionEmployee object

10
11
12
13
14 // display BasePlusCommissionEmployee's data
15 Console.WriteLine(
16 "Employee information obtained by properties and methods: \n");
17 Console.WriteLine("First name is {0}",);
18 Console.WriteLine("Last name is {0}",);
19 Console.WriteLine("Social security number is {0}",
20);
21 Console.WriteLine("Gross sales are {0:C}",);
22 Console.WriteLine("Commission rate is {0:F2}",
23);
24 Console.WriteLine("Earnings are {0:C}",);
25 Console.WriteLine("Base salary is {0:C}",);
26
27
28
29 Console.WriteLine("\n{0}:\n\n{1}",
30 "Updated employee information obtained by ToString",);
31 Console.WriteLine("earnings: {0:C}", employee.Earnings());
32 } // end Main
33 } // end class BasePlusCommissionEmployeeTest

Employee information obtained by properties and methods:

First name is Bob
Last name is Lewis
Social security number is 333-33-3333
Gross sales are $5,000.00
Commission rate is 0.04
Earnings are $500.00
Base salary is $300.00

Updated employee information obtained by ToString:

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333
gross sales: $5,000.00
commission rate: 0.04
base salary: $1,000.00
earnings: $1,200.00

Fig. 11.7 | Testing class BasePlusCommissionEmployee.

BasePlusCommissionEmployee employee =
new BasePlusCommissionEmployee("Bob", "Lewis",
"333-33-3333", 5000.00M, .04M, 300.00M);

employee.FirstName
employee.LastName

employee.SocialSecurityNumber
employee.GrossSales

employee.CommissionRate
employee.Earnings()
employee.BaseSalary

employee.BaseSalary = 1000.00M; // set base salary

employee

420 Chapter 11 Object-Oriented Programming: Inheritance

Much of the code for class BasePlusCommissionEmployee (Fig. 11.6) is similar, if not
identical, to the code for class CommissionEmployee (Fig. 11.4). For example, in class Base-
PlusCommissionEmployee, private instance variables firstName and lastName and prop-
erties FirstName and LastName are identical to those of class CommissionEmployee. Classes
CommissionEmployee and BasePlusCommissionEmployee also both contain private

instance variables socialSecurityNumber, commissionRate and grossSales, as well as
properties to manipulate these variables. In addition, the BasePlusCommissionEmployee
constructor is almost identical to that of class CommissionEmployee, except that Base-
PlusCommissionEmployee’s constructor also sets the baseSalary. The other additions to
class BasePlusCommissionEmployee are private instance variable baseSalary and prop-
erty BaseSalary. Class BasePlusCommissionEmployee’s Earnings method is nearly iden-
tical to that of class CommissionEmployee, except that BasePlusCommissionEmployee’s also
adds the baseSalary. Similarly, class BasePlusCommissionEmployee’s ToStringmethod is
nearly identical to that of class CommissionEmployee, except that BasePlusCommissionEm-
ployee’s ToString also formats the value of instance variable baseSalary as currency.

We literally copied the code from class CommissionEmployee and pasted it into class
BasePlusCommissionEmployee, then modified class BasePlusCommissionEmployee to
include a base salary and methods and properties that manipulate the base salary. This
“copy-and-paste” approach is often error prone and time consuming. Worse yet, it can
spread many physical copies of the same code throughout a system, creating a code-main-
tenance nightmare. Is there a way to “absorb” the members of one class in a way that makes
them part of other classes without copying code? In the next several examples we answer
this question, using a more elegant approach to building classes—namely, inheritance.

11.4.3 Creating a CommissionEmployee–
BasePlusCommissionEmployee Inheritance Hierarchy
Now we declare class BasePlusCommissionEmployee (Fig. 11.8), which extends class Com-
missionEmployee (Fig. 11.4). A BasePlusCommissionEmployee object is a CommissionEm-
ployee (because inheritance passes on the capabilities of class CommissionEmployee), but
class BasePlusCommissionEmployee also has instance variable baseSalary (Fig. 11.8, line
7). The colon (:) in line 5 of the class declaration indicates inheritance. As a derived class,
BasePlusCommissionEmployee inherits the members of class CommissionEmployee and can
access those members that are non-private. The constructor of class CommissionEmployee

Error-Prevention Tip 11.1
Copying and pasting code from one class to another can spread errors across multiple
source-code files. To avoid duplicating code (and possibly errors) in situations where you
want one class to “absorb” the members of another class, use inheritance rather than the
“copy-and-paste” approach.

Software Engineering Observation 11.3
With inheritance, the common members of all the classes in the hierarchy are declared in
a base class. When changes are required for these common features, you need to make the
changes only in the base class—derived classes then inherit the changes. Without
inheritance, changes would need to be made to all the source-code files that contain a copy
of the code in question.

11.4 Relationship between Base Classes and Derived Classes 421

is not inherited. Thus, the public services of BasePlusCommissionEmployee include its
constructor (lines 11–16), publicmethods and properties inherited from class Commission-
Employee, property BaseSalary (lines 20–34), method Earnings (lines 37–41) and method
ToString (lines 44–53).

1 // Fig. 11.8: BasePlusCommissionEmployee.cs
2 // BasePlusCommissionEmployee inherits from class CommissionEmployee.
3 using System;
4
5
6 {
7 private decimal baseSalary; // base salary per week
8
9 // six-parameter derived-class constructor

10 // with call to base class CommissionEmployee constructor
11 public BasePlusCommissionEmployee(string first, string last,
12 string ssn, decimal sales, decimal rate, decimal salary)
13
14 {
15 BaseSalary = salary; // validate base salary via property
16 } // end six-parameter BasePlusCommissionEmployee constructor
17
18 // property that gets and sets
19 // BasePlusCommissionEmployee's base salary
20 public decimal BaseSalary
21 {
22 get

23 {
24 return baseSalary;
25 } // end get
26 set

27 {
28 if (value >= 0)
29 baseSalary = value;
30 else

31 throw new ArgumentOutOfRangeException("BaseSalary",
32 value, "BaseSalary must be >= 0");
33 } // end set
34 } // end property BaseSalary
35
36 // calculate earnings
37 public override decimal Earnings()
38 {
39
40 return baseSalary + (commissionRate * grossSales);
41 } // end method Earnings
42
43 // return string representation of BasePlusCommissionEmployee
44 public override string ToString()
45 {

Fig. 11.8 | BasePlusCommissionEmployee inherits from class CommissionEmployee. (Part 1
of 2.)

public class BasePlusCommissionEmployee : CommissionEmployee

: base(first, last, ssn, sales, rate)

// not allowed: commissionRate and grossSales private in base class

422 Chapter 11 Object-Oriented Programming: Inheritance

A Derived Class’s Constructor Must Call Its Base Class’s Constructor
Each derived-class constructor must implicitly or explicitly call its base-class constructor to
ensure that the instance variables inherited from the base class are initialized properly. Base-
PlusCommissionEmployee’s six-parameter constructor explicitly calls class CommissionEm-
ployee’s five-parameter constructor to initialize the CommissionEmployee portion of a
BasePlusCommissionEmployee object—that is, the instance variables firstName, lastName,
socialSecurityNumber, grossSales and commissionRate. Line 13 in the header of Base-
PlusCommissionEmployee’s six-parameter constructor invokes the CommissionEmployee’s
five-parameter constructor (declared at lines 14–23 of Fig. 11.4) by using a constructor ini-
tializer. In Section 10.5, we used constructor initializers with keyword this to call overload-
ed constructors in the same class. In line 13 of Fig. 11.8, we use a constructor initializer with
keyword base to invoke the base-class constructor. The arguments first, last, ssn, sales
and rate are used to initialize base-class members firstName, lastName, socialSecurity-
Number, grossSales and commissionRate, respectively. If BasePlusCommissionEmployee’s
constructor did not invoke CommissionEmployee’s constructor explicitly, C# would attempt
to invoke class CommissionEmployee’s parameterless or default constructor implicitly—but
the class does not have such a constructor, so the compiler would issue an error. When a base
class contains a parameterless constructor, you can use base() in the constructor initializer
to call that constructor explicitly, but this is rarely done.

BasePlusCommissionEmployee Method Earnings

Lines 37–41 of Fig. 11.8 declare method Earnings using keyword override to override
the CommissionEmployee’s Earnings method, as we did with method ToString in previ-

46
47 return string.Format(
48 "{0}: {1} {2}\n{3}: {4}\n{5}: {6:C}\n{7}: {8:F2}\n{9}: {10:C}",
49 "base-salaried commission employee", firstName, lastName,
50 "social security number", socialSecurityNumber,
51 "gross sales", grossSales, "commission rate", commissionRate,
52 "base salary", baseSalary);
53 } // end method ToString
54 } // end class BasePlusCommissionEmployee

Common Programming Error 11.2
A compilation error occurs if a derived-class constructor calls one of its base-class construc-
tors with arguments that do not match the number and types of parameters specified in
one of the base-class constructor declarations.

Fig. 11.8 | BasePlusCommissionEmployee inherits from class CommissionEmployee. (Part 2
of 2.)

// not allowed: attempts to access private base-class members

11.4 Relationship between Base Classes and Derived Classes 423

ous examples. Line 37 causes a compilation error indicating that we cannot override the
base class’s Earnings method because it was not explicitly “marked virtual, abstract, or
override.” The virtual and abstract keywords indicate that a base-class method can be
overridden in derived classes. (As you’ll learn in Section 12.4, abstract methods are im-
plicitly virtual.) The override modifier declares that a derived-class method overrides a
virtual or abstract base-class method. This modifier also implicitly declares the derived-
class method virtual and allows it to be overridden in derived classes further down the
inheritance hierarchy.

If we add the keyword virtual to method Earnings’ declaration in Fig. 11.4 and
recompile, other compilation errors appear (Fig. 11.9). The compiler generates additional
errors for line 40 of Fig. 11.8 because base class CommissionEmployee’s instance variables
commissionRate and grossSales are private—derived class BasePlusCommissionEm-
ployee’s methods are not allowed to access base class CommissionEmployee’s private
instance variables. The compiler issues additional errors at lines 49–51 of BasePlusCom-
missionEmployee’s ToString method for the same reason. The errors in BasePlusCom-

missionEmployee could have been prevented by using the public properties inherited
from class CommissionEmployee. For example, line 40 could have invoked the get acces-
sors of properties CommissionRate and GrossSales to access CommissionEmployee’s pri-
vate instance variables commissionRate and grossSales, respectively. Lines 49–51 also
could have used appropriate properties to retrieve the values of the base class’s instance
variables.

11.4.4 CommissionEmployee–BasePlusCommissionEmployee
Inheritance Hierarchy Using protected Instance Variables
To enable class BasePlusCommissionEmployee to directly access base-class instance vari-
ables firstName, lastName, socialSecurityNumber, grossSales and commissionRate,
we can declare those members as protected in the base class. As we discussed in
Section 11.3, a base class’s protected members are inherited by all derived classes of that

f

Fig. 11.9 | Compilation errors generated by BasePlusCommissionEmployee (Fig. 11.8) after
declaring the Earnings method in Fig. 11.4 with keyword virtual.

424 Chapter 11 Object-Oriented Programming: Inheritance

base class. Class CommissionEmployee in this example is a modification of the version from
Fig. 11.4 that declares its instance variables firstName, lastName, socialSecurityNum-
ber, grossSales and commissionRate as protected rather than private. We also declare
the Earnings method virtual as in

so that BasePlusCommissionEmployee can override the method. The rest of the class dec-
laration in this example is identical to that of Fig. 11.4. The complete source code for class
CommissionEmployee is included in this example’s project.

public vs. protected Data
We could have declared base class CommissionEmployee’s instance variables firstName,
lastName, socialSecurityNumber, grossSales and commissionRate as public to enable
derived class BasePlusCommissionEmployee to access the base-class instance variables.
However, declaring public instance variables is poor software engineering, because it al-
lows unrestricted access to the instance variables, greatly increasing the chance of errors.
With protected instance variables, the derived class gets access to the instance variables,
but classes that are not derived from the base class cannot access its variables directly.

Class BasePlusCommissionEmployee
Class BasePlusCommissionEmployee (Fig. 11.10) in this example extends the version of
class CommissionEmployee with protected data rather than the one with private data in
Fig. 11.4. Each BasePlusCommissionEmployee object inherits CommissionEmployee’s pro-
tected instance variables firstName, lastName, socialSecurityNumber, grossSales and
commissionRate—all these variables are now protected members of BasePlusCommis-
sionEmployee. As a result, the compiler does not generate errors when compiling line 40 of
method Earnings and lines 48–50 of method ToString. If another class extends BasePlus-
CommissionEmployee, the new derived class also inherits the protected members.

Class BasePlusCommissionEmployee does not inherit class CommissionEmployee’s con-
structor. However, class BasePlusCommissionEmployee’s six-parameter constructor (lines
12–17) calls class CommissionEmployee’s five-parameter constructor with a constructor ini-
tializer. BasePlusCommissionEmployee’s six-parameter constructor must explicitly call the
five-parameter constructor of class CommissionEmployee, because CommissionEmployee

does not provide a parameterless constructor that could be invoked implicitly.

public virtual decimal Earnings()

1 // Fig. 11.10: BasePlusCommissionEmployee.cs
2 // BasePlusCommissionEmployee inherits from CommissionEmployee and has
3 // access to CommissionEmployee's protected members.
4 using System;
5
6
7 {
8 private decimal baseSalary; // base salary per week
9

Fig. 11.10 | BasePlusCommissionEmployee inherits from CommissionEmployee and has
access to CommissionEmployee's protected members. (Part 1 of 2.)

public class BasePlusCommissionEmployee : CommissionEmployee

11.4 Relationship between Base Classes and Derived Classes 425

Class BasePlusCommissionEmployeeTest
Figure 11.11 uses a BasePlusCommissionEmployee object to perform the same tasks that
Fig. 11.7 performed on the version of the class from Fig. 11.6. The outputs of the two
apps are identical. Although we declared the version of the class in Fig. 11.6 without using

10 // six-parameter derived-class constructor
11 // with call to base class CommissionEmployee constructor
12 public BasePlusCommissionEmployee(string first, string last,
13 string ssn, decimal sales, decimal rate, decimal salary)
14
15 {
16 BaseSalary = salary; // validate base salary via property
17 } // end six-parameter BasePlusCommissionEmployee constructor
18
19 // property that gets and sets
20 // BasePlusCommissionEmployee's base salary
21 public decimal BaseSalary
22 {
23 get

24 {
25 return baseSalary;
26 } // end get
27 set

28 {
29 if (value >= 0)
30 baseSalary = value;
31 else

32 throw new ArgumentOutOfRangeException("BaseSalary",
33 value, "BaseSalary must be >= 0");
34 } // end set
35 } // end property BaseSalary
36
37
38
39
40
41
42
43 // return string representation of BasePlusCommissionEmployee
44 public override string ToString()
45 {
46
47
48
49
50
51
52 } // end method ToString
53 } // end class BasePlusCommissionEmployee

Fig. 11.10 | BasePlusCommissionEmployee inherits from CommissionEmployee and has
access to CommissionEmployee's protected members. (Part 2 of 2.)

: base(first, last, ssn, sales, rate)

// calculate earnings
public override decimal Earnings()
{

return baseSalary + (commissionRate * grossSales);
} // end method Earnings

return string.Format(
"{0}: {1} {2}\n{3}: {4}\n{5}: {6:C}\n{7}: {8:F2}\n{9}: {10:C}",
"base-salaried commission employee", firstName, lastName,
"social security number", socialSecurityNumber,
"gross sales", grossSales, "commission rate", commissionRate,
"base salary", baseSalary);

426 Chapter 11 Object-Oriented Programming: Inheritance

inheritance and declared the version in Fig. 11.10 using inheritance, both classes provide
the same functionality. The source code in Fig. 11.10 (which is 53 lines) is considerably
shorter than the version in Fig. 11.6 (which is 128 lines), because the new class inherits
most of its functionality from CommissionEmployee, whereas the version in Fig. 11.6 in-
herits only class object’s functionality. Also, there’s now only one copy of the commis-
sion-employee functionality declared in class CommissionEmployee. This makes the code
easier to maintain, modify and debug, because the code related to a commission employee
exists only in class CommissionEmployee.

1 // Fig. 11.11: BasePlusCommissionEmployee.cs
2 // Testing class BasePlusCommissionEmployee.
3 using System;
4
5 public class BasePlusCommissionEmployeeTest
6 {
7 public static void Main(string[] args)
8 {
9 // instantiate BasePlusCommissionEmployee object

10
11
12
13
14 // display BasePlusCommissionEmployee's data
15 Console.WriteLine(
16 "Employee information obtained by properties and methods: \n");
17 Console.WriteLine("First name is {0}",
18);
19 Console.WriteLine("Last name is {0}",
20);
21 Console.WriteLine("Social security number is {0}",
22);
23 Console.WriteLine("Gross sales are {0:C}",
24);
25 Console.WriteLine("Commission rate is {0:F2}",
26);
27 Console.WriteLine("Earnings are {0:C}",
28);
29 Console.WriteLine("Base salary is {0:C}",
30);
31
32
33
34 Console.WriteLine("\n{0}:\n\n{1}",
35 "Updated employee information obtained by ToString",
36);
37 Console.WriteLine("earnings: {0:C}",
38 basePlusCommissionEmployee.Earnings());
39 } // end Main
40 } // end class BasePlusCommissionEmployeeTest

Fig. 11.11 | Testing class BasePlusCommissionEmployee. (Part 1 of 2.)

BasePlusCommissionEmployee basePlusCommissionEmployee =
new BasePlusCommissionEmployee("Bob", "Lewis",
"333-33-3333", 5000.00M, .04M, 300.00M);

basePlusCommissionEmployee.FirstName

basePlusCommissionEmployee.LastName

basePlusCommissionEmployee.SocialSecurityNumber

basePlusCommissionEmployee.GrossSales

basePlusCommissionEmployee.CommissionRate

basePlusCommissionEmployee.Earnings()

basePlusCommissionEmployee.BaseSalary

basePlusCommissionEmployee.BaseSalary = 1000.00M; // set base salary

basePlusCommissionEmployee

11.4 Relationship between Base Classes and Derived Classes 427

Problems with protected Instance Variables
In this example, we declared base-class instance variables as protected so that derived
classes could access them. Inheriting protected instance variables enables you to directly
access the variables in the derived class without invoking the set or get accessors of the
corresponding property, thus violating encapsulation. In most cases, it’s better to use pri-
vate instance variables to encourage proper software engineering. Your code will be easier
to maintain, modify and debug.

Using protected instance variables creates several potential problems. First, since the
derived-class object can set an inherited variable’s value directly without using a property’s
set accessor, a derived-class object can assign an invalid value to the variable. For example,
if we were to declare CommissionEmployee’s instance variable grossSales as protected,
a derived-class object (e.g., BasePlusCommissionEmployee) could then assign a negative
value to grossSales. The second problem with using protected instance variables is that
derived-class methods are more likely to be written to depend on the base class’s data imple-
mentation. In practice, derived classes should depend only on the base-class services (i.e.,
non-private methods and properties) and not on the base-class data implementation.
With protected instance variables in the base class, we may need to modify all the derived
classes of the base class if the base-class implementation changes. For example, if for some
reason we were to change the names of instance variables firstName and lastName to
first and last, then we would have to do so for all occurrences in which a derived class
directly references base-class instance variables firstName and lastName. In such a case,
the software is said to be fragile or brittle, because a small change in the base class can
“break” derived-class implementation. You should be able to change the base-class imple-
mentation while still providing the same services to the derived classes. Of course, if the
base-class services change, we must reimplement our derived classes.

Employee information obtained by properties and methods:

First name is Bob
Last name is Lewis
Social security number is 333-33-3333
Gross sales are $5,000.00
Commission rate is 0.04
Earnings are $500.00
Base salary is $300.00

Updated employee information obtained by ToString:

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333
gross sales: $5,000.00
commission rate: 0.04
base salary: $1,000.00
earnings: $1,200.00

Software Engineering Observation 11.4
Declaring base-class instance variables private (as opposed to protected) enables the
base-class implementation of these instance variables to change without affecting derived-
class implementations.

Fig. 11.11 | Testing class BasePlusCommissionEmployee. (Part 2 of 2.)

428 Chapter 11 Object-Oriented Programming: Inheritance

11.4.5 CommissionEmployee–BasePlusCommissionEmployee
Inheritance Hierarchy Using private Instance Variables
We now reexamine our hierarchy once more, this time using the best software engineering
practices. Class CommissionEmployee (Fig. 11.12) declares instance variables firstName,
lastName, socialSecurityNumber, grossSales and commissionRate as private (lines
7–11) and provides public properties FirstName, LastName, SocialSecurityNumber,
GrossSales and CommissionRate for manipulating these values. Methods Earnings (lines
88–91) and ToString (lines 94–101) use the class’s properties to obtain the values of its
instance variables. If we decide to change the instance-variable names, the Earnings and
ToString declarations will not require modification—only the bodies of the properties
that directly manipulate the instance variables will need to change. These changes occur
solely within the base class—no changes to the derived class are needed. Localizing the ef-
fects of changes like this is a good software engineering practice. Derived class Base-
PlusCommissionEmployee (Fig. 11.13) inherits from CommissionEmployee’s and can
access the private base-class members via the inherited public properties.

1 // Fig. 11.12: CommissionEmployee.cs
2 // CommissionEmployee class represents a commission employee.
3 using System;
4
5 public class CommissionEmployee
6 {
7
8
9

10
11
12
13 // five-parameter constructor
14 public CommissionEmployee(string first, string last, string ssn,
15 decimal sales, decimal rate)
16 {
17 // implicit call to object constructor occurs here
18 firstName = first;
19 lastName = last;
20 socialSecurityNumber = ssn;
21 GrossSales = sales; // validate gross sales via property
22 CommissionRate = rate; // validate commission rate via property
23 } // end five-parameter CommissionEmployee constructor
24
25 // read-only property that gets commission employee's first name
26 public string FirstName
27 {
28 get

29 {
30 return firstName;
31 } // end get
32 } // end property FirstName
33

Fig. 11.12 | CommissionEmployee class represents a commission employee. (Part 1 of 3.)

private string firstName;
private string lastName;
private string socialSecurityNumber;
private decimal grossSales; // gross weekly sales
private decimal commissionRate; // commission percentage

11.4 Relationship between Base Classes and Derived Classes 429

34 // read-only property that gets commission employee's last name
35 public string LastName
36 {
37 get

38 {
39 return lastName;
40 } // end get
41 } // end property LastName
42
43 // read-only property that gets
44 // commission employee's social security number
45 public string SocialSecurityNumber
46 {
47 get

48 {
49 return socialSecurityNumber;
50 } // end get
51 } // end property SocialSecurityNumber
52
53 // property that gets and sets commission employee's gross sales
54 public decimal GrossSales
55 {
56 get

57 {
58 return grossSales;
59 } // end get
60 set

61 {
62 if (value >= 0)
63 grossSales = value;
64 else

65 throw new ArgumentOutOfRangeException(
66 "GrossSales", value, "GrossSales must be >= 0");
67 } // end set
68 } // end property GrossSales
69
70 // property that gets and sets commission employee's commission rate
71 public decimal CommissionRate
72 {
73 get

74 {
75 return commissionRate;
76 } // end get
77 set

78 {
79 if (value > 0 && value < 1)
80 commissionRate = value;
81 else

82 throw new ArgumentOutOfRangeException("CommissionRate",
83 value, "CommissionRate must be > 0 and < 1");
84 } // end set
85 } // end property CommissionRate
86

Fig. 11.12 | CommissionEmployee class represents a commission employee. (Part 2 of 3.)

430 Chapter 11 Object-Oriented Programming: Inheritance

Class BasePlusCommissionEmployee (Fig. 11.13) has several changes to its method
implementations that distinguish it from the version in Fig. 11.10. Methods Earnings
(Fig. 11.13, lines 39–42) and ToString (lines 45–49) each invoke property BaseSalary’s
get accessor to obtain the base-salary value, rather than accessing baseSalary directly. If
we decide to rename instance variable baseSalary, only the body of property BaseSalary
will need to change.

87 // calculate commission employee's pay
88 public virtual decimal Earnings()
89 {
90 return * ;
91 } // end method Earnings
92
93 // return string representation of CommissionEmployee object
94 public override string ToString()
95 {
96 return string.Format(
97 "{0}: {1} {2}\n{3}: {4}\n{5}: {6:C}\n{7}: {8:F2}",
98 "commission employee", , ,
99 "social security number", ,
100 "gross sales", , "commission rate",);
101 } // end method ToString
102 } // end class CommissionEmployee

1 // Fig. 11.13: BasePlusCommissionEmployee.cs
2 // BasePlusCommissionEmployee inherits from CommissionEmployee and has
3 // access to CommissionEmployee's private data via
4 // its public properties.
5 using System;
6
7
8 {
9 private decimal baseSalary; // base salary per week

10
11 // six-parameter derived class constructor
12 // with call to base class CommissionEmployee constructor
13 public BasePlusCommissionEmployee(string first, string last,
14 string ssn, decimal sales, decimal rate, decimal salary)
15 : base(first, last, ssn, sales, rate)
16 {
17 BaseSalary = salary; // validate base salary via property
18 } // end six-parameter BasePlusCommissionEmployee constructor
19
20 // property that gets and sets
21 // BasePlusCommissionEmployee's base salary
22 public decimal BaseSalary
23 {

Fig. 11.13 | BasePlusCommissionEmployee inherits from CommissionEmployee and has
access to CommissionEmployee's private data via its public properties. (Part 1 of 2.)

Fig. 11.12 | CommissionEmployee class represents a commission employee. (Part 3 of 3.)

CommissionRate GrossSales

FirstName LastName
SocialSecurityNumber

GrossSales CommissionRate

public class BasePlusCommissionEmployee : CommissionEmployee

11.4 Relationship between Base Classes and Derived Classes 431

BasePlusCommissionEmployee Method Earnings

Class BasePlusCommissionEmployee’s Earnings method (Fig. 11.13, lines 39–42) over-
rides class CommissionEmployee’s Earnings method (Fig. 11.12, lines 88–91) to calculate
the earnings of a BasePlusCommissionEmployee. The new version obtains the portion of
the employee’s earnings based on commission alone by calling CommissionEmployee’s
Earnings method with the expression base.Earnings() (Fig. 11.13, line 41), then adds
the base salary to this value to calculate the total earnings of the employee. Note the syntax
used to invoke an overridden base-class method from a derived class—place the keyword
base and the member access (.) operator before the base-class method name. This method
invocation is a good software engineering practice—by having BasePlusCommissionEm-
ployee’s Earnings method invoke CommissionEmployee’s Earnings method to calculate
part of a BasePlusCommissionEmployee object’s earnings, we avoid duplicating the code
and reduce code-maintenance problems.

24 get

25 {
26 return baseSalary;
27 } // end get
28 set

29 {
30 if (value >= 0)
31 baseSalary = value;
32 else

33 throw new ArgumentOutOfRangeException("BaseSalary",
34 value, "BaseSalary must be >= 0");
35 } // end set
36 } // end property BaseSalary
37
38 // calculate earnings
39 public override decimal Earnings()
40 {
41
42 } // end method Earnings
43
44 // return string representation of BasePlusCommissionEmployee
45 public override string ToString()
46 {
47
48
49 } // end method ToString
50 } // end class BasePlusCommissionEmployee

Common Programming Error 11.3
When a base-class method is overridden in a derived class, the derived-class version often calls
the base-class version to do a portion of the work. Failure to prefix the base-class method
name with the keyword base and the member access (.) operator when referencing the base
class’s method from the derived-class version causes the derived-class method to call itself, cre-
ating infinite recursion.

Fig. 11.13 | BasePlusCommissionEmployee inherits from CommissionEmployee and has
access to CommissionEmployee's private data via its public properties. (Part 2 of 2.)

return BaseSalary + base.Earnings();

return string.Format("base-salaried {0}\nbase salary: {1:C}",
base.ToString(), BaseSalary);

432 Chapter 11 Object-Oriented Programming: Inheritance

BasePlusCommissionEmployee Method ToString

Similarly, BasePlusCommissionEmployee’s ToString method (Fig. 11.13, lines 45–49)
overrides CommissionEmployee’s (Fig. 11.12, lines 94–101) to return a string represen-
tation that’s appropriate for a base-salaried commission employee. The new version creates
part of BasePlusCommissionEmployee string representation (i.e., the string "commission
employee" and the values of CommissionEmployee’s private instance variables) by calling
CommissionEmployee’s ToString method with the expression base.ToString()

(Fig. 11.13, line 48). The derived class’s ToString method then outputs the remainder of
the object’s string representation (i.e., the base salary).

Class BasePlusCommissionEmployeeTest
Figure 11.14 performs the same manipulations on a BasePlusCommissionEmployee ob-
ject as did Figs. 11.7 and 11.11. Although each “base-salaried commission employee” class
behaves identically, the BasePlusCommissionEmployee in this example is the best engi-
neered. By using inheritance and by using properties that hide the data and ensure consistency,
we have efficiently and effectively constructed a well-engineered class.

1 // Fig. 11.14: BasePlusCommissionEmployeeTest.cs
2 // Testing class BasePlusCommissionEmployee.
3 using System;
4
5 public class BasePlusCommissionEmployeeTest
6 {
7 public static void Main(string[] args)
8 {
9 // instantiate BasePlusCommissionEmployee object

10
11
12
13
14 // display BasePlusCommissionEmployee's data
15 Console.WriteLine(
16 "Employee information obtained by properties and methods: \n");
17 Console.WriteLine("First name is {0}",);
18 Console.WriteLine("Last name is {0}",);
19 Console.WriteLine("Social security number is {0}",
20);
21 Console.WriteLine("Gross sales are {0:C}",);
22 Console.WriteLine("Commission rate is {0:F2}",
23);
24 Console.WriteLine("Earnings are {0:C}",);
25 Console.WriteLine("Base salary is {0:C}",);
26
27
28
29 Console.WriteLine("\n{0}:\n\n{1}",
30 "Updated employee information obtained by ToString",);
31 Console.WriteLine("earnings: {0:C}", employee.Earnings());
32 } // end Main
33 } // end class BasePlusCommissionEmployeeTest

Fig. 11.14 | Testing class BasePlusCommissionEmployee. (Part 1 of 2.)

BasePlusCommissionEmployee employee =
new BasePlusCommissionEmployee("Bob", "Lewis",
"333-33-3333", 5000.00M, .04M, 300.00M);

employee.FirstName
employee.LastName

employee.SocialSecurityNumber
employee.GrossSales

employee.CommissionRate
employee.Earnings()
employee.BaseSalary

employee.BaseSalary = 1000.00M; // set base salary

employee

11.5 Constructors in Derived Classes 433

In this section, you saw an evolutionary set of examples that was carefully designed to
teach key capabilities for good software engineering with inheritance. You learned how to
create a derived class using inheritance, how to use protected base-class members to
enable a derived class to access inherited base-class instance variables and how to override
base-class methods to provide versions that are more appropriate for derived-class objects.
In addition, you applied effective software engineering techniques from Chapter 4,
Chapter 10 and this chapter to create classes that are easy to maintain, modify and debug.

11.5 Constructors in Derived Classes
As we explained in the preceding section, instantiating a derived-class object begins a chain
of constructor calls. The derived-class constructor, before performing its own tasks, in-
vokes its direct base class’s constructor either explicitly (via a constructor initializer with
the base reference) or implicitly (calling the base class’s default constructor or parameter-
less constructor). Similarly, if the base class is derived from another class (as every class ex-
cept object is), the base-class constructor invokes the constructor of the next class up in
the hierarchy, and so on. The last constructor called in the chain is always the constructor
for class object. The original derived-class constructor’s body finishes executing last. Each
base class’s constructor manipulates the base-class instance variables that the derived-class
object inherits. For example, consider again the CommissionEmployee–BasePlusCommis-
sionEmployee hierarchy from Figs. 11.12 and 11.13. When an app creates a Base-

PlusCommissionEmployee object, the BasePlusCommissionEmployee constructor is
called. That constructor immediately calls CommissionEmployee’s constructor, which in
turn immediately calls object’s constructor implicitly. Class object’s constructor has an
empty body, so it immediately returns control to CommissionEmployee’s constructor,
which then initializes the private instance variables of CommissionEmployee that are part
of the BasePlusCommissionEmployee object. When CommissionEmployee’s constructor
completes execution, it returns control to BasePlusCommissionEmployee’s constructor,
which initializes the BasePlusCommissionEmployee object’s baseSalary.

Employee information obtained by properties and methods:

First name is Bob
Last name is Lewis
Social security number is 333-33-3333
Gross sales are $5,000.00
Commission rate is 0.04
Earnings are $500.00
Base salary is $300.00

Updated employee information obtained by ToString:

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333
gross sales: $5,000.00
commission rate: 0.04
base salary: $1,000.00
earnings: $1,200.00

Fig. 11.14 | Testing class BasePlusCommissionEmployee. (Part 2 of 2.)

434 Chapter 11 Object-Oriented Programming: Inheritance

11.6 Software Engineering with Inheritance
This section discusses customizing existing software with inheritance. When a new class
extends an existing class, the new class inherits the members of the existing class. We can
customize the new class to meet our needs by including additional members and by over-
riding base-class members. Doing this does not require the derived-class programmer to
change the base class’s source code. C# simply requires access to the compiled base-class
code, so it can compile and execute any app that uses or extends the base class. This pow-
erful capability is attractive to independent software vendors (ISVs), who can develop pro-
prietary classes for sale or license and make them available to users in class libraries. Users
then can derive new classes from these library classes rapidly, without accessing the ISVs’
proprietary source code.

Students sometimes have difficulty appreciating the scope of the problems faced by
designers who work on large-scale software projects in industry. People experienced with
such projects say that effective software reuse improves the software-development process.
Object-oriented programming facilitates software reuse, potentially shortening develop-
ment time. The availability of substantial and useful class libraries helps deliver the
maximum benefits of software reuse through inheritance.

Reading derived-class declarations can be confusing, because inherited members are
not declared explicitly in the derived classes, but are nevertheless present in them. A similar
problem exists in documenting derived-class members.

11.7 Class object
As we discussed earlier in this chapter, all classes inherit directly or indirectly from the
object class (System.Object in the Framework Class Library), so its seven methods are
inherited by all classes. Figure 11.15 summarizes object’s methods. You can learn more
about object’s methods at:

Software Engineering Observation 11.5
Although inheriting from a class does not require access to the class’s source code, developers
often insist on seeing the source code to understand how the class is implemented. They
may, for example, want to ensure that they’re extending a class that performs well and is
implemented securely.

Software Engineering Observation 11.6
At the design stage in an object-oriented system, the designer often finds that certain classes
are closely related. The designer should “factor out” common members and place them in
a base class. Then the designer should use inheritance to develop derived classes,
specializing them with capabilities beyond those inherited from the base class.

Software Engineering Observation 11.7
Declaring a derived class does not affect its base class’s source code. Inheritance preserves
the integrity of the base class.

msdn.microsoft.com/en-us/library/system.object.aspx

11.8 Wrap-Up 435

11.8 Wrap-Up
This chapter introduced inheritance—the ability to create classes by absorbing an existing
class’s members and enhancing them with new capabilities. You learned the notions of
base classes and derived classes and created a derived class that inherits members from a
base class. The chapter introduced access modifier protected; derived-class members can
access protected base-class members. You learned how to access base-class members with

Method Description

Equals This method compares two objects for equality and returns true if they’re
equal and false otherwise. It takes any object as an argument. When
objects of a particular class must be compared for equality, the class should
override method Equals to compare the contents of the two objects. The fol-
lowing website explains the requirements for a properly overridden Equals

method: http://bit.ly/OverridingEqualsCSharp

Finalize This method cannot be explicitly declared or called. When a class contains a
destructor, the compiler implicitly renames it to override the protected
method Finalize, which is called only by the garbage collector before it
reclaims an object’s memory. The garbage collector is not guaranteed to
reclaim an object, thus it’s not guaranteed that an object’s Finalize method
will execute. When a derived class’s Finalize method executes, it performs
its task, then invokes the base class’s Finalize method. In general, you
should avoid using Finalize.

GetHashCode A hashtable data structure relates objects, called keys, to corresponding
objects, called values. We discuss Hashtable in Chapter 21, Collections.
When a value is initially inserted in a hashtable, the key’s GetHashCode
method is called. The value returned is used by the hashtable to determine
the location at which to insert the corresponding value. The key’s hashcode
is also used by the hashtable to locate the key’s corresponding value.

GetType Every object knows its own type at execution time. Method GetType (used
in Section 12.5) returns an object of class Type (namespace System) that
contains information about the object’s type, such as its class name
(obtained from Type property FullName).

Memberwise-
Clone

This protected method, which takes no arguments and returns an object

reference, makes a copy of the object on which it’s called. The implementa-
tion of this method performs a shallow copy—instance-variable values in
one object are copied into another object of the same type. For reference
types, only the references are copied.

Reference-
Equals

This static method receives two object references and returns true if
they’re the same instance or if they’re null references. Otherwise, it returns
false.

ToString This method (introduced in Section 7.4) returns a string representation of
an object. The default implementation of this method returns the
namespace followed by a dot and the class name of the object’s class.

Fig. 11.15 | object methods that are inherited directly or indirectly by all classes.

http://bit.ly/OverridingEqualsCSharp

436 Chapter 11 Object-Oriented Programming: Inheritance

base. You also saw how constructors are used in inheritance hierarchies. Finally, you
learned about the methods of class object, the direct or indirect base class of all classes.

In Chapter 12, we build on our discussion of inheritance by introducing polymor-
phism—an object-oriented concept that enables us to write apps that handle, in a more
general manner, objects of a wide variety of classes related by inheritance. After studying
Chapter 12, you’ll be familiar with classes, objects, encapsulation, inheritance and poly-
morphism—the most essential aspects of object-oriented programming.

Summary
Section 11.1 Introduction
• Inheritance is a form of software reuse in which a new class is created by absorbing an existing class’s

members and enhancing them with new or modified capabilities. With inheritance, you save time
during app development by reusing proven and debugged high-quality software.

• A derived class is more specific than its base class and represents a more specialized group of objects.

• The is-a relationship represents inheritance. In an is-a relationship, an object of a derived class
can also be treated as an object of its base class.

Section 11.2 Base Classes and Derived Classes
• Inheritance relationships form treelike hierarchical structures. A base class exists in a hierarchical

relationship with its derived classes.

• Objects of all classes that extend a common base class can be treated as objects of that base class.
However, base-class objects cannot be treated as objects of their derived classes.

• When a base-class method is inherited by a derived class, that derived class often needs a custom-
ized version of the method. In such cases, the derived class can override the base-class method
with an appropriate implementation.

Section 11.3 protected Members
• Using protected access offers an intermediate level of access between public and private. A base

class’s protected members can be accessed by members of that base class and by members of its
derived classes.

• Base-class members retain their original access modifier when they become members of the de-
rived class.

• Methods of a derived class cannot directly access private members of the base class.

Section 11.4.1 Creating and Using a CommissionEmployee Class
• A colon (:) followed by a base-class name at the end of a class declaration header indicates that

the declared class extends the base class.

• If a class does not specify that it inherits from another class, the class implicitly inherits from object.

• The first task of any derived class’s constructor is to call its direct base class’s constructor, either
explicitly or implicitly (if no constructor call is specified).

• Constructors are not inherited. Even if a class does not have constructors, the default constructor
that the compiler implicitly declares for the class will call the base class’s default or parameterless
constructor.

• Method ToString is one of the methods that every class inherits directly or indirectly from class
object, which is the root of the C# class hierarchy.

Summary 437

• To override a base-class method, a derived class must declare a method with keyword override

and with the same signature (method name, number of parameters and parameter types) and re-
turn type as the base-class method.

• It’s a compilation error to override a method with a different access modifier.

Section 11.4.2 Creating a BasePlusCommissionEmployee Class without Using In-
heritance
• Copying and pasting code from one class to another can spread errors across multiple source-

code files. To avoid duplicating code (and possibly errors) in situations where you want one class
to “absorb” the members of another class, use inheritance.

Section 11.4.3 Creating a CommissionEmployee–BasePlusCommissionEmployee

Inheritance Hierarchy
• The virtual and abstract keywords indicate that a base-class property or method can be over-

ridden in derived classes.

• The override modifier declares that a derived-class method overrides a virtual or abstract
base-class method. This modifier also implicitly declares the derived-class method virtual.

• When a base class’s members are private, a derived class’s members are not allowed to access them.

Section 11.4.4 CommissionEmployee–BasePlusCommissionEmployee Inheri-
tance Hierarchy Using protected Instance Variables
• Inheriting protected instance variables enables you to directly access the variables in the derived

class without invoking the set or get accessors of the corresponding property.

• Software is said to be fragile or brittle when a small change in the base class can “break” derived-
class implementation. You should be able to change the base-class implementation while still
providing the same services to the derived classes.

• Declaring base-class instance variables private enables the base-class implementation of these in-
stance variables to change without affecting derived-class implementations.

Section 11.4.5 CommissionEmployee–BasePlusCommissionEmployee Inheri-
tance Hierarchy Using private Instance Variables
• Place the keyword base and the member access (.) operator before the base-class method name

to invoke an overridden base-class method from a derived class.

• Failure to prefix the base-class method name with the keyword base and the member access (.)
operator when referencing the base class’s method causes the derived-class method to call itself,
creating an error called infinite recursion.

Section 11.5 Constructors in Derived Classes
• Instantiating a derived-class object begins a chain of constructor calls. The last constructor called

in the chain is always the constructor for class object. The original derived class constructor’s
body finishes executing last.

Section 11.6 Software Engineering with Inheritance
• We can customize new classes to meet our needs by including additional members and by over-

riding base-class members.

Section 11.7 Class object
• All classes in C# inherit directly or indirectly from the object class, so its seven methods are in-

herited by all other classes. These methods are Equals, Finalize, GetHashCode, GetType, Member-
wiseClone, ReferenceEquals and ToString.

438 Chapter 11 Object-Oriented Programming: Inheritance

Terminology
base class
base-class constructor
base-class constructor call syntax
base-class parameterless constructor
base keyword
brittle software
class hierarchy
class library
composition
derived class
derived-class constructor
direct base class
Equals method of class object
extend a base class
Finalize method of class object
fragile software
GetHashCode method of class object
GetType method of class object
has-a relationship
hierarchical relationship
hierarchy diagram
indirect base class
inheritance

inheritance hierarchy
inherited member
inherited method
invoke a base-class constructor
invoke a base-class method
is-a relationship
MemberwiseClone method of class object
object class
object of a derived class
object of a base class
override keyword
override (redefine) a base-class method
private base-class member
protected base-class member
protected access modifier
public base-class member
ReferenceEquals method of class object
single inheritance
shallow copy
software reuse
standardized reusable components
ToString method of class object
virtual keyword

Self-Review Exercises
11.1 Fill in the blanks in each of the following statements:

a) is a form of software reusability in which new classes acquire the members of
existing classes and enhance those classes with new capabilities.

b) A base class’s members can be accessed only in the base-class declaration and
in derived-class declarations.

c) In a(n) relationship, an object of a derived class can also be treated as an object
of its base class.

d) In a(n) relationship, a class object has references to objects of other classes as
members.

e) In single inheritance, a base class exists in a(n) relationship with its derived
classes.

f) A base class’s members are accessible anywhere that the app has a reference to
an object of that base class or to an object of any of its derived classes.

g) When an object of a derived class is instantiated, a base class is called implic-
itly or explicitly.

h) Derived-class constructors can call base class constructors via the keyword.

11.2 State whether each of the following is true or false. If a statement is false, explain why.
a) Base-class constructors are not inherited by derived classes.
b) A has-a relationship is implemented via inheritance.
c) A Car class has is-a relationships with the SteeringWheel and Brakes classes.
d) Inheritance encourages the reuse of proven high-quality software.
e) When a derived class redefines a base-class method by using the same signature and re-

turn type, the derived class is said to overload that base-class method.

Answers to Self-Review Exercises 439

Answers to Self-Review Exercises
11.1 a) Inheritance. b) protected. c) is-a or inheritance. d) has-a or composition. e) hierarchical.
f) public. g) constructor. h) base.

11.1 a) True. b) False. A has-a relationship is implemented via composition. An is-a relationship
is implemented via inheritance. c) False. These are examples of has-a relationships. Class Car has an
is-a relationship with class Vehicle. d) True. e) False. This is known as overriding, not overloading.

Exercises
11.2 (Composition vs. Inheritance) Many apps written with inheritance could be written with
composition instead, and vice versa. Rewrite class BasePlusCommissionEmployee (Fig. 11.13) of the
CommissionEmployee–BasePlusCommissionEmployee hierarchy to use composition rather than in-
heritance.

11.3 (Inheritance and Software Reuse) Discuss the ways in which inheritance promotes software
reuse, saves time during app development and helps prevent errors.

11.4 (Student Inheritance Hierarchy) Draw a UML class diagram for an inheritance hierarchy
for students at a university similar to the hierarchy shown in Fig. 11.2. Use Student as the base class
of the hierarchy, then extend Student with classes UndergraduateStudent and GraduateStudent.
Continue to extend the hierarchy as deeply (i.e., as many levels) as possible. For example, Freshman,
Sophomore, Junior and Senior might extend UndergraduateStudent, and DoctoralStudent and
MastersStudent might be derived classes of GraduateStudent. After drawing the hierarchy, discuss
the relationships that exist between the classes. [Note: You do not need to write any code for this
exercise.]

11.5 (Shape Inheritance Hierarchy) The world of shapes is much richer than the shapes included
in the inheritance hierarchy of Fig. 11.3. Write down all the shapes you can think of—both two-
dimensional and three-dimensional—and form them into a more complete Shape hierarchy with as
many levels as possible. Your hierarchy should have class Shape at the top. Class TwoDimension-
alShape and class ThreeDimensionalShape should extend Shape. Add additional derived classes,
such as Quadrilateral and Sphere, at their correct locations in the hierarchy as necessary.

11.6 (Protected vs. Private Access) Some programmers prefer not to use protected access, be-
cause they believe it breaks the encapsulation of the base class. Discuss the relative merits of using
protected access vs. using private access in base classes.

11.7 (Quadrilateral Inheritance Hierarchy) Write an inheritance hierarchy for classes Quadri-
lateral, Trapezoid, Parallelogram, Rectangle and Square. Use Quadrilateral as the base class of
the hierarchy. Make the hierarchy as deep (i.e., as many levels) as possible. Specify the instance vari-
ables, properties and methods for each class. The private instance variables of Quadrilateral
should be the x–y coordinate pairs for the four endpoints of the Quadrilateral. Write an app that
instantiates objects of your classes and outputs each object’s area (except Quadrilateral).

11.8 (Account Inheritance Hierarchy) Create an inheritance hierarchy that a bank might use to
represent customers’ bank accounts. All customers at this bank can deposit (i.e., credit) money into
their accounts and withdraw (i.e., debit) money from their accounts. More specific types of accounts
also exist. Savings accounts, for instance, earn interest on the money they hold. Checking accounts,
on the other hand, charge a fee per transaction.

Create base class Account and derived classes SavingsAccount and CheckingAccount that
inherit from class Account. Base class Account should include one private instance variable of type
decimal to represent the account balance. The class should provide a constructor that receives an
initial balance and uses it to initialize the instance variable with a public property. The property

440 Chapter 11 Object-Oriented Programming: Inheritance

should validate the initial balance to ensure that it’s greater than or equal to 0.0; if not, throw an
exception. The class should provide two public methods. Method Credit should add an amount
to the current balance. Method Debit should withdraw money from the Account and ensure that
the debit amount does not exceed the Account’s balance. If it does, the balance should be left
unchanged, and the method should display the message "Debit amount exceeded account bal-

ance." The class should also provide a get accessor in property Balance that returns the current
balance.

Derived class SavingsAccount should inherit the functionality of an Account, but also include
a decimal instance variable indicating the interest rate (percentage) assigned to the Account. Sav-
ingsAccount’s constructor should receive the initial balance, as well as an initial value for the inter-
est rate. SavingsAccount should provide public method CalculateInterest that returns a decimal
indicating the amount of interest earned by an account. Method CalculateInterest should deter-
mine this amount by multiplying the interest rate by the account balance. [Note: SavingsAccount
should inherit methods Credit and Debit without redefining them.]

Derived class CheckingAccount should inherit from base class Account and include a decimal
instance variable that represents the fee charged per transaction. CheckingAccount’s constructor
should receive the initial balance, as well as a parameter indicating a fee amount. Class Checking-
Account should redefine methods Credit and Debit so that they subtract the fee from the account
balance whenever either transaction is performed successfully. CheckingAccount’s versions of these
methods should invoke the base-class Account version to perform the updates to an account bal-
ance. CheckingAccount’s Debit method should charge a fee only if money is actually withdrawn
(i.e., the debit amount does not exceed the account balance). [Hint: Define Account’s Debit

method so that it returns a bool indicating whether money was withdrawn. Then use the return
value to determine whether a fee should be charged.]

After defining the classes in this hierarchy, write an app that creates objects of each class and
tests their methods. Add interest to the SavingsAccount object by first invoking its CalculateIn-
terest method, then passing the returned interest amount to the object’s Credit method.

12OOP: Polymorphism,
Interfaces and Operator
Overloading

General propositions do not
decide concrete cases.
—Oliver Wendell Holmes

A philosopher of imposing
stature doesn’t think in a
vacuum. Even his most abstract
ideas are, to some extent,
conditioned by
what is or is not known
in the time when he lives.
—Alfred North Whitehead

O b j e c t i v e s
In this chapter you’ll learn:

� How polymorphism enables
you to “program in the
general” and make systems
extensible.

� To use overridden methods to
effect polymorphism.

� To create abstract classes and
methods.

� To determine an object’s type
at execution time.

� To create sealed methods
and classes.

� To declare and implement
interfaces.

� To overload operators to
enable them to manipulate
objects.

442 Chapter 12 OOP: Polymorphism, Interfaces and Operator Overloading

12.1 Introduction
We now continue our study of object-oriented programming by explaining and demon-
strating polymorphism with inheritance hierarchies. Polymorphism enables us to program
in the general rather than program in the specific. In particular, polymorphism enables us to
write apps that process objects that share the same base class in a class hierarchy as if they
were all objects of the base class.

Let’s consider a polymorphism example. Suppose we create an app that simulates
moving several types of animals for a biological study. Classes Fish, Frog and Bird repre-
sent the types of animals under investigation. Imagine that each class extends base class
Animal, which contains a method Move and maintains an animal’s current location as x–
y–z coordinates. Each derived class implements method Move. Our app maintains an array
of references to objects of the various Animal-derived classes. To simulate an animal’s
movements, the app sends each object the same message once per second—namely, Move.
Each specific type of Animal responds to a Move message in a unique way—a Fish might
swim three feet, a Frog might jump five feet and a Bird might fly 10 feet. The app issues
the Movemessage to each animal object generically, but each object modifies its x–y–z coor-
dinates appropriately for its specific type of movement. Relying on each object to “do the
right thing” in response to the same method call is the key concept of polymorphism. The
same message (in this case, Move) sent to a variety of objects has many forms of results—
hence the term polymorphism.

12.1 Introduction
12.2 Polymorphism Examples
12.3 Demonstrating Polymorphic Behavior
12.4 Abstract Classes and Methods
12.5 Case Study: Payroll System Using

Polymorphism
12.5.1 Creating Abstract Base Class

Employee
12.5.2 Creating Concrete Derived Class

SalariedEmployee
12.5.3 Creating Concrete Derived Class

HourlyEmployee
12.5.4 Creating Concrete Derived Class

CommissionEmployee
12.5.5 Creating Indirect Concrete Derived

Class BasePlusCommission-
Employee

12.5.6 Polymorphic Processing, Operator is
and Downcasting

12.5.7 Summary of the Allowed
Assignments Between Base-Class and
Derived-Class Variables

12.6 sealed Methods and Classes
12.7 Case Study: Creating and Using

Interfaces
12.7.1 Developing an IPayable Hierarchy
12.7.2 Declaring Interface IPayable
12.7.3 Creating Class Invoice
12.7.4 Modifying Class Employee to

Implement Interface IPayable
12.7.5 Modifying Class Salaried-

Employee for Use with IPayable
12.7.6 Using Interface IPayable to Process

Invoices and Employees
Polymorphically

12.7.7 Common Interfaces of the .NET
Framework Class Library

12.8 Operator Overloading
12.9 Wrap-Up

Summary | Terminology | Self-Review Exercises | Answers to Self-Review Exercises | Exercises |
Making a Difference Exercise

12.1 Introduction 443

Systems Are Easy to Extend
With polymorphism, we can design and implement systems that are easily extensible—new
classes can be added with little or no modification to the general portions of the app, as
long as the new classes are part of the inheritance hierarchy that the app processes generi-
cally. The only parts of an app that must be altered to accommodate new classes are those
that require direct knowledge of the new classes that you add to the hierarchy. For exam-
ple, if we extend class Animal to create class Tortoise (which might respond to a Move
message by crawling one inch), we need to write only the Tortoise class and the part of
the simulation that instantiates a Tortoise object. The portions of the simulation that
process each Animal generically can remain the same.

This chapter has several parts. First, we discuss common examples of polymorphism.
We then provide a live-code example demonstrating polymorphic behavior. As you’ll soon
see, you’ll use base-class references to manipulate both base-class objects and derived-class
objects polymorphically.

Polymorphic Employee Inheritance Hierarchy
We then present a case study that revisits the Employee hierarchy of Section 11.4.5. We de-
velop a simple payroll app that polymorphically calculates the weekly pay of several different
types of employees using each employee’s Earnings method. Though the earnings of each
type of employee are calculated in a specific way, polymorphism allows us to process the em-
ployees “in the general.” In the case study, we enlarge the hierarchy to include two new class-
es—SalariedEmployee (for people paid a fixed weekly salary) and HourlyEmployee (for
people paid an hourly salary and “time-and-a-half” for overtime). We declare a common set
of functionality for all the classes in the updated hierarchy in an abstract class, Employee
(Section 12.5.1), from which classes SalariedEmployee, HourlyEmployee and Commission-
Employee inherit directly and class BasePlusCommissionEmployee inherits indirectly. As
you’ll soon see, when we invoke each employee’s Earningsmethod via a base-class Employee
reference, the correct earnings calculation is performed due to C#’s polymorphic capabilities.

Determining the Type of an Object at Execution Time
Occasionally, when performing polymorphic processing, we need to program “in the spe-
cific.” Our Employee case study demonstrates that an app can determine the type of an
object at execution time and act on that object accordingly. In the case study, we use these
capabilities to determine whether a particular employee object is a BasePlus-

CommissionEmployee. If so, we increase that employee’s base salary by 10%.

Interfaces
The chapter continues with an introduction to C# interfaces. An interface describes a set
of methods and properties that can be called on an object, but does not provide concrete
implementations for them. You can declare classes that implement (i.e., provide concrete
implementations for the methods and properties of) one or more interfaces. Each interface
member must be defined for all the classes that implement the interface. Once a class im-
plements an interface, all objects of that class have an is-a relationship with the interface
type, and all objects of the class are guaranteed to provide the functionality described by
the interface. This is true of all derived classes of that class as well.

Interfaces are particularly useful for assigning common functionality to possibly unre-
lated classes. This allows objects of unrelated classes to be processed polymorphically—

444 Chapter 12 OOP: Polymorphism, Interfaces and Operator Overloading

objects of classes that implement the same interface can respond to the same method calls.
To demonstrate creating and using interfaces, we modify our payroll app to create a gen-
eral accounts-payable app that can calculate payments due for the earnings of company
employees and for invoice amounts to be billed for purchased goods. As you’ll see, inter-
faces enable polymorphic capabilities similar to those enabled by inheritance.

Operator Overloading
This chapter ends with an introduction to operator overloading. In previous chapters, we
declared our own classes and used methods to perform tasks on objects of those classes.
Operator overloading allows us to define the behavior of the built-in operators, such as +,
- and <, when used on objects of our own classes. This provides a much more convenient
notation than calling methods for performing certain tasks on objects.

12.2 Polymorphism Examples
Let’s consider several additional examples of polymorphism.

Quadrilateral Inheritance Hierachy
If class Rectangle is derived from class Quadrilateral (a four-sided shape), then a Rect-
angle is a more specific version of a Quadrilateral. Any operation (e.g., calculating the
perimeter or the area) that can be performed on a Quadrilateral object can also be per-
formed on a Rectangle object. These operations also can be performed on other Quadri-
laterals, such as Squares, Parallelograms and Trapezoids. The polymorphism occurs
when an app invokes a method through a base-class variable—at execution time, the cor-
rect derived-class version of the method is called, based on the type of the referenced ob-
ject. You’ll see a simple code example that illustrates this process in Section 12.3.

Video Game SpaceObject Inheritance Hierarchy
As another example, suppose we design a video game that manipulates objects of many dif-
ferent types, including objects of classes Martian, Venusian, Plutonian, SpaceShip and
LaserBeam. Imagine that each class inherits from the common base class SpaceObject,
which contains method Draw. Each derived class implements this method. A screen-man-
ager app maintains a collection (e.g., a SpaceObject array) of references to objects of the
various classes. To refresh the screen, the screen manager periodically sends each object the
same message—namely, Draw. However, each object responds in a unique way. For exam-
ple, a Martian object might draw itself in red with the appropriate number of antennae. A
SpaceShip object might draw itself as a bright silver flying saucer. A LaserBeam object
might draw itself as a bright red beam across the screen. Again, the same message (in this
case, Draw) sent to a variety of objects has many forms of results.

A polymorphic screen manager might use polymorphism to facilitate adding new classes
to a system with minimal modifications to the system’s code. Suppose we want to add Mer-
curian objects to our video game. To do so, we must build a Mercurian class that extends
SpaceObject and provides its own Draw method implementation. When objects of class
Mercurian appear in the SpaceObject collection, the screen-manager code invokes method
Draw, exactly as it does for every other object in the collection, regardless of its type, so the new
Mercurian objects simply “plug right in” without any modification of the screen-manager
code by the programmer. Thus, without modifying the system (other than to build new

12.3 Demonstrating Polymorphic Behavior 445

classes and modify the code that creates new objects), you can use polymorphism to include
additional types that might not have been envisioned when the system was created.

12.3 Demonstrating Polymorphic Behavior
Section 11.4 created a commission-employee class hierarchy, in which class BasePlusCom-
missionEmployee inherited from class CommissionEmployee. The examples in that section
manipulated CommissionEmployee and BasePlusCommissionEmployee objects by using
references to them to invoke their methods. We aimed base-class references at base-class
objects and derived-class references at derived-class objects. These assignments are natural
and straightforward—base-class references are intended to refer to base-class objects, and
derived-class references are intended to refer to derived-class objects. However, other as-
signments are possible.

In the next example, we aim a base-class reference at a derived-class object. We then
show how invoking a method on a derived-class object via a base-class reference can invoke
the derived-class functionality—the type of the actual referenced object, not the type of the
reference, determines which method is called. This demonstrates the key concept that a derived-
class object can be treated as an object of its base class, which enables various interesting
manipulations. An app can create an array of base-class references that refer to objects of
many derived-class types. This is allowed because each derived-class object is an object of its
base class. For instance, we can assign the reference of a BasePlusCommissionEmployee

object to a base-class CommissionEmployee variable because a BasePlusCommission-

Employee is a CommissionEmployee—so we can treat a BasePlusCommissionEmployee as a
CommissionEmployee.

A base-class object is not an object of any of its derived classes. For example, we cannot
directly assign the reference of a CommissionEmployee object to a derived-class Base-
PlusCommissionEmployee variable, because a CommissionEmployee is not a BasePlusCom-
missionEmployee—a CommissionEmployee does not, for example, have a baseSalary

instance variable and does not have a BaseSalary property. The is-a relationship applies
from a derived class to its direct and indirect base classes, but not vice versa.

The compiler allows the assignment of a base-class reference to a derived-class variable
if we explicitly cast the base-class reference to the derived-class type—a technique we dis-
cuss in greater detail in Section 12.5.6. Why would we ever want to perform such an
assignment? A base-class reference can be used to invoke only the methods declared in the base
class—attempting to invoke a derived-class-only method through a base-class reference
results in a compilation error. If an app needs to perform a derived-class-specific operation
on a derived-class object referenced by a base-class variable, the app must first cast the base-
class reference to a derived-class reference through a technique known as downcasting.
This enables the app to invoke derived-class methods that are not in the base class. We
present an example of downcasting in Section 12.5.6.

Software Engineering Observation 12.1
Polymorphism promotes extensibility: Software that invokes polymorphic behavior is
independent of the object types to which messages are sent. New object types that can
respond to existing method calls can be incorporated into a system without requiring
modification of the base system. Only client code that instantiates new objects must be
modified to accommodate new types.

446 Chapter 12 OOP: Polymorphism, Interfaces and Operator Overloading

Figure 12.1 demonstrates three ways to use base-class and derived-class variables to
store references to base-class and derived-class objects. The first two are straightforward—
as in Section 11.4, we assign a base-class reference to a base-class variable, and we assign a
derived class reference to a derived-class variable. Then we demonstrate the relationship
between derived classes and base classes (i.e., the is-a relationship) by assigning a derived-
class reference to a base-class variable. [Note: This app uses classes CommissionEmployee
and BasePlusCommissionEmployee from Fig. 11.12 and Fig. 11.13, respectively.]

1 // Fig. 12.1: PolymorphismTest.cs
2 // Assigning base-class and derived-class references to base-class and
3 // derived-class variables.
4 using System;
5
6 public class PolymorphismTest
7 {
8 public static void Main(string[] args)
9 {

10 // assign base-class reference to base-class variable
11
12
13
14 // assign derived-class reference to derived-class variable
15
16
17
18
19 // invoke ToString and Earnings on base-class object
20 // using base-class variable
21 Console.WriteLine("{0} {1}:\n\n{2}\n{3}: {4:C}\n",
22 "Call CommissionEmployee's ToString and Earnings methods ",
23 "with base-class reference to base class object",
24 ,
25 "earnings",);
26
27 // invoke ToString and Earnings on derived-class object
28 // using derived-class variable
29 Console.WriteLine("{0} {1}:\n\n{2}\n{3}: {4:C}\n",
30 "Call BasePlusCommissionEmployee's ToString and Earnings ",
31 "methods with derived class reference to derived-class object",
32 ,
33 "earnings",);
34
35 // invoke ToString and Earnings on derived-class object
36 // using base-class variable
37
38
39 Console.WriteLine("{0} {1}:\n\n{2}\n{3}: {4:C}",
40 "Call BasePlusCommissionEmployee's ToString and Earnings ",
41 "with base class reference to derived-class object",

Fig. 12.1 | Assigning base-class and derived-class references to base-class and derived-class
variables. (Part 1 of 2.)

CommissionEmployee commissionEmployee = new CommissionEmployee(
"Sue", "Jones", "222-22-2222", 10000.00M, .06M);

BasePlusCommissionEmployee basePlusCommissionEmployee =
new BasePlusCommissionEmployee("Bob", "Lewis",
"333-33-3333", 5000.00M, .04M, 300.00M);

commissionEmployee.ToString()
commissionEmployee.Earnings()

basePlusCommissionEmployee.ToString()
basePlusCommissionEmployee.Earnings()

CommissionEmployee commissionEmployee2 =
basePlusCommissionEmployee;

12.3 Demonstrating Polymorphic Behavior 447

In Fig. 12.1, lines 11–12 create a new CommissionEmployee object and assign its ref-
erence to a CommissionEmployee variable. Lines 15–17 create a new BasePlus-

CommissionEmployee object and assign its reference to a BasePlusCommissionEmployee
variable. These assignments are natural—for example, a CommissionEmployee variable’s
primary purpose is to hold a reference to a CommissionEmployee object. Lines 21–25 use
the reference commissionEmployee to invoke methods ToString and Earnings. Because
commissionEmployee refers to a CommissionEmployee object, base class Commission-
Employee’s version of the methods are called. Similarly, lines 29–33 use the reference
basePlusCommissionEmployee to invoke the methods ToString and Earnings on the
BasePlusCommissionEmployee object. This invokes derived class BasePlusCommission-
Employee’s version of the methods.

Lines 37–38 then assign the reference to derived-class object basePlusCommission-
Employee to a base-class CommissionEmployee variable, which lines 39–43 use to invoke
methods ToString and Earnings. A base-class variable that contains a reference to a derived-
class object and is used to call a virtual method actually calls the overriding derived-class ver-

42 , "earnings",
43);
44 } // end Main
45 } // end class PolymorphismTest

Call CommissionEmployee's ToString and Earnings methods with base class ref-
erence to base class object:

commission employee: Sue Jones
social security number: 222-22-2222
gross sales: $10,000.00
commission rate: 0.06
earnings: $600.00

Call BasePlusCommissionEmployee's ToString and Earnings methods with derived
class reference to derived class object:

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333
gross sales: $5,000.00
commission rate: 0.04
base salary: $300.00
earnings: $500.00

Call BasePlusCommissionEmployee's ToString and Earnings methods with base
class reference to derived class object:

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333
gross sales: $5,000.00
commission rate: 0.04
base salary: $300.00
earnings: $500.00

Fig. 12.1 | Assigning base-class and derived-class references to base-class and derived-class
variables. (Part 2 of 2.)

commissionEmployee2.ToString()
commissionEmployee2.Earnings()

448 Chapter 12 OOP: Polymorphism, Interfaces and Operator Overloading

sion of the method. Hence, commissionEmployee2.ToString() in line 42 actually calls
derived class BasePlusCommissionEmployee’s ToString method. The compiler allows this
“crossover” because an object of a derived class is an object of its base class (but not vice
versa). When the compiler encounters a virtualmethod call made through a variable, the
compiler checks the variable’s class type to determine if the method can be called. If that
class contains the proper method declaration (or inherits one), the compiler allows the call
to be compiled. At execution time, the type of the object to which the variable refers deter-
mines the actual method to use.

12.4 Abstract Classes and Methods
When we think of a class type, we assume that apps will create objects of that type. In some
cases, however, it’s useful to declare classes for which you never intend to instantiate objects.
Such classes are called abstract classes. Because they’re used only as base classes in inheri-
tance hierarchies, we refer to them as abstract base classes. These classes cannot be used to
instantiate objects, because, as you’ll soon see, abstract classes are incomplete—derived class-
es must define the “missing pieces.” We demonstrate abstract classes in Section 12.5.1.

Purpose of an Abstract Class
The purpose of an abstract class is primarily to provide an appropriate base class from
which other classes can inherit, and thus share a common design. In the Shape hierarchy of
Fig. 11.3, for example, derived classes inherit the notion of what it means to be a Shape—
common attributes such as location, color and borderThickness, and behaviors such as
Draw, Move, Resize and ChangeColor. Classes that can be used to instantiate objects are
called concrete classes. Such classes provide implementations of every method they declare
(some of the implementations can be inherited). For example, we could derive concrete
classes Circle, Square and Triangle from abstract base class TwoDimensionalShape. Sim-
ilarly, we could derive concrete classes Sphere, Cube and Tetrahedron from abstract base
class ThreeDimensionalShape. Abstract base classes are too general to create real objects—
they specify only what is common among derived classes. We need to be more specific be-
fore we can create objects. For example, if you send the Draw message to abstract class
TwoDimensionalShape, the class knows that two-dimensional shapes should be drawable,
but it does not know what specific shape to draw, so it cannot implement a real Draw meth-
od. Concrete classes provide the specifics that make it reasonable to instantiate objects.

Client Code That Uses Only Abstract Base-Class Types
Not all inheritance hierarchies contain abstract classes. However, you’ll often write client
code that uses only abstract base-class types to reduce client code’s dependencies on a range
of specific derived-class types. For example, you can write a method with a parameter of
an abstract base-class type. When called, such a method can be passed an object of any con-
crete class that directly or indirectly extends the base class specified as the parameter’s type.

Multiple Levels of Abstract Base-Class Types in a Hierarchy
Abstract classes sometimes constitute several levels of the hierarchy. For example, the Shape
hierarchy of Fig. 11.3 begins with abstract class Shape. On the next level of the hierarchy are
two more abstract classes, TwoDimensionalShape and ThreeDimensionalShape. The next

12.4 Abstract Classes and Methods 449

level of the hierarchy declares concrete classes for TwoDimensionalShapes (Circle, Square
and Triangle) and for ThreeDimensionalShapes (Sphere, Cube and Tetrahedron).

Creating an Abstract Class
You make a class abstract by declaring it with the keyword abstract. An abstract class nor-
mally contains one or more abstract methods. An abstract method is one with keyword
abstract in its declaration, as in

Abstract methods are implicitly virtual and do not provide implementations. A class that con-
tains abstract methods must be declared as an abstract class even if it contains some con-
crete (non-abstract) methods. Each concrete derived class of an abstract base class also
must provide concrete implementations of the base class’s abstract methods. We show an
example of an abstract class with an abstract method in Fig. 12.4.

Abstract Properties
Properties can also be declared abstract or virtual, then overridden in derived classes
with the override keyword, just like methods. This allows an abstract base class to specify
common properties of its derived classes. Abstract property declarations have the form:

The semicolons after the get and set keywords indicate that we provide no implementa-
tion for these accessors. An abstract property omits implementations for the get accessor
and/or the set accessor. Concrete derived classes must provide implementations for every
accessor declared in the abstract property. When both get and set accessors are specified,
every concrete derived class must implement both. If one accessor is omitted, the derived
class is not allowed to implement that accessor. Doing so causes a compilation error.

Constructors and static Methods Cannot be Abstract
Constructors and static methods cannot be declared abstract. Constructors are not in-
herited, so an abstract constructor could never be implemented. Similarly, derived class-
es cannot override static methods, so an abstract static method could never be
implemented.

public abstract void Draw(); // abstract method

public abstract PropertyType MyProperty
{

get;
set;

} // end abstract property

Software Engineering Observation 12.2
An abstract class declares common attributes and behaviors of the various classes that
inherit from it, either directly or indirectly, in a class hierarchy. An abstract class typically
contains one or more abstract methods or properties that concrete derived classes must
override. The instance variables, concrete methods and concrete properties of an abstract
class are subject to the normal rules of inheritance.

Common Programming Error 12.1
Attempting to instantiate an object of an abstract class is a compilation error.

450 Chapter 12 OOP: Polymorphism, Interfaces and Operator Overloading

Declaring Variables of Abstract Base-Class Types
Although we cannot instantiate objects of abstract base classes, you’ll soon see that we can
use abstract base classes to declare variables that can hold references to objects of any con-
crete classes derived from those abstract classes. Apps typically use such variables to manip-
ulate derived-class objects polymorphically. Also, you can use abstract base-class names to
invoke static methods declared in those abstract base classes.

Polymorphism and Device Drivers
Polymorphism is particularly effective for implementing so-called layered software systems.
In operating systems, for example, each type of physical device could operate quite differ-
ently from the others. Even so, common commands can read or write data from and to
the devices. For each device, the operating system uses a piece of software called a device
driver to control all communication between the system and the device. The write message
sent to a device driver object needs to be interpreted specifically in the context of that driver
and how it manipulates a specific device. However, the write call itself really is no different
from the write to any other device in the system: Place some number of bytes from mem-
ory onto that device. An object-oriented operating system might use an abstract base class
to provide an “interface” appropriate for all device drivers. Then, through inheritance
from that abstract base class, derived classes are formed that all behave similarly. The de-
vice-driver methods are declared as abstract methods in the abstract base class. The imple-
mentations of these abstract methods are provided in the derived classes that correspond
to the specific types of device drivers. New devices are always being developed, often long
after the operating system has been released. When you buy a new device, it comes with a
device driver provided by the device vendor. The device is immediately operational after
you connect it to your computer and install the device driver. This is another elegant ex-
ample of how polymorphism makes systems extensible.

12.5 Case Study: Payroll System Using Polymorphism
This section reexamines the CommissionEmployee-BasePlusCommissionEmployee hierar-
chy that we explored in Section 11.4. Now we use an abstract method and polymorphism
to perform payroll calculations based on the type of employee. We create an enhanced em-
ployee hierarchy to solve the following problem:

A company pays its employees on a weekly basis. The employees are of four types: Sala-
ried employees are paid a fixed weekly salary regardless of the number of hours worked,
hourly employees are paid by the hour and receive "time-and-a-half" overtime pay for
all hours worked in excess of 40 hours, commission employees are paid a percentage of
their sales, and salaried-commission employees receive a base salary plus a percentage
of their sales. For the current pay period, the company has decided to reward salaried-
commission employees by adding 10% to their base salaries. The company wants to
implement an app that performs its payroll calculations polymorphically.

Common Programming Error 12.2
Failure to implement a base class’s abstract methods and properties in a derived class is a
compilation error unless the derived class is also declared abstract.

12.5 Case Study: Payroll System Using Polymorphism 451

We use abstract class Employee to represent the general concept of an employee. The
classes that extend Employee are SalariedEmployee, CommissionEmployee and Hourly-

Employee. Class BasePlusCommissionEmployee—which extends CommissionEmployee—
represents the last employee type. The UML class diagram in Fig. 12.2 shows the inheri-
tance hierarchy for our polymorphic employee payroll app. Abstract class Employee is ital-
icized, as per the convention of the UML.

Abstract base class Employee declares the “interface” to the hierarchy—that is, the set
of members that an app can invoke on all Employee objects. We use the term “interface”
here in a general sense to refer to the various ways apps can communicate with objects of
any Employee derived class. Be careful not to confuse the general notion of an “interface”
with the formal notion of a C# interface, the subject of Section 12.7. Each employee,
regardless of the way his or her earnings are calculated, has a first name, a last name and a
social security number, so those pieces of data appear in abstract base class Employee.

The following subsections implement the Employee class hierarchy. Section 12.5.1
implements abstract base class Employee. Sections 12.5.2–12.5.5 each implement one of
the concrete classes. Section 12.5.6 implements a test app that builds objects of all these
classes and processes those objects polymorphically.

12.5.1 Creating Abstract Base Class Employee
Class Employee (Fig. 12.4) provides methods Earnings and ToString, in addition to the
auto-implemented properties that manipulate Employee’s data. An Earnings method cer-
tainly applies generically to all employees. But each earnings calculation depends on the
employee’s class. So we declare Earnings as abstract in base class Employee, because a
default implementation does not make sense for that method—there’s not enough infor-
mation to determine what amount Earnings should return. Each derived class overrides
Earnings with a specific implementation. To calculate an employee’s earnings, the app as-
signs a reference to the employee’s object to a base class Employee variable, then invokes
the Earnings method on that variable. We maintain an array of Employee variables, each
of which holds a reference to an Employee object (of course, there cannot be Employee ob-
jects because Employee is an abstract class—because of inheritance, however, all objects of
all derived classes of Employee may nevertheless be thought of as Employee objects). The
app iterates through the array and calls method Earnings for each Employee object. These

Fig. 12.2 | Employee hierarchy UML class diagram.

Employee

CommissionEmployee HourlyEmployeeSalariedEmployee

BasePlusCommissionEmployee

452 Chapter 12 OOP: Polymorphism, Interfaces and Operator Overloading

method calls are processed polymorphically. Including Earnings as an abstract method in
Employee forces every directly derived concrete class of Employee to override Earnings with
a method that performs an appropriate pay calculation.

Method ToString in class Employee returns a string containing the employee’s first
name, last name and social security number. Each derived class of Employee overrides
method ToString to create a string representation of an object of that class containing the
employee’s type (e.g., "salaried employee:"), followed by the rest of the employee’s
information.

The diagram in Fig. 12.3 shows each of the five classes in the hierarchy down the left
side and methods Earnings and ToString across the top. For each class, the diagram
shows the desired results of each method. [Note: We do not list base class Employee’s prop-
erties because they’re not overridden in any of the derived classes—each of these properties
is inherited and used “as is” by each of the derived classes.]

Class Employee
Let’s consider class Employee’s declaration (Fig. 12.4). The class includes a constructor
that takes the first name, last name and social security number as arguments (lines 15–20);
properties with public get accessors for obtaining the first name, last name and social se-
curity number (lines 6, 9 and 12, respectively); method ToString (lines 23–27), which
uses properties to return the string representation of the Employee; and abstract method

Fig. 12.3 | Polymorphic interface for the Employee hierarchy classes.

weeklySalary

abstract

Commission-
Employee

BasePlus-
Commission-
Employee

Hourly-
Employee

Salaried-
Employee

Employee

ToStringEarnings

If hours <= 40
wage * hours

If hours > 40
40 * wage +
(hours - 40) *
wage * 1.5

commissionRate *
grossSales

(commissionRate *
grossSales) +
baseSalary

salaried employee: firstName lastName
social security number: SSN
weekly salary: weeklysalary

hourly employee: firstName lastName
social security number: SSN
hourly wage: wage
hours worked: hours

commission employee: firstName lastName
social security number: SSN
gross sales: grossSales
commission rate: commissionRate

base salaried commission employee:
firstName lastName

social security number: SSN
gross sales: grossSales
commission rate: commissionRate
base salary: baseSalary

firstName lastName
social security number: SSN

12.5 Case Study: Payroll System Using Polymorphism 453

Earnings (line 30), which must be implemented by concrete derived classes. The Employee
constructor does not validate the social security number in this example. Normally, such
validation should be provided.

Why did we declare Earnings as an abstract method? As explained earlier, it simply
does not make sense to provide an implementation of this method in class Employee. We
cannot calculate the earnings for a general Employee—we first must know the specific
Employee type to determine the appropriate earnings calculation. By declaring this
method abstract, we indicate that each concrete derived class must provide an appropriate
Earnings implementation and that an app will be able to use base-class Employee variables
to invoke method Earnings polymorphically for any type of Employee.

12.5.2 Creating Concrete Derived Class SalariedEmployee
Class SalariedEmployee (Fig. 12.5) extends class Employee (line 5) and overrides Earn-
ings (lines 34–37), which makes SalariedEmployee a concrete class. The class includes a
constructor (lines 10–14) that takes a first name, a last name, a social security number and
a weekly salary as arguments; property WeeklySalary (lines 17–31) to manipulate instance

1 // Fig. 12.4: Employee.cs
2 // Employee abstract base class.
3
4 {
5 // read-only property that gets employee's first name
6 public string FirstName { get; private set; }
7
8 // read-only property that gets employee's last name
9 public string LastName { get; private set; }

10
11 // read-only property that gets employee's social security number
12 public string SocialSecurityNumber { get; private set; }
13
14 // three-parameter constructor
15 public Employee(string first, string last, string ssn)
16 {
17 FirstName = first;
18 LastName = last;
19 SocialSecurityNumber = ssn;
20 } // end three-parameter Employee constructor
21
22 // return string representation of Employee object, using properties
23 public override string ToString()
24 {
25 return string.Format("{0} {1}\nsocial security number: {2}",
26 FirstName, LastName, SocialSecurityNumber);
27 } // end method ToString
28
29 // abstract method overridden by derived classes
30
31 } // end abstract class Employee

Fig. 12.4 | Employee abstract base class.

public abstract class Employee

public abstract decimal Earnings(); // no implementation here

454 Chapter 12 OOP: Polymorphism, Interfaces and Operator Overloading

variable weeklySalary, including a set accessor that ensures we assign only nonnegative
values to weeklySalary; method Earnings (lines 34–37) to calculate a SalariedEmploy-
ee’s earnings; and method ToString (lines 40–44), which returns a string including the
employee’s type, namely, "salaried employee: ", followed by employee-specific infor-
mation produced by base class Employee’s ToString method and SalariedEmployee’s
WeeklySalary property. Class SalariedEmployee’s constructor passes the first name, last
name and social security number to the Employee constructor (line 11) via a constructor
initializer to initialize the base class’s data. Method Earnings overrides Employee’s abstract
method Earnings to provide a concrete implementation that returns the SalariedEm-
ployee’s weekly salary. If we do not implement Earnings, class SalariedEmployee must
be declared abstract—otherwise, a compilation error occurs (and, of course, we want
SalariedEmployee to be a concrete class).

1 // Fig. 12.5: SalariedEmployee.cs
2 // SalariedEmployee class that extends Employee.
3 using System;
4
5
6 {
7 private decimal weeklySalary;
8
9 // four-parameter constructor

10 public SalariedEmployee(string first, string last, string ssn,
11 decimal salary) : base(first, last, ssn)
12 {
13 WeeklySalary = salary; // validate salary via property
14 } // end four-parameter SalariedEmployee constructor
15
16 // property that gets and sets salaried employee's salary
17 public decimal WeeklySalary
18 {
19 get

20 {
21 return weeklySalary;
22 } // end get
23 set

24 {
25 if (value >= 0) // validation
26 weeklySalary = value;
27 else

28 throw new ArgumentOutOfRangeException("WeeklySalary",
29 value, "WeeklySalary must be >= 0");
30 } // end set
31 } // end property WeeklySalary
32
33 // calculate earnings; override abstract method Earnings in Employee
34
35
36
37

Fig. 12.5 | SalariedEmployee class that extends Employee. (Part 1 of 2.)

public class SalariedEmployee : Employee

public override decimal Earnings()
{

return WeeklySalary;
} // end method Earnings

12.5 Case Study: Payroll System Using Polymorphism 455

SalariedEmployee method ToString (lines 40–44) overrides Employee’s version. If
class SalariedEmployee did not override ToString, SalariedEmployee would have inher-
ited the Employee version. In that case, SalariedEmployee’s ToString method would
simply return the employee’s full name and social security number, which does not ade-
quately represent a SalariedEmployee. To produce a complete string representation of a
SalariedEmployee, the derived class’s ToString method returns "salaried employee: ",
followed by the base-class Employee-specific information (i.e., first name, last name and
social security number) obtained by invoking the base class’s ToString (line 43)—this is
a nice example of code reuse. The string representation of a SalariedEmployee also con-
tains the employee’s weekly salary, obtained by using the class’s WeeklySalary property.

12.5.3 Creating Concrete Derived Class HourlyEmployee
Class HourlyEmployee (Fig. 12.6) also extends class Employee (line 5). The class includes
a constructor (lines 11–17) that takes as arguments a first name, a last name, a social secu-
rity number, an hourly wage and the number of hours worked. Lines 20–34 and 37–51
declare properties Wage and Hours for instance variables wage and hours, respectively. The
set accessor in property Wage ensures that wage is nonnegative, and the set accessor in
property Hours ensures that hours is in the range 0–168 (the total number of hours in a
week) inclusive. The class overrides method Earnings (lines 54–60) to calculate an Hour-
lyEmployee’s earnings and method ToString (lines 63–68) to return the employee’s string
representation. The HourlyEmployee constructor, similarly to the SalariedEmployee con-
structor, passes the first name, last name and social security number to the base-class Em-
ployee constructor (line 13) to initialize the base class’s data. Also, method ToString calls
base-class method ToString (line 67) to obtain the Employee-specific information (i.e.,
first name, last name and social security number).

38
39 // return string representation of SalariedEmployee object
40
41
42
43
44
45 } // end class SalariedEmployee

1 // Fig. 12.6: HourlyEmployee.cs
2 // HourlyEmployee class that extends Employee.
3 using System;
4
5
6 {
7 private decimal wage; // wage per hour
8 private decimal hours; // hours worked for the week
9

Fig. 12.6 | HourlyEmployee class that extends Employee. (Part 1 of 3.)

Fig. 12.5 | SalariedEmployee class that extends Employee. (Part 2 of 2.)

public override string ToString()
{

return string.Format("salaried employee: {0}\n{1}: {2:C}",
base.ToString(), "weekly salary", WeeklySalary);

} // end method ToString

public class HourlyEmployee : Employee

456 Chapter 12 OOP: Polymorphism, Interfaces and Operator Overloading

10 // five-parameter constructor
11 public HourlyEmployee(string first, string last, string ssn,
12 decimal hourlyWage, decimal hoursWorked)
13 : base(first, last, ssn)
14 {
15 Wage = hourlyWage; // validate hourly wage via property
16 Hours = hoursWorked; // validate hours worked via property
17 } // end five-parameter HourlyEmployee constructor
18
19 // property that gets and sets hourly employee's wage
20 public decimal Wage
21 {
22 get

23 {
24 return wage;
25 } // end get
26 set

27 {
28 if (value >= 0) // validation
29 wage = value;
30 else

31 throw new ArgumentOutOfRangeException("Wage",
32 value, "Wage must be >= 0");
33 } // end set
34 } // end property Wage
35
36 // property that gets and sets hourly employee's hours
37 public decimal Hours
38 {
39 get

40 {
41 return hours;
42 } // end get
43 set

44 {
45 if (value >= 0 && value <= 168) // validation
46 hours = value;
47 else

48 throw new ArgumentOutOfRangeException("Hours",
49 value, "Hours must be >= 0 and <= 168");
50 } // end set
51 } // end property Hours
52
53 // calculate earnings; override Employee’s abstract method Earnings
54
55
56
57
58
59
60
61

Fig. 12.6 | HourlyEmployee class that extends Employee. (Part 2 of 3.)

public override decimal Earnings()
{

if (Hours <= 40) // no overtime
return Wage * Hours;

else

return (40 * Wage) + ((Hours - 40) * Wage * 1.5M);
} // end method Earnings

12.5 Case Study: Payroll System Using Polymorphism 457

12.5.4 Creating Concrete Derived Class CommissionEmployee
Class CommissionEmployee (Fig. 12.7) extends class Employee (line 5). The class includes
a constructor (lines 11–16) that takes a first name, a last name, a social security number,
a sales amount and a commission rate; properties (lines 19–33 and 36–50) for instance
variables grossSales and commissionRate, respectively; method Earnings (lines 53–56)
to calculate a CommissionEmployee’s earnings; and method ToString (lines 59–64), which
returns the employee’s string representation. The CommissionEmployee’s constructor also
passes the first name, last name and social security number to the Employee constructor
(line 12) to initialize Employee’s data. Method ToString calls base-class method ToString
(line 62) to obtain the Employee-specific information (i.e., first name, last name and social
security number).

62 // return string representation of HourlyEmployee object
63
64
65
66
67
68
69 } // end class HourlyEmployee

1 // Fig. 12.7: CommissionEmployee.cs
2 // CommissionEmployee class that extends Employee.
3 using System;
4
5
6 {
7 private decimal grossSales; // gross weekly sales
8 private decimal commissionRate; // commission percentage
9

10 // five-parameter constructor
11 public CommissionEmployee(string first, string last, string ssn,
12 decimal sales, decimal rate) : base(first, last, ssn)
13 {
14 GrossSales = sales; // validate gross sales via property
15 CommissionRate = rate; // validate commission rate via property
16 } // end five-parameter CommissionEmployee constructor
17
18 // property that gets and sets commission employee's gross sales
19 public decimal GrossSales
20 {
21 get

22 {
23 return grossSales;
24 } // end get
25 set

26 {

Fig. 12.7 | CommissionEmployee class that extends Employee. (Part 1 of 2.)

Fig. 12.6 | HourlyEmployee class that extends Employee. (Part 3 of 3.)

public override string ToString()
{

return string.Format(
"hourly employee: {0}\n{1}: {2:C}; {3}: {4:F2}",
base.ToString(), "hourly wage", Wage, "hours worked", Hours);

} // end method ToString

public class CommissionEmployee : Employee

458 Chapter 12 OOP: Polymorphism, Interfaces and Operator Overloading

12.5.5 Creating Indirect Concrete Derived Class
BasePlusCommissionEmployee

Class BasePlusCommissionEmployee (Fig. 12.8) extends class CommissionEmployee (line
5) and therefore is an indirect derived class of class Employee. Class BasePlusCommission-
Employee has a constructor (lines 10–15) that takes as arguments a first name, a last name,
a social security number, a sales amount, a commission rate and a base salary. It then passes
the first name, last name, social security number, sales amount and commission rate to the
CommissionEmployee constructor (line 12) to initialize the base class’s data. BasePlusCom-
missionEmployee also contains property BaseSalary (lines 19–33) to manipulate instance

27 if (value >= 0)
28 grossSales = value;
29 else

30 throw new ArgumentOutOfRangeException(
31 "GrossSales", value, "GrossSales must be >= 0");
32 } // end set
33 } // end property GrossSales
34
35 // property that gets and sets commission employee's commission rate
36 public decimal CommissionRate
37 {
38 get

39 {
40 return commissionRate;
41 } // end get
42 set

43 {
44 if (value > 0 && value < 1)
45 commissionRate = value;
46 else

47 throw new ArgumentOutOfRangeException("CommissionRate",
48 value, "CommissionRate must be > 0 and < 1");
49 } // end set
50 } // end property CommissionRate
51
52 // calculate earnings; override abstract method Earnings in Employee
53
54
55
56
57
58 // return string representation of CommissionEmployee object
59
60
61
62
63
64
65 } // end class CommissionEmployee

Fig. 12.7 | CommissionEmployee class that extends Employee. (Part 2 of 2.)

public override decimal Earnings()
{

return CommissionRate * GrossSales;
} // end method Earnings

public override string ToString()
{

return string.Format("{0}: {1}\n{2}: {3:C}\n{4}: {5:F2}",
"commission employee", base.ToString(),
"gross sales", GrossSales, "commission rate", CommissionRate);

} // end method ToString

12.5 Case Study: Payroll System Using Polymorphism 459

variable baseSalary. Method Earnings (lines 36–39) calculates a BasePlusCommission-
Employee’s earnings. Line 38 in method Earnings calls base class CommissionEmployee’s
Earnings method to calculate the commission-based portion of the employee’s earnings.
Again, this shows the benefits of code reuse. BasePlusCommissionEmployee’s ToString
method (lines 42–46) creates a string representation of a BasePlusCommissionEmployee
that contains "base-salaried", followed by the string obtained by invoking base class
CommissionEmployee’s ToString method (another example of code reuse), then the base
salary. The result is a string beginning with "base-salaried commission employee", fol-
lowed by the rest of the BasePlusCommissionEmployee’s information. Recall that Commis-
sionEmployee’s ToString method obtains the employee’s first name, last name and social
security number by invoking the ToString method of its base class (i.e., Employee)—a fur-
ther demonstration of code reuse. BasePlusCommissionEmployee’s ToString initiates a
chain of method calls that spans all three levels of the Employee hierarchy.

1 // Fig. 12.8: BasePlusCommissionEmployee.cs
2 // BasePlusCommissionEmployee class that extends CommissionEmployee.
3 using System;
4
5
6 {
7 private decimal baseSalary; // base salary per week
8
9 // six-parameter constructor

10 public BasePlusCommissionEmployee(string first, string last,
11 string ssn, decimal sales, decimal rate, decimal salary)
12 : base(first, last, ssn, sales, rate)
13 {
14 BaseSalary = salary; // validate base salary via property
15 } // end six-parameter BasePlusCommissionEmployee constructor
16
17 // property that gets and sets
18 // base-salaried commission employee's base salary
19 public decimal BaseSalary
20 {
21 get

22 {
23 return baseSalary;
24 } // end get
25 set

26 {
27 if (value >= 0)
28 baseSalary = value;
29 else

30 throw new ArgumentOutOfRangeException("BaseSalary",
31 value, "BaseSalary must be >= 0");
32 } // end set
33 } // end property BaseSalary
34

Fig. 12.8 | BasePlusCommissionEmployee class that extends CommissionEmployee. (Part 1
of 2.)

public class BasePlusCommissionEmployee : CommissionEmployee

460 Chapter 12 OOP: Polymorphism, Interfaces and Operator Overloading

12.5.6 Polymorphic Processing, Operator is and Downcasting
To test our Employee hierarchy, the app in Fig. 12.9 creates an object of each of the four
concrete classes SalariedEmployee, HourlyEmployee, CommissionEmployee and Base-

PlusCommissionEmployee. The app manipulates these objects, first via variables of each
object’s own type, then polymorphically, using an array of Employee variables. While pro-
cessing the objects polymorphically, the app increases the base salary of each Base-

PlusCommissionEmployee by 10% (this, of course, requires determining the object’s type
at execution time). Finally, the app polymorphically determines and outputs the type of
each object in the Employee array. Lines 10–20 create objects of each of the four concrete
Employee derived classes. Lines 24–32 output the string representation and earnings of
each of these objects. Each object’s ToString method is called implicitly by WriteLine

when the object is output as a string with format items.

Assigning Derived-Class Objects to Base-Class References
Line 35 declares employees and assigns it an array of four Employee variables. Lines 38–
41 assign a SalariedEmployee object, an HourlyEmployee object, a CommissionEmployee
object and a BasePlusCommissionEmployee object to employees[0], employees[1],
employees[2] and employees[3], respectively. Each assignment is allowed, because a
SalariedEmployee is an Employee, an HourlyEmployee is an Employee, a Commission-
Employee is an Employee and a BasePlusCommissionEmployee is an Employee. Therefore,
we can assign the references of SalariedEmployee, HourlyEmployee, CommissionEmploy-
ee and BasePlusCommissionEmployee objects to base-class Employee variables, even
though Employee is an abstract class.

35 // calculate earnings; override method Earnings in CommissionEmployee
36
37
38
39
40
41 // return string representation of BasePlusCommissionEmployee object
42
43
44
45
46
47 } // end class BasePlusCommissionEmployee

1 // Fig. 12.9: PayrollSystemTest.cs
2 // Employee hierarchy test app.
3 using System;
4
5 public class PayrollSystemTest
6 {

Fig. 12.9 | Employee hierarchy test app. (Part 1 of 4.)

Fig. 12.8 | BasePlusCommissionEmployee class that extends CommissionEmployee. (Part 2
of 2.)

public override decimal Earnings()
{

return BaseSalary + base.Earnings();
} // end method Earnings

public override string ToString()
{

return string.Format("base-salaried {0}; base salary: {1:C}",
base.ToString(), BaseSalary);

} // end method ToString

12.5 Case Study: Payroll System Using Polymorphism 461

7 public static void Main(string[] args)
8 {
9 // create derived-class objects

10
11
12
13
14
15
16
17
18
19
20
21
22 Console.WriteLine("Employees processed individually:\n");
23
24 Console.WriteLine("{0}\nearned: {1:C}\n",
25 salariedEmployee, salariedEmployee.Earnings());
26 Console.WriteLine("{0}\nearned: {1:C}\n",
27 hourlyEmployee, hourlyEmployee.Earnings());
28 Console.WriteLine("{0}\nearned: {1:C}\n",
29 commissionEmployee, commissionEmployee.Earnings());
30 Console.WriteLine("{0}\nearned: {1:C}\n",
31 basePlusCommissionEmployee,
32 basePlusCommissionEmployee.Earnings());
33
34 // create four-element Employee array
35
36
37 // initialize array with Employees of derived types
38
39
40
41
42
43 Console.WriteLine("Employees processed polymorphically:\n");
44
45 // generically process each element in array employees
46 foreach (Employee currentEmployee in employees)
47 {
48 Console.WriteLine(currentEmployee); // invokes ToString
49
50 // determine whether element is a BasePlusCommissionEmployee
51
52 {
53 // downcast Employee reference to
54 // BasePlusCommissionEmployee reference
55 BasePlusCommissionEmployee employee =
56 ;
57
58 employee.BaseSalary *= 1.10M;

Fig. 12.9 | Employee hierarchy test app. (Part 2 of 4.)

SalariedEmployee salariedEmployee =
new SalariedEmployee("John", "Smith", "111-11-1111", 800.00M);

HourlyEmployee hourlyEmployee =
new HourlyEmployee("Karen", "Price",
"222-22-2222", 16.75M, 40.0M);

CommissionEmployee commissionEmployee =
new CommissionEmployee("Sue", "Jones",
"333-33-3333", 10000.00M, .06M);

BasePlusCommissionEmployee basePlusCommissionEmployee =
new BasePlusCommissionEmployee("Bob", "Lewis",
"444-44-4444", 5000.00M, .04M, 300.00M);

Employee[] employees = new Employee[4];

employees[0] = salariedEmployee;
employees[1] = hourlyEmployee;
employees[2] = commissionEmployee;
employees[3] = basePlusCommissionEmployee;

if (currentEmployee is BasePlusCommissionEmployee)

(BasePlusCommissionEmployee) currentEmployee

462 Chapter 12 OOP: Polymorphism, Interfaces and Operator Overloading

59 Console.WriteLine(
60 "new base salary with 10% increase is: {0:C}",
61 employee.BaseSalary);
62 } // end if
63
64 Console.WriteLine(
65 "earned {0:C}\n", currentEmployee.Earnings());
66 } // end foreach
67
68 // get type name of each object in employees array
69
70
71
72 } // end Main
73 } // end class PayrollSystemTest

Employees processed individually:

salaried employee: John Smith
social security number: 111-11-1111
weekly salary: $800.00
earned: $800.00

hourly employee: Karen Price
social security number: 222-22-2222
hourly wage: $16.75; hours worked: 40.00
earned: $670.00

commission employee: Sue Jones
social security number: 333-33-3333
gross sales: $10,000.00
commission rate: 0.06
earned: $600.00

base-salaried commission employee: Bob Lewis
social security number: 444-44-4444
gross sales: $5,000.00
commission rate: 0.04; base salary: $300.00
earned: $500.00

Employees processed polymorphically:

salaried employee: John Smith
social security number: 111-11-1111
weekly salary: $800.00
earned $800.00

hourly employee: Karen Price
social security number: 222-22-2222
hourly wage: $16.75; hours worked: 40.00
earned $670.00

Fig. 12.9 | Employee hierarchy test app. (Part 3 of 4.)

for (int j = 0; j < employees.Length; j++)
Console.WriteLine("Employee {0} is a {1}", j,

employees[j].GetType());

12.5 Case Study: Payroll System Using Polymorphism 463

Polymorphically Processing Employees
Lines 46–66 iterate through array employees and invoke methods ToString and Earn-

ings with Employee variable currentEmployee, which is assigned the reference to a differ-
ent Employee during each iteration. The output illustrates that the appropriate methods
for each class are indeed invoked. All calls to virtual methods ToString and Earnings

are resolved at execution time, based on the type of the object to which currentEmployee
refers. This process is known as dynamic binding or late binding. For example, line 48
implicitly invokes method ToString of the object to which currentEmployee refers. Only
the methods of class Employee can be called via an Employee variable—and Employee in-
cludes class object’s methods, such as ToString. (Section 11.7 discussed the methods that
all classes inherit from class object.) A base-class reference can be used to invoke only
methods of the base class.

Giving BasePlusCommissionEmployees 10% Raises
We perform special processing on BasePlusCommissionEmployee objects—as we encoun-
ter them, we increase their base salary by 10%. When processing objects polymorphically,
we typically do not need to worry about the specifics, but to adjust the base salary, we do
have to determine the specific type of each Employee object at execution time. Line 51 uses
the is operator to determine whether a particular Employee object’s type is BasePlusCom-
missionEmployee. The condition in line 51 is true if the object referenced by current-
Employee is a BasePlusCommissionEmployee. This would also be true for any object of a
BasePlusCommissionEmployee derived class (if there were any), because of the is-a rela-
tionship a derived class has with its base class. Lines 55–56 downcast currentEmployee
from type Employee to type BasePlusCommissionEmployee—this cast is allowed only if
the object has an is-a relationship with BasePlusCommissionEmployee. The condition at
line 51 ensures that this is the case. This cast is required if we are to use derived class Base-
PlusCommissionEmployee’s BaseSalary property on the current Employee object—at-
tempting to invoke a derived-class-only method directly on a base class reference is a compilation
error.

commission employee: Sue Jones
social security number: 333-33-3333
gross sales: $10,000.00
commission rate: 0.06
earned $600.00

base-salaried commission employee: Bob Lewis
social security number: 444-44-4444
gross sales: $5,000.00
commission rate: 0.04; base salary: $300.00
new base salary with 10% increase is: $330.00
earned $530.00

Employee 0 is a SalariedEmployee
Employee 1 is a HourlyEmployee
Employee 2 is a CommissionEmployee
Employee 3 is a BasePlusCommissionEmployee

Fig. 12.9 | Employee hierarchy test app. (Part 4 of 4.)

464 Chapter 12 OOP: Polymorphism, Interfaces and Operator Overloading

When downcasting an object, an InvalidCastException (of namespace System)
occurs if at execution time the object does not have an is a relationship with the type spec-
ified in the cast operator. An object can be cast only to its own type or to the type of one
of its base classes. You can avoid a potential InvalidCastException by using the as oper-
ator to perform a downcast rather than a cast operator. For example, in the statement

employee is assigned a reference to an object that is a BasePlusCommissionEmployee, or
the value null if currentEmployee is not a BasePlusCommissionEmployee. You can then
compare employee with null to determine whether the cast succeeded.

If the is expression in line 51 is true, the if statement (lines 51–62) performs the
special processing required for the BasePlusCommissionEmployee object. Using Base-

PlusCommissionEmployee variable employee, line 58 accesses the derived-class-only prop-
erty BaseSalary to retrieve and update the employee’s base salary with the 10% raise.

Lines 64–65 invoke method Earnings on currentEmployee, which calls the appro-
priate derived-class object’s Earnings method polymorphically. Obtaining the earnings of
the SalariedEmployee, HourlyEmployee and CommissionEmployee polymorphically in
lines 64–65 produces the same result as obtaining these employees’ earnings individually
in lines 24–29. However, the earnings amount obtained for the BasePlusCommissionEm-
ployee in lines 64–65 is higher than that obtained in lines 30–32, due to the 10% increase
in its base salary.

Every Object Knows Its Own Type
Lines 69–71 display each employee’s type as a string. Every object knows its own type and
can access this information through method GetType, which all classes inherit from class
object. Method GetType returns an object of class Type (of namespace System), which
contains information about the object’s type, including its class name, the names of its
methods, and the name of its base class. Line 71 invokes method GetType on the object to
get its runtime class (i.e., a Type object that represents the object’s type). Then method
ToString is implicitly invoked on the object returned by GetType. The Type class’s To-
String method returns the class name.

Avoiding Compilation Errors with Downcasting
In the previous example, we avoid several compilation errors by downcasting an Employee
variable to a BasePlusCommissionEmployee variable in lines 55–56. If we remove the cast
operator (BasePlusCommissionEmployee) from line 56 and attempt to assign Employee

Common Programming Error 12.3
Assigning a base-class variable to a derived-class variable (without an explicit downcast)
is a compilation error.

Software Engineering Observation 12.3
If at execution time the reference to a derived-class object has been assigned to a variable
of one of its direct or indirect base classes, it’s acceptable to cast the reference stored in that
base-class variable back to a reference of the derived-class type. Before performing such a
cast, use the is operator to ensure that the object is indeed an object of an appropriate
derived-class type.

BasePlusCommissionEmployee employee =
currentEmployee as BasePlusCommissionEmployee;

12.5 Case Study: Payroll System Using Polymorphism 465

variable currentEmployee directly to BasePlusCommissionEmployee variable employee,
we receive a “Cannot implicitly convert type” compilation error. This error indicates
that the attempt to assign the reference of base-class object currentEmployee to derived-
class variable employee is not allowed without an appropriate cast operator. The compiler
prevents this assignment, because a CommissionEmployee is not a BasePlusCommission-
Employee—again, the is-a relationship applies only between the derived class and its base
classes, not vice versa.

Similarly, if lines 58 and 61 use base-class variable currentEmployee, rather than
derived-class variable employee, to use derived-class-only property BaseSalary, we receive
an “'Employee' does not contain a definition for 'BaseSalary'” compilation error
on each of these lines. Attempting to invoke derived-class-only methods on a base-class reference
is not allowed. While lines 58 and 61 execute only if is in line 51 returns true to indicate
that currentEmployee has been assigned a reference to a BasePlusCommissionEmployee
object, we cannot attempt to use derived-class BasePlusCommissionEmployee property
BaseSalary with base-class Employee reference currentEmployee. The compiler would
generate errors in lines 58 and 61, because BaseSalary is not a base-class member and
cannot be used with a base-class variable. Although the actual method that’s called depends
on the object’s type at execution time, a variable can be used to invoke only those methods that
are members of that variable’s type, which the compiler verifies. Using a base-class Employee
variable, we can invoke only methods and properties found in class Employee—methods
Earnings and ToString, and properties FirstName, LastName and SocialSecurity-

Number—and method methods inherited from class object.

12.5.7 Summary of the Allowed Assignments Between Base-Class and
Derived-Class Variables
Now that you’ve seen a complete app that processes diverse derived-class objects polymor-
phically, we summarize what you can and cannot do with base-class and derived-class ob-
jects and variables. Although a derived-class object also is a base-class object, the two are
nevertheless different. As discussed previously, derived-class objects can be treated as if
they were base-class objects. However, the derived class can have additional derived-class-
only members. For this reason, assigning a base-class reference to a derived-class variable
is not allowed without an explicit cast—such an assignment would leave the derived-class
members undefined for a base-class object.

We’ve discussed four ways to assign base-class and derived-class references to variables
of base-class and derived-class types:

1. Assigning a base-class reference to a base-class variable is straightforward.

2. Assigning a derived-class reference to a derived-class variable is straightforward.

3. Assigning a derived-class reference to a base-class variable is safe, because the de-
rived-class object is an object of its base class. However, this reference can be used
to refer only to base-class members. If this code refers to derived-class-only mem-
bers through the base-class variable, the compiler reports errors.

4. Attempting to assign a base-class reference to a derived-class variable is a compilation
error. To avoid this error, the base-class reference must be cast to a derived-class
type explicitly or must be converted using the as operator. At execution time, if the
object to which the reference refers is not a derived-class object, an exception will

466 Chapter 12 OOP: Polymorphism, Interfaces and Operator Overloading

occur (unless you use the as operator). The is operator can be used to ensure that
such a cast is performed only if the object is a derived-class object.

12.6 sealed Methods and Classes
Only methods declared virtual, override or abstract can be overridden in derived class-
es. A method declared sealed in a base class cannot be overridden in a derived class. Meth-
ods that are declared private are implicitly sealed, because it’s impossible to override
them in a derived class (though the derived class can declare a new method with the same
signature as the private method in the base class). Methods that are declared static also
are implicitly sealed, because static methods cannot be overridden either. A derived-
class method declared both override and sealed can override a base-class method, but
cannot be overridden in derived classes further down the inheritance hierarchy.

A sealed method’s declaration can never change, so all derived classes use the same
method implementation, and calls to sealed methods (and non-virtual methods) are
resolved at compile time—this is known as static binding. Since the compiler knows that
sealed methods cannot be overridden, it can often optimize code by removing calls to
sealed methods and replacing them with the expanded code of their declarations at each
method-call location—a technique known as inlining the code.

A class that’s declared sealed cannot be a base class (i.e., a class cannot extend a
sealed class). All methods in a sealed class are implicitly sealed. Class string is a sealed
class. This class cannot be extended, so apps that use strings can rely on the functionality
of string objects as specified in the Framework Class Library.

12.7 Case Study: Creating and Using Interfaces
Our next example (Figs. 12.11–12.15) reexamines the payroll system of Section 12.5.
Suppose that the company involved wishes to perform several accounting operations in a
single accounts-payable app—in addition to calculating the payroll earnings that must be
paid to each employee, the company must also calculate the payment due on each of sev-
eral invoices (i.e., bills for goods purchased). Though applied to unrelated things (i.e., em-
ployees and invoices), both operations have to do with calculating some kind of payment
amount. For an employee, the payment refers to the employee’s earnings. For an invoice,
the payment refers to the total cost of the goods listed on the invoice. Can we calculate
such different things as the payments due for employees and invoices polymorphically in
a single app? Is there a capability that requires that unrelated classes implement a set of
common methods (e.g., a method that calculates a payment amount)? Interfaces offer ex-
actly this capability.

Performance Tip 12.1
The compiler can decide to inline a sealed method call and will do so for small, simple
sealed methods. Inlining does not violate encapsulation or information hiding, but does
improve performance, because it eliminates the overhead of making a method call.

Common Programming Error 12.4
Attempting to declare a derived class of a sealed class is a compilation error.

12.7 Case Study: Creating and Using Interfaces 467

Standardized Interactions
Interfaces define and standardize the ways in which people and systems can interact with
one another. For example, the controls on a radio serve as an interface between a radio’s
users and its internal components. The controls allow users to perform a limited set of op-
erations (e.g., changing the station, adjusting the volume, choosing between AM and FM),
and different radios may implement the controls in different ways (e.g., using push but-
tons, dials, voice commands). The interface specifies what operations a radio must permit
users to perform but does not specify how they’re performed. Similarly, the interface be-
tween a driver and a car with a manual transmission includes the steering wheel, the gear
shift, the clutch pedal, the gas pedal and the brake pedal. This same interface is found in
nearly all manual-transmission cars, enabling someone who knows how to drive one par-
ticular manual-transmission car to drive just about any other. The components of each car
may look a bit different, but the general purpose is the same—to allow people to drive the
car.

Interfaces in Software
Software objects also communicate via interfaces. A C# interface describes a set of methods
and properties that can be called on an object—to tell it, for example, to perform some task
or return some piece of information. The next example introduces an interface named IP-
ayable that describes the functionality of any object that must be capable of being paid and
thus must offer a method to determine the proper payment amount due. An interface dec-
laration begins with the keyword interface and can contain only abstract methods, ab-
stract properties, abstract indexers (not covered in this book) and abstract events (events are
discussed in Chapter 14, Graphical User Interfaces with Windows Forms: Part 1.) All in-
terface members are implicitly declared both public and abstract. In addition, each inter-
face can extend one or more other interfaces to create a more elaborate interface that other
classes can implement.

Implementing an Interface
To use an interface, a class must specify that it implements the interface by listing the in-
terface after the colon (:) in the class declaration. This is the same syntax used to indicate
inheritance from a base class. A concrete class implementing the interface must declare
each member of the interface with the signature specified in the interface declaration. A
class that implements an interface but does not implement all its members is an abstract
class—it must be declared abstract and must contain an abstract declaration for each
unimplemented member of the interface. Implementing an interface is like signing a con-
tract with the compiler that states, “I will provide an implementation for all the members
specified by the interface, or I will declare them abstract.”

Common Programming Error 12.5
It’s a compilation error to declare an interface member public or abstract explicitly, be-
cause they’re redundant in interface-member declarations. It’s also a compilation error to
specify any implementation details, such as concrete method declarations, in an interface.

Common Programming Error 12.6
Failing to define or declare any member of an interface in a class that implements the in-
terface results in a compilation error.

468 Chapter 12 OOP: Polymorphism, Interfaces and Operator Overloading

Common Methods for Unrelated Classes
An interface is typically used when unrelated classes need to share common methods. This
allows objects of unrelated classes to be processed polymorphically—objects of classes that
implement the same interface can respond to the same method calls. You can create an in-
terface that describes the desired functionality, then implement this interface in any classes
requiring that functionality. For example, in the accounts-payable app developed in this
section, we implement interface IPayable in any class that must be able to calculate a pay-
ment amount (e.g., Employee, Invoice).

Interfaces vs. Abstract Classes
An interface often is used in place of an abstract class when there’s no default implemen-
tation to inherit—that is, no fields and no default method implementations. Like ab-
stract classes, interfaces are typically public types, so they’re normally declared in files
by themselves with the same name as the interface and the .cs file-name extension.

12.7.1 Developing an IPayable Hierarchy
To build an app that can determine payments for employees and invoices alike, we first
create an interface named IPayable. Interface IPayable contains method GetPayment-

Amount that returns a decimal amount to be paid for an object of any class that imple-
ments the interface. Method GetPaymentAmount is a general-purpose version of method
Earnings of the Employee hierarchy—method Earnings calculates a payment amount
specifically for an Employee, while GetPaymentAmount can be applied to a broad range of
unrelated objects. After declaring interface IPayable, we introduce class Invoice, which
implements interface IPayable. We then modify class Employee such that it also imple-
ments interface IPayable. Finally, we update Employee derived class SalariedEmployee
to “fit” into the IPayable hierarchy (i.e., we rename SalariedEmployeemethod Earnings
as GetPaymentAmount).

Classes Invoice and Employee both represent things for which the company must be
able to calculate a payment amount. Both classes implement IPayable, so an app can
invoke method GetPaymentAmount on Invoice objects and Employee objects alike. This
enables the polymorphic processing of Invoices and Employees required for our com-
pany’s accounts-payable app.

UML Diagram Containing an Interface
The UML class diagram in Fig. 12.10 shows the interface and class hierarchy used in our
accounts-payable app. The hierarchy begins with interface IPayable. The UML distin-
guishes an interface from a class by placing the word “interface” in guillemets (« and »)

Good Programming Practice 12.1
By convention, the name of an interface begins with I. This helps distinguish interfaces
from classes, improving code readability.

Good Programming Practice 12.2
When declaring a method in an interface, choose a name that describes the method’s pur-
pose in a general manner, because the method may be implemented by a broad range of
unrelated classes.

12.7 Case Study: Creating and Using Interfaces 469

above the interface name. The UML expresses the relationship between a class and an in-
terface through a realization. A class is said to “realize,” or implement, an interface. A class
diagram models a realization as a dashed arrow with a hollow arrowhead pointing from the
implementing class to the interface. The diagram in Fig. 12.10 indicates that classes In-
voice and Employee each realize (i.e., implement) interface IPayable. As in the class dia-
gram of Fig. 12.2, class Employee appears in italics, indicating that it’s an abstract class.
Concrete class SalariedEmployee extends Employee and inherits its base class’s realization
relationship with interface IPayable.

12.7.2 Declaring Interface IPayable
The declaration of interface IPayable begins in Fig. 12.11 at line 3. Interface IPayable
contains public abstract method GetPaymentAmount (line 5). The method cannot be ex-
plicitly declared public or abstract. Interfaces can have any number of members and in-
terface methods can have parameters.

12.7.3 Creating Class Invoice
We now create class Invoice (Fig. 12.12) to represent a simple invoice that contains bill-
ing information for one kind of part. The class contains properties PartNumber (line 11),
PartDescription (line 14), Quantity (lines 27–41) and PricePerItem (lines 44–58) that
indicate the part number, the description of the part, the quantity of the part ordered and
the price per item. Class Invoice also contains a constructor (lines 17–24) and a ToString
method (lines 61–67) that returns a string representation of an Invoice object. The set
accessors of properties Quantity and PricePerItem ensure that quantity and pricePer-
Item are assigned only nonnegative values.

Fig. 12.10 | IPayable interface and class hierarchy UML class diagram.

1 // Fig. 12.11: IPayable.cs
2 // IPayable interface declaration.
3 public interface IPayable
4 {
5 decimal GetPaymentAmount(); // calculate payment; no implementation
6 } // end interface IPayable

Fig. 12.11 | IPayable interface declaration.

Invoice Employee

SalariedEmployee

«interface»
IPayable

470 Chapter 12 OOP: Polymorphism, Interfaces and Operator Overloading

1 // Fig. 12.12: Invoice.cs
2 // Invoice class implements IPayable.
3 using System;
4
5
6 {
7 private int quantity;
8 private decimal pricePerItem;
9

10 // property that gets and sets the part number on the invoice
11 public string PartNumber { get; set; }
12
13 // property that gets and sets the part description on the invoice
14 public string PartDescription { get; set; }
15
16 // four-parameter constructor
17 public Invoice(string part, string description, int count,
18 decimal price)
19 {
20 PartNumber = part;
21 PartDescription = description;
22 Quantity = count; // validate quantity via property
23 PricePerItem = price; // validate price per item via property
24 } // end four-parameter Invoice constructor
25
26 // property that gets and sets the quantity on the invoice
27 public int Quantity
28 {
29 get

30 {
31 return quantity;
32 } // end get
33 set

34 {
35 if (value >= 0) // validate quantity
36 quantity = value;
37 else

38 throw new ArgumentOutOfRangeException("Quantity",
39 value, "Quantity must be >= 0");
40 } // end set
41 } // end property Quantity
42
43 // property that gets and sets the price per item
44 public decimal PricePerItem
45 {
46 get

47 {
48 return pricePerItem;
49 } // end get
50 set

51 {
52 if (value >= 0) // validate price
53 quantity = value;

Fig. 12.12 | Invoice class implements IPayable. (Part 1 of 2.)

public class Invoice : IPayable

12.7 Case Study: Creating and Using Interfaces 471

Line 5 indicates that class Invoice implements interface IPayable. Like all classes,
class Invoice also implicitly inherits from class object. C# does not allow derived classes to
inherit from more than one base class, but it does allow a class to inherit from a base class and
implement any number of interfaces. All objects of a class that implement multiple interfaces
have the is-a relationship with each implemented interface type. To implement more than
one interface, use a comma-separated list of interface names after the colon (:) in the class
declaration, as in:

When a class inherits from a base class and implements one or more interfaces, the class
declaration must list the base-class name before any interface names.

Class Invoice implements the one method in interface IPayable—method
GetPaymentAmount is declared in lines 70–73. The method calculates the amount required
to pay the invoice. The method multiplies the values of quantity and pricePerItem

(obtained through the appropriate properties) and returns the result (line 72). This
method satisfies the implementation requirement for the method in interface IPayable—
we’ve fulfilled the interface contract with the compiler.

12.7.4 Modifying Class Employee to Implement Interface IPayable
We now modify class Employee to implement interface IPayable. Figure 12.13 contains the
modified Employee class. This class declaration is identical to that of Fig. 12.4 with two ex-
ceptions. First, line 3 of Fig. 12.13 indicates that class Employee now implements interface
IPayable. Because of this, we renamed Earnings to GetPaymentAmount throughout the Em-
ployee hierarchy. As with method Earnings in Fig. 12.4, however, it does not make sense
to implement method GetPaymentAmount in class Employee, because we cannot calculate the

54 else

55 throw new ArgumentOutOfRangeException("PricePerItem",
56 value, "PricePerItem must be >= 0");
57 } // end set
58 } // end property PricePerItem
59
60 // return string representation of Invoice object
61 public override string ToString()
62 {
63 return string.Format(
64 "{0}: \n{1}: {2} ({3}) \n{4}: {5} \n{6}: {7:C}",
65 "invoice", "part number", PartNumber, PartDescription,
66 "quantity", Quantity, "price per item", PricePerItem);
67 } // end method ToString
68
69 // method required to carry out contract with interface IPayable
70
71
72
73
74 } // end class Invoice

public class ClassName : BaseClassName, FirstInterface, SecondInterface, …

Fig. 12.12 | Invoice class implements IPayable. (Part 2 of 2.)

public decimal GetPaymentAmount()
{

return Quantity * PricePerItem; // calculate total cost
} // end method GetPaymentAmount

472 Chapter 12 OOP: Polymorphism, Interfaces and Operator Overloading

earnings payment owed to a general Employee—first, we must know the specific type of Em-
ployee. In Fig. 12.4, we declared method Earnings as abstract for this reason, and as a re-
sult, class Employee had to be declared abstract. This forced each Employee derived class to
override Earnings with a concrete implementation. [Note: Though we renamed Earnings

to GetPaymentAmount, in class Employeewe could have defined GetPaymentAmount and had
it call Earnings. Then the other Employee hierarchy classes would not need to change.]

In Fig. 12.13, we handle this situation the same way. Recall that when a class imple-
ments an interface, the class makes a contract with the compiler stating that the class either
will implement each of the methods in the interface or will declare them abstract. If the
latter option is chosen, we must also declare the class abstract. As we discussed in
Section 12.4, any concrete derived class of the abstract class must implement the abstract
methods of the base class. If the derived class does not do so, it too must be declared
abstract. As indicated by the comments in lines 29–30 of Fig. 12.13, class Employee does
not implement method GetPaymentAmount, so the class is declared abstract.

1 // Fig. 12.13: Employee.cs
2 // Employee abstract base class.
3
4 {
5 // read-only property that gets employee's first name
6 public string FirstName { get; private set; }
7
8 // read-only property that gets employee's last name
9 public string LastName { get; private set; }

10
11 // read-only property that gets employee's social security number
12 public string SocialSecurityNumber { get; private set; }
13
14 // three-parameter constructor
15 public Employee(string first, string last, string ssn)
16 {
17 FirstName = first;
18 LastName = last;
19 SocialSecurityNumber = ssn;
20 } // end three-parameter Employee constructor
21
22 // return string representation of Employee object
23 public override string ToString()
24 {
25 return string.Format("{0} {1}\nsocial security number: {2}",
26 FirstName, LastName, SocialSecurityNumber);
27 } // end method ToString
28
29
30
31
32 } // end abstract class Employee

Fig. 12.13 | Employee abstract base class.

public abstract class Employee : IPayable

// Note: We do not implement IPayable method GetPaymentAmount here, so
// this class must be declared abstract to avoid a compilation error.
public abstract decimal GetPaymentAmount();

12.7 Case Study: Creating and Using Interfaces 473

12.7.5 Modifying Class SalariedEmployee for Use with IPayable

Figure 12.14 contains a modified version of class SalariedEmployee that extends Employee
and implements method GetPaymentAmount. This version of SalariedEmployee is identical
to that of Fig. 12.5 with the exception that the version here implements method GetPay-

mentAmount (lines 35–38) instead of method Earnings. The two methods contain the same
functionality but have different names. Recall that the IPayable version of the method has
a more general name to be applicable to possibly disparate classes. The remaining Employee
derived classes (e.g., HourlyEmployee, CommissionEmployee and BasePlusCommissionEm-
ployee) also must be modified to contain method GetPaymentAmount in place of Earnings
to reflect the fact that Employee now implements IPayable. We leave these modifications
as an exercise and use only SalariedEmployee in our test app in this section.

1 // Fig. 12.14: SalariedEmployee.cs
2 // SalariedEmployee class that extends Employee.
3 using System;
4
5 public class SalariedEmployee : Employee
6 {
7 private decimal weeklySalary;
8
9 // four-parameter constructor

10 public SalariedEmployee(string first, string last, string ssn,
11 decimal salary) : base(first, last, ssn)
12 {
13 WeeklySalary = salary; // validate salary via property
14 } // end four-parameter SalariedEmployee constructor
15
16 // property that gets and sets salaried employee's salary
17 public decimal WeeklySalary
18 {
19 get

20 {
21 return weeklySalary;
22 } // end get
23 set

24 {
25 if (value >= 0) // validation
26 weeklySalary = value;
27 else

28 throw new ArgumentOutOfRangeException("WeeklySalary",
29 value, "WeeklySalary must be >= 0");
30 } // end set
31 } // end property WeeklySalary
32
33 // calculate earnings; implement interface IPayable method
34 // that was abstract in base class Employee
35
36
37
38

Fig. 12.14 | SalariedEmployee class that extends Employee. (Part 1 of 2.)

public override decimal GetPaymentAmount()
{

return WeeklySalary;
} // end method GetPaymentAmount

474 Chapter 12 OOP: Polymorphism, Interfaces and Operator Overloading

When a class implements an interface, the same is-a relationship provided by inheri-
tance applies. Class Employee implements IPayable, so we can say that an Employee is an
IPayable, as are any classes that extend Employee. As such, SalariedEmployee objects are
IPayable objects. An object of a class that implements an interface may be thought of as
an object of the interface type. Objects of any classes derived from the class that imple-
ments the interface can also be thought of as objects of the interface type. Thus, just as we
can assign the reference of a SalariedEmployee object to a base-class Employee variable,
we can assign the reference of a SalariedEmployee object to an interface IPayable vari-
able. Invoice implements IPayable, so an Invoice object also is an IPayable object, and
we can assign the reference of an Invoice object to an IPayable variable.

12.7.6 Using Interface IPayable to Process Invoices and Employees
Polymorphically
PayableInterfaceTest (Fig. 12.15) illustrates that interface IPayable can be used to pro-
cess a set of Invoices and Employees polymorphically in a single app. Line 10 declares
payableObjects and assigns it an array of four IPayable variables. Lines 13–14 assign the
references of Invoice objects to the first two elements of payableObjects. Lines 15–18
assign the references of SalariedEmployee objects to the remaining two elements of
payableObjects. These assignments are allowed because an Invoice is an IPayable, a
SalariedEmployee is an Employee and an Employee is an IPayable. Lines 24–29 use a
foreach statement to process each IPayable object in payableObjects polymorphically,
displaying the object as a string, along with the payment due. Lines 27–28 implicitly in-
vokes method ToString off an IPayable interface reference, even though ToString is not
declared in interface IPayable—all references (including those of interface types) refer to

39
40 // return string representation of SalariedEmployee object
41 public override string ToString()
42 {
43 return string.Format("salaried employee: {0}\n{1}: {2:C}",
44 base.ToString(), "weekly salary", WeeklySalary);
45 } // end method ToString
46 } // end class SalariedEmployee

Software Engineering Observation 12.4
Inheritance and interfaces are similar in their implementation of the is-a relationship. An
object of a class that implements an interface may be thought of as an object of that
interface type. An object of any derived classes of a class that implements an interface also
can be thought of as an object of the interface type.

Software Engineering Observation 12.5
The is-a relationship that exists between base classes and derived classes, and between
interfaces and the classes that implement them, holds when passing an object to a method.
When a method parameter receives an argument of a base class or interface type, the
method polymorphically processes the object received as an argument.

Fig. 12.14 | SalariedEmployee class that extends Employee. (Part 2 of 2.)

12.7 Case Study: Creating and Using Interfaces 475

objects that extend object and therefore have a ToString method. Line 28 invokes IPay-
able method GetPaymentAmount to obtain the payment amount for each object in pay-

ableObjects, regardless of the actual type of the object. The output reveals that the
method calls in lines 27–28 invoke the appropriate class’s implementation of methods To-
String and GetPaymentAmount. For instance, when currentPayable refers to an Invoice
during the first iteration of the foreach loop, class Invoice’s ToString and GetPaymen-

tAmount methods execute.

Software Engineering Observation 12.6
All methods of class object can be called by using a reference of an interface type—the
reference refers to an object, and all objects inherit the methods of class object.

1 // Fig. 12.15: PayableInterfaceTest.cs
2 // Tests interface IPayable with disparate classes.
3 using System;
4
5 public class PayableInterfaceTest
6 {
7 public static void Main(string[] args)
8 {
9 // create four-element IPayable array

10 IPayable[] payableObjects = new IPayable[4];
11
12 // populate array with objects that implement IPayable
13 payableObjects[0] = new Invoice("01234", "seat", 2, 375.00M);
14 payableObjects[1] = new Invoice("56789", "tire", 4, 79.95M);
15 payableObjects[2] = new SalariedEmployee("John", "Smith",
16 "111-11-1111", 800.00M);
17 payableObjects[3] = new SalariedEmployee("Lisa", "Barnes",
18 "888-88-8888", 1200.00M);
19
20 Console.WriteLine(
21 "Invoices and Employees processed polymorphically:\n");
22
23 // generically process each element in array payableObjects
24 foreach (var currentPayable in payableObjects)
25 {
26 // output currentPayable and its appropriate payment amount
27 Console.WriteLine("{0}\npayment due: {1:C}\n",
28 currentPayable, currentPayable.GetPaymentAmount());
29 } // end foreach
30 } // end Main
31 } // end class PayableInterfaceTest

Invoices and Employees processed polymorphically:

invoice:
part number: 01234 (seat)
quantity: 2
price per item: $375.00
payment due: $750.00

Fig. 12.15 | Tests interface IPayable with disparate classes. (Part 1 of 2.)

476 Chapter 12 OOP: Polymorphism, Interfaces and Operator Overloading

12.7.7 Common Interfaces of the .NET Framework Class Library
In this section, we overview several common interfaces defined in the .NET Framework
Class Library. These interfaces are implemented and used in the same manner as those you
create (e.g., interface IPayable in Section 12.7.2). The Framework Class Library’s inter-
faces enable you to extend many important aspects of C# with your own classes.
Figure 12.16 overviews several commonly used Framework Class Library interfaces.

invoice:
part number: 56789 (tire)
quantity: 4
price per item: $79.95
payment due: $319.80

salaried employee: John Smith
social security number: 111-11-1111
weekly salary: $800.00
payment due: $800.00

salaried employee: Lisa Barnes
social security number: 888-88-8888
weekly salary: $1,200.00
payment due: $1,200.00

Interface Description

IComparable As you learned in Chapter 3, C# contains several comparison operators (e.g., <,
<=, >, >=, ==, !=) that allow you to compare simple-type values. In Section 12.8
you’ll see that these operators can be defined to compare two objects. Interface
IComparable can also be used to allow objects of a class that implements the
interface to be compared to one another. The interface contains one method,
CompareTo, that compares the object that calls the method to the object passed
as an argument to the method. Classes must implement CompareTo to return a
value indicating whether the object on which it’s invoked is less than (negative
integer return value), equal to (0 return value) or greater than (positive integer
return value) the object passed as an argument, using any criteria you specify.
For example, if class Employee implements IComparable, its CompareTo method
could compare Employee objects by their earnings amounts. Interface ICompara-
ble is commonly used for ordering objects in a collection such as an array. We
use IComparable in Chapter 20, Generics, and Chapter 21, Collections.

IComponent Implemented by any class that represents a component, including Graphical
User Interface (GUI) controls (such as buttons or labels). Interface IComponent
defines the behaviors that components must implement. We discuss IComponent
and many GUI controls that implement this interface in Chapter 14, Graphical
User Interfaces with Windows Forms: Part 1, and Chapter 15, Graphical User
Interfaces with Windows Forms: Part 2.

Fig. 12.16 | Common interfaces of the .NET Framework Class Library. (Part 1 of 2.)

Fig. 12.15 | Tests interface IPayable with disparate classes. (Part 2 of 2.)

12.8 Operator Overloading 477

12.8 Operator Overloading
Object manipulations are accomplished by sending messages (in the form of method calls)
to the objects. This method-call notation is cumbersome for certain kinds of classes, espe-
cially mathematical classes. For these classes, it would be convenient to use C#’s rich set of
built-in operators to specify object manipulations. In this section, we show how to enable
these operators to work with class objects—via a process called operator overloading.

You can overload most operators to make them sensitive to the context in which they’re
used. Some operators are overloaded more frequently than others, especially the various
arithmetic operators, such as + and -, where operator notation often is more natural.
Figures 12.17 and 12.18 provide an example of using operator overloading with a Complex-
Number class. For a list of overloadable operators, see msdn.microsoft.com/en-us/

library/8edha89s.aspx.

Class ComplexNumber
Class ComplexNumber (Fig. 12.17) overloads the plus (+), minus (-) and multiplication (*)
operators to enable programs to add, subtract and multiply instances of class ComplexNum-
ber using common mathematical notation. Lines 9 and 12 define properties for the Real
and Imaginary components of the complex number.

IDisposable Implemented by classes that must provide an explicit mechanism for releasing
resources. Some resources can be used by only one program at a time. In addi-
tion, some resources, such as files on disk, are unmanaged resources that, unlike
memory, cannot be released by the garbage collector. Classes that implement
interface IDisposable provide a Dispose method that can be called to explicitly
release resources. We discuss IDisposable briefly in Chapter 13, Exception
Handling: A Deeper Look. You can learn more about this interface at
msdn.microsoft.com/en-us/library/system.idisposable.aspx. The MSDN
article Implementing a Dispose Method at msdn.microsoft.com/en-us/library/
fs2xkftw.aspx discusses the proper implementation of this interface in your
classes.

IEnumerator Used for iterating through the elements of a collection (such as an array) one ele-
ment at a time. Interface IEnumerator contains method MoveNext to move to
the next element in a collection, method Reset to move to the position before
the first element and property Current to return the object at the current loca-
tion. We use IEnumerator in Chapter 21.

1 // Fig. 12.17: ComplexNumber.cs
2 // Class that overloads operators for adding, subtracting
3 // and multiplying complex numbers.
4 using System;

Fig. 12.17 | Class that overloads operators for adding, subtracting and multiplying complex
numbers. (Part 1 of 2.)

Interface Description

Fig. 12.16 | Common interfaces of the .NET Framework Class Library. (Part 2 of 2.)

478 Chapter 12 OOP: Polymorphism, Interfaces and Operator Overloading

Lines 29–34 overload the plus operator (+) to perform addition of ComplexNumbers.
Keyword operator, followed by an operator symbol, indicates that a method overloads the

5
6 public class ComplexNumber
7 {
8 // read-only property that gets the real component
9 public double Real { get; private set; }

10
11 // read-only property that gets the imaginary component
12 public double Imaginary { get; private set; }
13
14 // constructor
15 public ComplexNumber(double a, double b)
16 {
17 Real = a;
18 Imaginary = b;
19 } // end constructor
20
21 // return string representation of ComplexNumber
22 public override string ToString()
23 {
24 return string.Format("({0} {1} {2}i)",
25 Real, (Imaginary < 0 ? "-" : "+"), Math.Abs(Imaginary));
26 } // end method ToString
27
28 // overload the addition operator
29
30
31
32
33
34
35
36 // overload the subtraction operator
37
38
39
40
41
42
43
44 // overload the multiplication operator
45
46
47
48
49
50
51
52 } // end class ComplexNumber

Fig. 12.17 | Class that overloads operators for adding, subtracting and multiplying complex
numbers. (Part 2 of 2.)

public static ComplexNumber operator+ (
ComplexNumber x, ComplexNumber y)

{
return new ComplexNumber(x.Real + y.Real,

x.Imaginary + y.Imaginary);
} // end operator +

public static ComplexNumber operator- (
ComplexNumber x, ComplexNumber y)

{
return new ComplexNumber(x.Real - y.Real,

x.Imaginary - y.Imaginary);
} // end operator -

public static ComplexNumber operator* (
ComplexNumber x, ComplexNumber y)

{
return new ComplexNumber(

x.Real * y.Real - x.Imaginary * y.Imaginary,
x.Real * y.Imaginary + y.Real * x.Imaginary);

} // end operator *

12.8 Operator Overloading 479

specified operator. Methods that overload binary operators must take two arguments. The
first argument is the left operand, and the second argument is the right operand. Class Com-
plexNumber’s overloaded plus operator takes two ComplexNumber references as arguments
and returns a ComplexNumber that represents the sum of the arguments. This method is
marked public and static, which is required for overloaded operators. The body of the
method (lines 32–33) performs the addition and returns the result as a new Complex-

Number. Notice that we do not modify the contents of either of the original operands
passed as arguments x and y. This matches our intuitive sense of how this operator should
behave—adding two numbers does not modify either of the original numbers. Lines 37–
51 provide similar overloaded operators for subtracting and multiplying ComplexNumbers.

Class ComplexNumber
Class ComplexTest (Fig. 12.18) demonstrates the overloaded ComplexNumber operators +,
- and *. Lines 14–27 prompt the user to enter two complex numbers, then use this input
to create two ComplexNumbers and assign them to variables x and y.

Software Engineering Observation 12.7
Overload operators to perform the same function or similar functions on class objects as
the operators perform on objects of simple types. Avoid nonintuitive use of operators.

Software Engineering Observation 12.8
At least one parameter of an overloaded operator method must be a reference to an object
of the class in which the operator is overloaded. This prevents you from changing how
operators work on simple types.

1 // Fig. 12.18: ComplexTest.cs
2 // Overloading operators for complex numbers.
3 using System;
4
5 public class ComplexTest
6 {
7 public static void Main(string[] args)
8 {
9 // declare two variables to store complex numbers

10 // to be entered by user
11 ComplexNumber x, y;
12
13 // prompt the user to enter the first complex number
14 Console.Write("Enter the real part of complex number x: ");
15 double realPart = Convert.ToDouble(Console.ReadLine());
16 Console.Write(
17 "Enter the imaginary part of complex number x: ");
18 double imaginaryPart = Convert.ToDouble(Console.ReadLine());
19 x = new ComplexNumber(realPart, imaginaryPart);
20
21 // prompt the user to enter the second complex number
22 Console.Write("\nEnter the real part of complex number y: ");
23 realPart = Convert.ToDouble(Console.ReadLine());

Fig. 12.18 | Overloading operators for complex numbers. (Part 1 of 2.)

480 Chapter 12 OOP: Polymorphism, Interfaces and Operator Overloading

Lines 31–33 add, subtract and multiply x and y with the overloaded operators, then
output the results. In line 31, we perform the addition by using the plus operator with
ComplexNumber operands x and y. Without operator overloading, the expression x + y
wouldn’t make sense—the compiler wouldn’t know how two objects of class Complex-
Number should be added. This expression makes sense here because we’ve defined the plus
operator for two ComplexNumbers in lines 29–34 of Fig. 12.17. When the two Complex-
Numbers are “added” in line 31 of Fig. 12.18, this invokes the operator+ declaration,
passing the left operand as the first argument and the right operand as the second argu-
ment. When we use the subtraction and multiplication operators in lines 32–33, their
respective overloaded operator declarations are invoked similarly.

Each calculation’s result is a reference to a new ComplexNumber object. When this new
object is passed to the Console class’s WriteLine method, its ToString method
(Fig. 12.17, lines 22–26) is implicitly invoked. Line 31 of Fig. 12.18 could be rewritten
to explicitly invoke the ToString method of the object created by the overloaded plus
operator, as in:

12.9 Wrap-Up
This chapter introduced polymorphism—the ability to process objects that share the same
base class in a class hierarchy as if they were all objects of the base class. The chapter dis-
cussed how polymorphism makes systems extensible and maintainable, then demonstrated
how to use overridden methods to effect polymorphic behavior. We introduced the notion
of an abstract class, which allows you to provide an appropriate base class from which other

24 Console.Write(
25 "Enter the imaginary part of complex number y: ");
26 imaginaryPart = Convert.ToDouble(Console.ReadLine());
27 y = new ComplexNumber(realPart, imaginaryPart);
28
29 // display the results of calculations with x and y
30 Console.WriteLine();
31
32
33
34 } // end method Main
35 } // end class ComplexTest

Enter the real part of complex number x: 2
Enter the imaginary part of complex number x: 4

Enter the real part of complex number y: 4
Enter the imaginary part of complex number y: -2

(2 + 4i) + (4 - 2i) = (6 + 2i)
(2 + 4i) - (4 - 2i) = (-2 + 6i)
(2 + 4i) * (4 - 2i) = (16 + 12i)

Console.WriteLine("{0} + {1} = {2}", x, y, (x + y).ToString());

Fig. 12.18 | Overloading operators for complex numbers. (Part 2 of 2.)

Console.WriteLine("{0} + {1} = {2}", x, y, x + y);
Console.WriteLine("{0} - {1} = {2}", x, y, x - y);
Console.WriteLine("{0} * {1} = {2}", x, y, x * y);

12.9 Summary 481

classes can inherit. You learned that an abstract class can declare abstract methods that each
derived class must implement to become a concrete class, and that an app can use variables
of an abstract class to invoke derived class implementations of abstract methods polymor-
phically. You also learned how to determine an object’s type at execution time. We showed
how to create sealed methods and classes. The chapter discussed declaring and imple-
menting an interface as another way to achieve polymorphic behavior, often among ob-
jects of different classes. Finally, you learned how to define the behavior of the built-in
operators on objects of your own classes with operator overloading.

You should now be familiar with classes, objects, encapsulation, inheritance, inter-
faces and polymorphism—the most essential aspects of object-oriented programming.
Next, we take a deeper look at using exception handling to deal with runtime errors.

Summary

Section 12.1 Introduction
• With polymorphism, we can design and implement systems that are easily extensible—new class-

es can be added with little or no modification to the general portions of the app.

Section 12.2 Polymorphism Examples
• With polymorphism, the same method name and signature can be used to cause different actions

to occur, depending on the type of object on which the method is invoked.

• Polymorphism promotes extensibility: Software that invokes polymorphic behavior is indepen-
dent of the object types to which messages are sent. New object types that can respond to existing
method calls can be incorporated in a system without requiring modification of the base system.

Section 12.3 Demonstrating Polymorphic Behavior
• Invoking a method on a derived-class object via a base-class reference invokes the derived-class

functionality—the type of the referenced object determines which method is called.

• A base-class reference can be used to invoke only the methods declared in the base class. If an app
needs to perform a derived-class-specific operation on a derived-class object referenced by a base-
class variable, the app must first downcast the base-class reference to a derived-class reference.

Section 12.4 Abstract Classes and Methods
• Abstract base classes are incomplete classes for which you never intend to instantiate objects.

• The purpose of an abstract class is primarily to provide an appropriate base class from which
other classes can inherit, and thus share a common design.

• Classes that can be used to instantiate objects are called concrete classes.

• You make a class abstract by declaring it with keyword abstract.

• Each concrete derived class of an abstract base class must provide concrete implementations of
the base class’s abstract methods and properties.

• Failure to implement a base class’s abstract methods and properties in a derived class is a com-
pilation error unless the derived class is also declared abstract.

• Although we cannot instantiate objects of abstract base classes, we can use them to declare vari-
ables that can hold references to objects of any concrete class derived from those abstract classes.

482 Chapter 12 OOP: Polymorphism, Interfaces and Operator Overloading

Section 12.5 Case Study: Payroll System Using Polymorphism
• By declaring a method abstract, we indicate that each concrete derived class must provide an

appropriate implementation.

• All virtual method calls are resolved at execution time, based on the type of the object to which
the reference-type variable refers. This process is known as dynamic binding or late binding.

• The is operator determines whether the type of the object in the left operand matches the type
specified by the right operand and returns true if the two have an is-a relationship.

• The as operator performs a downcast that returns a reference to the appropriate object if the
downcast is successful and returns null if the downcast fails.

• Every object knows its own type and can access this information through method GetType, which
all classes inherit from class object.

• Assigning a base-class reference to a derived-class variable is not allowed without an explicit cast
or without using the as operator. The is operator can be used to ensure that such a cast is per-
formed only if the object is a derived-class object.

Section 12.6 sealed Methods and Classes
• A method that’s declared sealed in a base class cannot be overridden in a derived class.

• A class that’s declared sealed cannot be a base class (i.e., a class cannot extend a sealed class).
All methods in a sealed class are implicitly sealed.

Section 12.7 Case Study: Creating and Using Interfaces
• Interfaces define and standardize the ways in which things such as people and systems can inter-

act with one another.

• An interface declaration begins with keyword interface and can contain only abstract meth-
ods, properties, indexers and events.

• All interface members are implicitly declared both public and abstract. They do not specify any
implementation details, such as concrete method declarations.

• Each interface can extend one or more other interfaces to create a more elaborate interface that
other classes can implement.

• To use an interface, a class must specify that it implements the interface by listing it after the
colon (:) in the class declaration.

• A class that implements an interface but doesn’t implement all the interface’s members must be
declared abstract and contain an abstract declaration of each unimplemented interface member.

• The UML expresses the relationship between a class and an interface through a realization. A
class is said to “realize,” or implement, an interface.

• To implement more than one interface, use a comma-separated list of interface names after the
colon (:) in the class declaration.

• Inheritance and interfaces are similar in their implementation of the is-a relationship. An object
of a class that implements an interface may be thought of as an object of that interface type.

• All methods of class object can be called by using a reference of an interface type—the reference
refers to an object, and all objects inherit the methods of class object.

Section 12.8 Operator Overloading
• Method-call notation is cumbersome for certain kinds of classes, especially mathematical classes.

Sometimes, it’s convenient to use C#’s built-in operators to specify object manipulations.

Terminology 483

• Keyword operator, followed by an operator, indicates that a method overloads the specified op-
erator. Methods that overload binary operators must be declared static and must take two ar-
guments. The first argument is the left operand, and the second is the right operand.

• Overload operators to perform the same function or similar functions on class objects as the op-
erators perform on objects of simple types. Avoid nonintuitive use of operators.

Terminology
abstract base class
abstract class
abstract keyword
abstract method
abstract operation
as operator
base-class reference
concrete class
derived-class reference
downcasting
dynamic binding
generalization in the UML
GetType method of class object
implement an interface
inlining code

interface declaration
interface inheritance
interface keyword
is-a relationship
is operator
late binding
operator keyword
operator overloading
polymorphism
realization
sealed class
sealed method
static binding
Type class

Self-Review Exercises
12.1 Fill in the blanks in each of the following statements:

a) If a class contains at least one abstract method, it must be declared as a(n) class.
b) Classes from which objects can be instantiated are called classes.
c) involves using a base-class variable to invoke methods on base-class and de-

rived-class objects, enabling you to “program in the general.”
d) Methods in a class that do not provide implementations must be declared using key-

word .
e) Casting a reference stored in a base-class variable to a derived-class type is called

.

12.2 State whether each of the statements that follows is true or false. If false, explain why.
a) It’s possible to treat base-class objects and derived-class objects similarly.
b) All methods in an abstract class must be declared as abstract methods.
c) Attempting to invoke a derived-class-only method through a base-class variable is an error.
d) If a base class declares an abstract method, a derived class must implement that method.
e) An object of a class that implements an interface may be thought of as an object of that

interface type.

Answers to Self-Review Exercises
12.1 a) abstract. b) concrete. c) Polymorphism. d) abstract. e) downcasting.

12.2 a) True. b) False. An abstract class can include methods with implementations and ab-

stract methods. c) True. d) False. Only a concrete derived class must implement the method.
e) True.

484 Chapter 12 OOP: Polymorphism, Interfaces and Operator Overloading

Exercises
12.3 (Programming in the General) How does polymorphism enable you to program “in the
general” rather than “in the specific”? Discuss the key advantages of programming “in the general.”

12.4 (Inheriting Interface vs. Inheriting Implementation) A derived class can inherit “interface”
or “implementation” from a base class. How do inheritance hierarchies designed for inheriting in-
terface differ from those designed for inheriting implementation?

12.5 (Abstract Methods) What are abstract methods? Describe the circumstances in which an ab-
stract method would be appropriate.

12.6 (Polymorphism and Extensibility) How does polymorphism promote extensibility?

12.7 (Assigning Base Class and Derived Class References) Discuss four ways in which you can
assign base-class and derived-class references to variables of base-class and derived-class types.

12.8 (Abstract Classes vs. Interfaces) Compare and contrast abstract classes and interfaces. Why
would you use an abstract class? Why would you use an interface?

12.9 (Payroll System Modification) Modify the payroll system of Figs. 12.4–12.9 to include pri-
vate instance variable birthDate in class Employee. Use class Date of Fig. 10.7 to represent an em-
ployee’s birthday. Assume that payroll is processed once per month. Create an array of Employee
variables to store references to the various employee objects. In a loop, calculate the payroll for each
Employee (polymorphically), and add a $100.00 bonus to the person’s payroll amount if the current
month is the month in which the Employee’s birthday occurs.

12.10 (Shape Hierarchy) Implement the Shape hierarchy of Fig. 11.3. Omit the Triangle and
Tetrahedron classes. Each TwoDimensionalShape should contain read-only abstract property Area
to calculate the area of the two-dimensional shape. Each ThreeDimensionalShape should have read-
only abstract properties Area and Volume to calculate the surface area and volume, respectively, of
the three-dimensional shape. Create an app that uses an array of Shape references to objects of each
concrete class in the hierarchy. Display a text description of the object to which each array element
refers. Also, in the loop that processes all the shapes in the array, determine whether each shape is a
TwoDimensionalShape or a ThreeDimensionalShape. If a shape is a TwoDimensionalShape, display its
area. If a shape is a ThreeDimensionalShape, display its area and volume.

12.11 (Payroll System Modification) Modify the payroll system of Figs. 12.4–12.9 to include an
additional Employee derived class, PieceWorker, that represents an employee whose pay is based on
the number of pieces of merchandise produced. Class PieceWorker should contain private instance
variables wage (to store the employee’s wage per piece) and pieces (to store the number of pieces
produced). Provide a concrete implementation of method Earnings in class PieceWorker that cal-
culates the employee’s earnings by multiplying the number of pieces produced by the wage per
piece. Create an array of Employee variables to store references to objects of each concrete class in
the new Employee hierarchy. Display each Employee’s string representation and earnings.

12.12 (Accounts Payable System Modification) Modify the accounts payable app of Figs. 12.11–
12.15 to include the complete functionality of the payroll app of Figs. 12.4–12.9. The app should
still process two Invoice objects, but now should process one object of each of the four Employee
derived classes. If the object currently being processed is a BasePlusCommissionEmployee, the app
should increase the BasePlusCommissionEmployee’s base salary by 10%. Finally, the app should out-
put the payment amount for each object. Complete the following steps to create the new app:

a) Modify classes HourlyEmployee (Fig. 12.6) and CommissionEmployee (Fig. 12.7) to
place them in the IPayable hierarchy as derived classes of the version of Employee
(Fig. 12.13) that implements IPayable. [Hint: Change the name of method Earnings

to GetPaymentAmount in each derived class.]

Making a Difference Exercise 485

b) Modify class BasePlusCommissionEmployee (Fig. 12.8) such that it extends the version
of class CommissionEmployee created in Part a.

c) Modify PayableInterfaceTest (Fig. 12.15) to polymorphically process two Invoices,
one SalariedEmployee, one HourlyEmployee, one CommissionEmployee and one Base-
PlusCommissionEmployee. First, output a string representation of each IPayable object.
Next, if an object is a BasePlusCommissionEmployee, increase its base salary by 10%. Fi-
nally, output the payment amount for each IPayable object.

12.13 (Polymorphic Banking Program Using Account Hierarchy) Develop a polymorphic bank-
ing app using the Account hierarchy created in Exercise 11.8. Create an array of Account references
to SavingsAccount and CheckingAccount objects. For each Account in the array, allow the user to
specify an amount of money to withdraw from the Account using method Debit and an amount of
money to deposit into the Account using method Credit. As you process each Account, determine
its type. If an Account is a SavingsAccount, calculate the amount of interest owed to the Account
using method CalculateInterest, then add the interest to the account balance using method
Credit. After processing an Account, display the updated account balance obtained by using base-
class property Balance.

Making a Difference Exercise
12.14 (CarbonFootprint Interface: Polymorphism) Using interfaces, as you learned in this chap-
ter, you can specify similar behaviors for possibly disparate classes. Governments and companies
worldwide are becoming increasingly concerned with carbon footprints (annual releases of carbon
dioxide into the atmosphere) from buildings burning various types of fuels for heat, vehicles burning
fuels for power, and the like. Many scientists blame these greenhouse gases for the phenomenon
called global warming. Create three small classes unrelated by inheritance—classes Building, Car
and Bicycle. Write an interface ICarbonFootprint with a GetCarbonFootprint method. Have each
of your classes implement that interface, so that its GetCarbonFootprint method calculates an ap-
propriate carbon footprint for that class (check out a few websites that explain how to calculate car-
bon footprints). Write an app that creates objects of each of the three classes, places references to
those objects in List<CarbonFootprint>, then iterates through the List, polymorphically invoking
each object’s GetCarbonFootprint method.

13 Exception Handling:
A Deeper Look

It is common sense to take a
method and try it. If it fails,
admit it frankly and try
another. But above all, try
something.
—Franklin Delano Roosevelt

O! throw away the
worser part of it,
And live the purer
with the other half.
—William Shakespeare

If they’re running and they don’t
look where they’re going I have
to come out from somewhere
and catch them.
—J. D. Salinger

O b j e c t i v e s
In this chapter you’ll learn:

� What exceptions are and
how they’re handled.

� When to use exception
handling.

� To use try blocks to delimit
code in which exceptions
might occur.

� To throw exceptions to
indicate a problem.

� To use catch blocks to
specify exception handlers.

� To use the finally block to
release resources.

� The .NET exception class
hierarchy.

� Exception properties.
� To create user-defined

exceptions.

13.1 Introduction 487

13.1 Introduction
In this chapter, we take a deeper look at exception handling. As you know from Section 8.4,
an exception indicates that a problem occurred during a program’s execution. The name “ex-
ception” comes from the fact that, although the problem can occur, it occurs infrequently.
As we showed in Section 8.4 and in Chapter 10, exception handling enables you to create
apps that can handle exceptions—in many cases allowing a program to continue executing
as if no problems were encountered. More severe problems may prevent a program from con-
tinuing normal execution, instead requiring the program to notify the user of the problem,
then terminate in a controlled manner. The features presented in this chapter enable you to
write clear, robust and more fault-tolerant programs (i.e., programs that are able to deal with
problems that may arise and continue executing). The style and details of C# exception han-
dling are based in part on the work of Andrew Koenig and Bjarne Stroustrup. “Best practic-
es” for exception handling in Visual C# are specified in the Visual Studio documentation.1

After reviewing exception-handling concepts and basic exception-handling techniques,
we overview .NET’s exception-handling class hierarchy. Programs typically request and
release resources (such as files on disk) during program execution. Often, the supply of these
resources is limited, or the resources can be used by only one program at a time. We dem-
onstrate a part of the exception-handling mechanism that enables a program to use a
resource, then guarantee that it will be released for use by other programs, even if an excep-
tion occurs. We show several properties of class System.Exception (the base class of all
exception classes) and discuss how you can create and use your own exception classes.

A Note About the Version of Visual Studio Used in This Chapter
In earlier versions of Visual Studio, all versions included a useful tool known as the Excep-
tion Assistant that we’ll discuss in Section 13.3.3. Unfortunately, this tool is not part of the
various Visual Studio Express 2012 editions (at the time of this writing). For this reason,
we used Visual Studio Professional 2012 in this chapter. If you have only Visual Studio
Express 2012 for Windows Desktop, the programs in this chapter will still execute. Start-

13.1 Introduction
13.2 Example: Divide by Zero without

Exception Handling
13.3 Example: Handling

DivideByZeroExceptions and
FormatExceptions

13.3.1 Enclosing Code in a try Block
13.3.2 Catching Exceptions
13.3.3 Uncaught Exceptions
13.3.4 Termination Model of Exception Handling
13.3.5 Flow of Control When Exceptions Occur

13.4 .NET Exception Hierarchy
13.4.1 Class SystemException
13.4.2 Determining Which Exceptions

a Method Throws
13.5 finally Block
13.6 The using Statement
13.7 Exception Properties
13.8 User-Defined Exception Classes
13.9 Wrap-Up

Summary | Terminology | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

1. “Best Practices for Handling Exceptions [C#],” .NET Framework Developer’s Guide, Visual Studio
.NET Online Help. Available at msdn.microsoft.com/en-us/library/seyhszts.aspx.

488 Chapter 13 Exception Handling: A Deeper Look

ing in the next section, we’ll discuss the differences between the IDE versions when you
run a program with DEBUG > Start Debugging and exceptions occur.

13.2 Example: Divide by Zero without Exception
Handling
Let’s revisit what happens when errors arise in a console app that does not use exception han-
dling. Figure 13.1 inputs two integers from the user, then divides the first integer by the sec-
ond using integer division to obtain an int result. In this example, an exception is thrown
(i.e., an exception occurs) when a method detects a problem and is unable to handle it.

1 // Fig. 13.1: DivideByZeroNoExceptionHandling.cs
2 // Integer division without exception handling.
3 using System;
4
5 class DivideByZeroNoExceptionHandling
6 {
7 static void Main()
8 {
9 // get numerator

10 Console.Write("Please enter an integer numerator: ");
11
12
13 // get denominator
14 Console.Write("Please enter an integer denominator: ");
15
16
17 // divide the two integers, then display the result
18
19 Console.WriteLine("\nResult: {0:D} / {1:D} = {2:D}",
20 numerator, denominator, result);
21 } // end Main
22 } // end class DivideByZeroNoExceptionHandling

Please enter an integer numerator: 100
Please enter an integer denominator: 7

Result: 100 / 7 = 14

Please enter an integer numerator: 100
Please enter an integer denominator: 0

at DivideByZeroNoExceptionHandling.Main()
in C:\examples\ch13\Fig13_01\DivideByZeroNoExceptionHandling\
DivideByZeroNoExceptionHandling\
DivideByZeroNoExceptionHandling.cs:

Fig. 13.1 | Integer division without exception handling. (Part 1 of 2.)

int numerator = Convert.ToInt32(Console.ReadLine());

int denominator = Convert.ToInt32(Console.ReadLine());

int result = numerator / denominator;

Unhandled Exception: System.DivideByZeroException:
Attempted to divide by zero.

line 18

13.2 Example: Divide by Zero without Exception Handling 489

Running the App
In most of our examples, an app appears to run the same with or without debugging. As
we discuss shortly, the example in Fig. 13.1 might cause exceptions, depending on the us-
er’s input. If you run this app in Visual Studio Express 2012 for Windows Desktop using
the DEBUG > Start Debugging menu option and an exception occurs, the IDE displays a
dialog like the one below:

You can click the Break button to pause the program at the line where the exception
occurred, allowing you to analyze the program’s state and debug the program. For this
example, we do not wish to debug the app; we simply want to see what happens when
errors arise. For this reason, we executed this app with DEBUG > Start Without Debugging
If an exception occurs during execution, a dialog appears indicating that the app “has
stopped working.” You can simply click Close the Program to terminate the app. An error
message describing the exception that occurred is displayed in the output window. We for-
matted the error messages in Fig. 13.1 for readability.

Successful Execution
The first sample execution shows a successful division.

Please enter an integer numerator: 100
Please enter an integer denominator: hello

at System.Number.StringToNumber(String str, NumberStyles options,
NumberBuffer& number, NumberFormatInfo info, Boolean parseDecimal)

at System.Number.ParseInt32(String s, NumberStyles style,
NumberFormatInfo info)

at DivideByZeroNoExceptionHandling.Main()
in C:\examples\ch13\Fig13_01\DivideByZeroNoExceptionHandling\
DivideByZeroNoExceptionHandling\
DivideByZeroNoExceptionHandling.cs:

Fig. 13.1 | Integer division without exception handling. (Part 2 of 2.)

Unhandled Exception: System.FormatException:
Input string was not in a correct format.

line 15

490 Chapter 13 Exception Handling: A Deeper Look

Attempting to Divide By Zero
In the second, the user enters 0 as the denominator. Several lines of information are dis-
played in response to the invalid input. This information—known as a stack trace—in-
cludes the exception class’s name (System.DivideByZeroException) in a message
indicating the problem that occurred and the path of execution that led to the exception,
method by method. Stack traces help you debug a program. The first line of the error mes-
sage specifies that a DivideByZeroException occurred. When a program divides an inte-
ger by 0, the CLR throws a DivideByZeroException (namespace System). The text after
the exception name, “Attempted to divide by zero,” indicates why this exception oc-
curred. Division by zero is not allowed in integer arithmetic.2

Each “at” line in a stack trace indicates a line of code in the particular method that was
executing when the exception occurred. The “at” line contains the namespace, class and
method in which the exception occurred (DivideByZeroNoExceptionHandling.Main), the
location and name of the file containing the code (C:\examples\ch13\Fig13_01\Divide-
ByZeroNoExceptionHandling\DivideByZeroNoExceptionHandling\DivideByZeroNoEx-

ceptionHandling.cs) and the line number (:line 18) where the exception occurred. In
this case, the stack trace indicates that the DivideByZeroException occurred when the pro-
gram was executing line 18 of method Main. The first “at” line in the stack trace indicates
the exception’s throw point—the initial point at which the exception occurred (i.e., line 18
in Main). This information makes it easy for you to see which method call caused the excep-
tion, and what method calls were made to get to that point in the program.

Attempting to Enter a Non-Integer Value for the Denominator
In the third sample execution, the user enters the string "hello" as the denominator. This
causes a FormatException, and another stack trace is displayed. Our earlier examples that
read numeric values from the user assumed that the user would input an integer value, but
a noninteger value could be entered. A FormatException (namespace System) occurs, for
example, when Convert method ToInt32 receives a string that does not represent a valid
integer. Starting from the last “at” line in the stack trace, we see that the exception was
detected in line 15 of method Main. The stack trace also shows the other methods that led
to the exception being thrown. To perform its task, Convert.ToInt32 calls method Num-
ber.ParseInt32, which in turn calls Number.StringToNumber. The throw point occurs in
Number.StringToNumber, as indicated by the first “at” line in the stack trace. Method
Convert.ToInt32 is not in the stack trace because the compiler optimized this call out of the
code—all it does forward its arguments to Number.ParseInt32.

Program Termination Due to an Unhandled Exception
In the sample executions in Fig. 13.1, the program terminates when an unhandled exception
occurs and a stack trace is displayed. This does not always happen—sometimes a program
may continue executing even though an exception has occurred and a stack trace has been
displayed. In such cases, the app may produce incorrect results. The next section demon-
strates how to handle exceptions to enable the program to run to normal completion.

2. Division by zero with floating-point values is allowed and results in the value infinity—represented
by either constant Double.PositiveInfinity or constant Double.NegativeInfinity, depending
on whether the numerator is positive or negative. These values are displayed as Infinity or -Infin-
ity. If both the numerator and denominator are zero, the result of the calculation is the constant
Double.NaN (“not a number”), which is returned when a calculation’s result is undefined.

13.3 Handling DivideByZeroExceptions and FormatExceptions 491

13.3 Example: Handling DivideByZeroExceptions
and FormatExceptions
Now, let’s consider a simple example of exception handling. The app in Fig. 13.2 uses ex-
ception handling to process any DivideByZeroExceptions and FormatExceptions that
might arise. The app reads two integers from the user (lines 18–21). Assuming that the
user provides integers as input and does not specify 0 as the denominator for the division,
line 25 performs the division and lines 28–29 display the result. However, if the user in-
puts a noninteger value or supplies 0 as the denominator, an exception occurs. This pro-
gram demonstrates how to catch and handle such exceptions—in this case, displaying an
error message and allowing the user to enter another set of values.

1 // Fig. 13.2: DivideByZeroExceptionHandling.cs
2 // FormatException and DivideByZeroException handlers.
3 using System;
4
5 class DivideByZeroExceptionHandling
6 {
7 static void Main(string[] args)
8 {
9 bool continueLoop = true; // determines whether to keep looping

10
11 do

12 {
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

Fig. 13.2 | FormatException and DivideByZeroException handlers. (Part 1 of 2.)

// retrieve user input and calculate quotient
try

{
// Convert.ToInt32 generates FormatException
// if argument cannot be converted to an integer
Console.Write("Enter an integer numerator: ");
int numerator = Convert.ToInt32(Console.ReadLine());
Console.Write("Enter an integer denominator: ");
int denominator = Convert.ToInt32(Console.ReadLine());

// division generates DivideByZeroException
// if denominator is 0
int result = numerator / denominator;

// display result
Console.WriteLine("\nResult: {0} / {1} = {2}",

numerator, denominator, result);
continueLoop = false;

} // end try
catch (FormatException formatException)
{

Console.WriteLine("\n" + formatException.Message);
Console.WriteLine(

"You must enter two integers. Please try again.\n");
} // end catch
catch (DivideByZeroException divideByZeroException)
{

492 Chapter 13 Exception Handling: A Deeper Look

Sample Outputs
Before we discuss the details of the program, let’s consider the sample outputs in Fig. 13.2.
The first sample output shows a successful calculation in which the user enters the numer-
ator 100 and the denominator 7. The result (14) is an int, because integer division always
yields an int result. The second sample output demonstrates the result of an attempt to
divide by zero. In integer arithmetic, the CLR tests for division by zero and generates a
DivideByZeroException if the denominator is zero. The program detects the exception
and displays an error message indicating the attempt to divide by zero. The last sample
output depicts the result of inputting a non-int value—in this case, the user enters "hel-
lo" as the denominator. The program attempts to convert the input strings to ints using
method Convert.ToInt32 (lines 19 and 21). If an argument cannot be converted to an
int, the method throws a FormatException. The program catches the exception and dis-
plays an error message indicating that the user must enter two ints.

40
41
42
43
44 } while (continueLoop); // end do...while
45 } // end Main
46 } // end class DivideByZeroExceptionHandling

Please enter an integer numerator: 100
Please enter an integer denominator: 7

Result: 100 / 7 = 14

Enter an integer numerator: 100
Enter an integer denominator: 0

Attempted to divide by zero.
Zero is an invalid denominator. Please try again.

Enter an integer numerator: 100
Enter an integer denominator: 7

Result: 100 / 7 = 14

Enter an integer numerator: 100
Enter an integer denominator: hello

Input string was not in a correct format.
You must enter two integers. Please try again.

Enter an integer numerator: 100
Enter an integer denominator: 7

Result: 100 / 7 = 14

Fig. 13.2 | FormatException and DivideByZeroException handlers. (Part 2 of 2.)

Console.WriteLine("\n" + divideByZeroException.Message);
Console.WriteLine(

"Zero is an invalid denominator. Please try again.\n");
} // end catch

13.3 Handling DivideByZeroExceptions and FormatExceptions 493

Another Way to Convert Strings to Integers
Another way to validate the input is to use the Int32.TryParse method, which converts
a string to an int value if possible. All of the numeric types have TryParse methods. The
method requires two arguments—one is the string to parse and the other is the variable
in which the converted value is to be stored. The method returns a bool value that’s true
only if the string was parsed successfully. If the string could not be converted, the value
0 is assigned to the second argument, which is passed by reference so its value can be mod-
ified in the calling method. Method TryParse can be used to validate input in code rather
than allowing the code to throw an exception—this technique is generally preferred.

13.3.1 Enclosing Code in a try Block
Now we consider the user interactions and flow of control that yield the results shown in
the sample output windows. Lines 14–31 define a try block enclosing the code that might
throw exceptions, as well as the code that’s skipped when an exception occurs. For exam-
ple, the program should not display a new result (lines 28–29) unless the calculation in
line 25 completes successfully.

The user inputs values that represent the numerator and denominator. The two state-
ments that read the ints (lines 19 and 21) call method Convert.ToInt32 to convert
strings to int values. This method throws a FormatException if it cannot convert its
string argument to an int. If lines 19 and 21 convert the values properly (i.e., no excep-
tions occur), then line 25 divides the numerator by the denominator and assigns the result
to variable result. If denominator is 0, line 25 causes the CLR to throw a DivideByZero-
Exception. If line 25 does not cause an exception to be thrown, then lines 28–29 display
the result of the division.

13.3.2 Catching Exceptions
Exception-handling code appears in a catch block. In general, when an exception occurs
in a try block, a corresponding catch block catches the exception and handles it. The try
block in this example is followed by two catch blocks—one that handles a Format-

Exception (lines 32–37) and one that handles a DivideByZeroException (lines 38–43).
A catch block specifies an exception parameter representing the exception that the catch
block can handle. The catch block can use the parameter’s identifier (which you choose)
to interact with a caught exception object. If there’s no need to use the exception object in
the catch block, the exception parameter’s identifier can be omitted. The type of the
catch’s parameter is the type of the exception that the catch block handles. Optionally,
you can include a catch block that does not specify an exception type—such a catch block
(known as a general catch clause) catches all exception types. At least one catch block
and/or a finally block (discussed in Section 13.5) must immediately follow a try block.

In Fig. 13.2, the first catch block catches FormatExceptions (thrown by method
Convert.ToInt32), and the second catch block catches DivideByZeroExceptions
(thrown by the CLR). If an exception occurs, the program executes only the first matching
catch block. Both exception handlers in this example display an error-message dialog.
After either catch block terminates, program control continues with the first statement
after the last catch block (the end of the method, in this example). We’ll soon take a
deeper look at how this flow of control works in exception handling.

494 Chapter 13 Exception Handling: A Deeper Look

13.3.3 Uncaught Exceptions
An uncaught exception (or unhandled exception) is an exception for which there’s no
matching catch block. You saw the results of uncaught exceptions in the second and third
outputs of Fig. 13.1. Recall that when exceptions occur in that example, the app termi-
nates early (after displaying the exception’s stack trace). The result of an uncaught excep-
tion depends on how you execute the program—Fig. 13.1 demonstrated the results of an
uncaught exception when an app is executed using DEBUG > Start Without Debugging. If
you run the app from a non-Express version of Visual Studio by using DEBUG > Start De-
bugging and the runtime environment detects an uncaught exception, the app pauses, and
the Exception Assistant window appears containing:

• a line pointing from the Exception Assistant to the line of code that caused the
exception

• the type of the exception

• Troubleshooting tips with links to helpful information on what might have caused
the exception and how to handle it

• links to view or copy the complete exception details

Figure 13.3 shows the Exception Assistant that’s displayed if the user attempts to divide
by zero in the app of Fig. 13.1.

Fig. 13.3 | Exception Assistant.

Throw point Exception Assistant

13.3 Handling DivideByZeroExceptions and FormatExceptions 495

13.3.4 Termination Model of Exception Handling
Recall that the point in the program at which an exception occurs is called the throw point—
this is an important location for debugging purposes (as we demonstrate in Section 13.7). If
an exception occurs in a try block (such as a FormatException being thrown as a result of
the code in lines 19 and 21 in Fig. 13.2), the try block terminates immediately, and program
control transfers to the first of the following catch blocks in which the exception parameter’s
type matches that of the thrown exception. In Fig. 13.2, the first catch block catches For-
matExceptions (which occur if input of an invalid type is entered); the second catch block
catches DivideByZeroExceptions (which occur if an attempt is made to divide by zero). Af-
ter the exception is handled, program control does not return to the throw point because the
try block has exited (which also causes any of its local variables to go out of scope). Rather,
control resumes after the last catch block. This is known as the termination model of ex-
ception handling. [Note: Some languages use the resumption model of exception handling,
in which, after an exception is handled, control resumes just after the throw point.]

If no exceptions occur in the try block, the program of Fig. 13.2 successfully com-
pletes the try block by ignoring the catch blocks in lines 32–37 and 38–43, and passing
line 43. Then the program executes the first statement following the try and catch blocks.
In this example, the program reaches the end of the do…while loop (line 44), so the
method terminates, and the program awaits the next user interaction.

The try block and its corresponding catch and finally blocks together form a try

statement. It’s important not to confuse the terms “try block” and “try statement”—the
term “try block” refers to the block of code following the keyword try (but before any
catch or finally blocks), while the term “try statement” includes all the code from the
opening try keyword to the end of the last catch or finally block. This includes the try
block, as well as any associated catch blocks and finally block.

When a try block terminates, local variables defined in the block go out of scope. If
a try block terminates due to an exception, the CLR searches for the first catch block that
can process the type of exception that occurred. The CLR locates the matching catch by
comparing the type of the thrown exception to each catch’s parameter type. A match
occurs if the types are identical or if the thrown exception’s type is a derived class of the
catch’s parameter type. Once an exception is matched to a catch block, the code in that
block executes and the other catch blocks in the try statement are ignored.

13.3.5 Flow of Control When Exceptions Occur
In the third sample output of Fig. 13.2, the user inputs hello as the denominator. When
line 21 executes, Convert.ToInt32 cannot convert this string to an int, so the method
throws a FormatException object to indicate that the method was unable to convert the
string to an int. When the exception occurs, the try block exits (terminates). Next, the
CLR attempts to locate a matching catch block. A match occurs with the catch block in
line 32, so the exception handler displays the exception’s Message property (to retrieve the
error message associated with the exception) and the program ignores all other exception
handlers following the try block. Program control then continues with line 44.

Common Programming Error 13.1
Specifying a comma-separated list of parameters in a catch block is a syntax error. A
catch block can have at most one parameter.

496 Chapter 13 Exception Handling: A Deeper Look

In the second sample output of Fig. 13.2, the user inputs 0 as the denominator. When
the division in line 25 executes, a DivideByZeroException occurs. Once again, the try
block terminates, and the program attempts to locate a matching catch block. In this case,
the first catch block does not match—the exception type in the catch-handler declaration
is not the same as the type of the thrown exception, and FormatException is not a base
class of DivideByZeroException. Therefore the program continues to search for a
matching catch block, which it finds in line 38. Line 40 displays the exception’s Message
property. Again, program control then continues with line 44.

13.4 .NET Exception Hierarchy
In C#, the exception-handling mechanism allows only objects of class Exception

(namespace System) and its derived classes to be thrown and caught. Note, however, that
C# programs may interact with software components written in other .NET languages
(such as C++) that do not restrict exception types. The general catch clause can be used
to catch such exceptions.

This section overviews several of the .NET Framework’s exception classes and focuses
exclusively on exceptions that derive from class Exception. In addition, we discuss how to
determine whether a particular method throws exceptions.

13.4.1 Class SystemException
Class Exception (namespace System) is the base class of .NET’s exception class hierarchy.
An important derived class is SystemException. The CLR generates SystemExceptions.
Many of these can be avoided if apps are coded properly. For example, if a program at-
tempts to access an out-of-range array index, the CLR throws an exception of type In-

dexOutOfRangeException (a derived class of SystemException). Similarly, an exception
occurs when a program uses a reference-type variable to call a method when the reference
has a value of null. This causes a NullReferenceException (another derived class of Sys-
temException). You saw earlier in this chapter that a DivideByZeroException occurs in
integer division when a program attempts to divide by zero.

Other exceptions thrown by the CLR include OutOfMemoryException, StackOver-
flowException and ExecutionEngineException, which are thrown when something goes
wrong that causes the CLR to become unstable. Sometimes such exceptions cannot even
be caught. It’s best to simply log such exceptions (using a tool such as Apache’s log4net—
logging.apache.org/log4net/), then terminate your app.

A benefit of the exception class hierarchy is that a catch block can catch exceptions
of a particular type or—because of the is-a relationship of inheritance—can use a base-class
type to catch exceptions in a hierarchy of related exception types. For example,
Section 13.3.2 discussed the catch block with no parameter, which catches exceptions of
all types (including those that are not derived from Exception). A catch block that spec-
ifies a parameter of type Exception can catch all exceptions that derive from Exception,
because Exception is the base class of all exception classes. The advantage of this approach
is that the exception handler can access the caught exception’s information via the param-
eter in the catch. We’ll say more about accessing exception information in Section 13.7.

Using inheritance with exceptions enables a catch block to catch related exceptions
using a concise notation. A set of exception handlers could catch each derived-class excep-

13.5 finally Block 497

tion type individually, but catching the base-class exception type is more concise. How-
ever, this technique makes sense only if the handling behavior is the same for a base class
and all derived classes. Otherwise, catch each derived-class exception individually.

13.4.2 Determining Which Exceptions a Method Throws
How do we determine that an exception might occur in a program? For methods con-
tained in the .NET Framework classes, read the detailed descriptions of the methods in
the online documentation. If a method throws an exception, its description contains a sec-
tion called Exceptions that specifies the types of exceptions the method throws and briefly
describes what causes them. For an example, search for “Convert.ToInt32method” in the
Visual Studio online documentation. The Exceptions section of this method’s web page
indicates that method Convert.ToInt32 throws two exception types—FormatException

and OverflowException—and describes the reason why each might occur. [Note: You can
also find this information in the Object Browser described in Section 10.12.]

It’s more difficult to determine when the CLR throws exceptions. Such information
appears in the C# Language Specification (available from bit.ly/CSharp4Spec). This doc-
ument defines C#’s syntax and specifies cases in which exceptions are thrown.

13.5 finally Block
Programs frequently request and release resources dynamically (i.e., at execution time).
For example, a program that reads a file from disk first makes a file-open request (as we’ll
see in Chapter 17, Files and Streams). If that request succeeds, the program reads the con-
tents of the file. Operating systems typically prevent more than one program from manip-
ulating a file at once. Therefore, when a program finishes processing a file, the program
should close the file (i.e., release the resource) so other programs can use it. If the file is not
closed, a resource leak occurs. In such a case, the file resource is not available to other pro-
grams.

In programming languages such as C and C++, in which the programmer is respon-
sible for dynamic memory management, the most common type of resource leak is a
memory leak. A memory leak occurs when a program allocates memory (as C# program-
mers do via keyword new), but does not deallocate the memory when it’s no longer needed.
Normally, this is not an issue in C#, because the CLR performs garbage collection of
memory that’s no longer needed by an executing program (Section 10.8). However, other
kinds of resource leaks (such as unclosed files) can occur.

Common Programming Error 13.2
The compiler issues an error if a catch block that catches a base-class exception is placed
before a catch block for any of that class’s derived-class types. In this case, the base-class
catch block would catch all base-class and derived-class exceptions, so the derived-class ex-
ception handler would never execute.

Software Engineering Observation 13.1
If a method throws exceptions, statements that invoke the method directly or indirectly
should be placed in try blocks, and those exceptions should be caught and handled.

498 Chapter 13 Exception Handling: A Deeper Look

Moving Resource-Release Code to a finally Block
Exceptions often occur when an app processes resources that require explicit release. For
example, a program that processes a file might receive IOExceptions during the process-
ing. For this reason, file-processing code normally appears in a try block. Regardless of
whether a program experiences exceptions while processing a file, the program should
close the file when it’s no longer needed. Suppose a program places all resource-request
and resource-release code in a try block. If no exceptions occur, the try block executes
normally and releases the resources after using them. However, if an exception occurs, the
try block may exit before the resource-release code can execute. We could duplicate all the
resource-release code in each of the catch blocks, but this would make the code more dif-
ficult to modify and maintain. We could also place the resource-release code after the try
statement; however, if the try block terminated due to a return statement or an exception
occurred, code following the try statement would never execute.

To address these problems, C#’s exception-handling mechanism provides the
finally block, which is guaranteed to execute regardless of whether the try block executes
successfully or an exception occurs. This makes the finally block an ideal location in
which to place resource-release code for resources that are acquired and manipulated in the
corresponding try block. If the try block executes successfully, the finally block exe-
cutes immediately after the try block terminates. If an exception occurs in the try block,
the finally block executes immediately after a catch block completes. If the exception is
not caught by a catch block associated with the try block, or if a catch block associated
with the try block throws an exception itself, the finally block executes before the excep-
tion is processed by the next enclosing try block, which could be in the calling method.
By placing the resource-release code in a finally block, we ensure that even if the program
terminates due to an uncaught exception, the resource will be deallocated. Local variables
in a try block cannot be accessed in the corresponding finally block. For this reason,
variables that must be accessed in both a try block, and its corresponding finally block
should be declared before the try block.

If one or more catch blocks follow a try block, the finally block is optional. How-
ever, if no catch blocks follow a try block, a finally block must appear immediately after
the try block. If any catch blocks follow a try block, the finally block (if there is one)

Error-Prevention Tip 13.1
The CLR does not completely eliminate memory leaks. The CLR will not garbage collect
an object until the program contains no more references to that object, and even then there
may be a delay until the memory is required. Thus, memory leaks can occur if you inad-
vertently keep references to unwanted objects.

Error-Prevention Tip 13.2
A finally block typically contains code to release resources acquired in the corresponding
try block, which makes the finally block an effective mechanism for eliminating re-
source leaks.

Performance Tip 13.1
As a rule, resources should be released as soon as they’re no longer needed in a program.
This makes them available for reuse promptly.

13.5 finally Block 499

appears after the last catch block. Only whitespace and comments can separate the blocks
in a try statement.

Demonstrating the finally Block
The app in Fig. 13.4 demonstrates that the finally block always executes, regardless of
whether an exception occurs in the corresponding try block. The app consists of method
Main (lines 8–47) and four other methods that Main invokes to demonstrate finally.
These methods are DoesNotThrowException (lines 50–67), ThrowExceptionWithCatch
(lines 70–89), ThrowExceptionWithoutCatch (lines 92–108) and ThrowException-

CatchRethrow (lines 111–136).

1 // Fig. 13.4: UsingExceptions.cs
2 // Using finally blocks.
3 // finally blocks always execute, even when no exception occurs.
4 using System;
5
6 class UsingExceptions
7 {
8 static void Main()
9 {

10 // Case 1: No exceptions occur in called method
11 Console.WriteLine("Calling DoesNotThrowException");
12
13
14 // Case 2: Exception occurs and is caught in called method
15 Console.WriteLine("\nCalling ThrowExceptionWithCatch");
16
17
18 // Case 3: Exception occurs, but is not caught in called method
19 // because there is no catch block.
20 Console.WriteLine("\nCalling ThrowExceptionWithoutCatch");
21
22 // call ThrowExceptionWithoutCatch
23 try

24 {
25
26 } // end try
27 catch

28 {
29 Console.WriteLine("Caught exception from " +
30 "ThrowExceptionWithoutCatch in Main");
31 } // end catch
32
33 // Case 4: Exception occurs and is caught in called method,
34 // then rethrown to caller.
35 Console.WriteLine("\nCalling ThrowExceptionCatchRethrow");
36
37 // call ThrowExceptionCatchRethrow
38 try

39 {

Fig. 13.4 | finally blocks always execute, even when no exception occurs. (Part 1 of 4.)

DoesNotThrowException();

ThrowExceptionWithCatch();

ThrowExceptionWithoutCatch();

500 Chapter 13 Exception Handling: A Deeper Look

40
41 } // end try
42 catch

43 {
44 Console.WriteLine("Caught exception from " +
45 "ThrowExceptionCatchRethrow in Main");
46 } // end catch
47 } // end method Main
48
49 // no exceptions thrown
50 static void DoesNotThrowException()
51 {
52 // try block does not throw any exceptions
53 try

54 {
55 Console.WriteLine("In DoesNotThrowException");
56 } // end try
57 catch

58 {
59 Console.WriteLine("This catch never executes");
60 } // end catch
61
62
63
64
65
66 Console.WriteLine("End of DoesNotThrowException");
67 } // end method DoesNotThrowException
68
69 // throws exception and catches it locally
70 static void ThrowExceptionWithCatch()
71 {
72 // try block throws exception
73 try

74 {
75 Console.WriteLine("In ThrowExceptionWithCatch");
76
77 } // end try
78 catch (Exception exceptionParameter)
79 {
80 Console.WriteLine("Message: " + exceptionParameter.Message);
81 } // end catch
82
83
84
85
86
87
88 Console.WriteLine("End of ThrowExceptionWithCatch");
89 } // end method ThrowExceptionWithCatch
90

Fig. 13.4 | finally blocks always execute, even when no exception occurs. (Part 2 of 4.)

ThrowExceptionCatchRethrow();

finally

{
Console.WriteLine("finally executed in DoesNotThrowException");

} // end finally

throw new Exception("Exception in ThrowExceptionWithCatch");

finally

{
Console.WriteLine(

"finally executed in ThrowExceptionWithCatch");
} // end finally

13.5 finally Block 501

91 // throws exception and does not catch it locally
92 static void ThrowExceptionWithoutCatch()
93 {
94 // throw exception, but do not catch it
95 try

96 {
97 Console.WriteLine("In ThrowExceptionWithoutCatch");
98
99 } // end try
100
101
102
103
104
105
106 // unreachable code; logic error
107 Console.WriteLine("End of ThrowExceptionWithoutCatch");
108 } // end method ThrowExceptionWithoutCatch
109
110 // throws exception, catches it and rethrows it
111 static void ThrowExceptionCatchRethrow()
112 {
113 // try block throws exception
114 try

115 {
116 Console.WriteLine("In ThrowExceptionCatchRethrow");
117
118 } // end try
119 catch (Exception exceptionParameter)
120 {
121 Console.WriteLine("Message: " + exceptionParameter.Message);
122
123
124
125
126 // unreachable code; logic error
127 } // end catch
128
129
130
131
132
133
134 // any code placed here is never reached
135 Console.WriteLine("End of ThrowExceptionCatchRethrow");
136 } // end method ThrowExceptionCatchRethrow
137 } // end class UsingExceptions

Calling DoesNotThrowException
In DoesNotThrowException
finally executed in DoesNotThrowException
End of DoesNotThrowException

Fig. 13.4 | finally blocks always execute, even when no exception occurs. (Part 3 of 4.)

throw new Exception("Exception in ThrowExceptionWithoutCatch");

finally

{
Console.WriteLine("finally executed in " +

"ThrowExceptionWithoutCatch");
} // end finally

throw new Exception("Exception in ThrowExceptionCatchRethrow");

// rethrow exception for further processing
throw;

finally

{
Console.WriteLine("finally executed in " +

"ThrowExceptionCatchRethrow");
} // end finally

502 Chapter 13 Exception Handling: A Deeper Look

Line 12 of Main invokes method DoesNotThrowException. This method’s try block
outputs a message (line 55). Because the try block does not throw any exceptions, program
control ignores the catch block (lines 57–60) and executes the finally block (lines 61–
64), which outputs a message. At this point, program control continues with the first state-
ment after the close of the finally block (line 66), which outputs a message indicating that
the end of the method has been reached. Then, program control returns to Main.

Throwing Exceptions Using the throw Statement
Line 16 of Main invokes method ThrowExceptionWithCatch (lines 70–89), which begins in
its try block (lines 73–77) by outputting a message. Next, the try block creates an Excep-
tion object and uses a throw statement to throw it (line 76). Executing the throw statement
indicates that a problem has occurred in the code. As you’ve seen in earlier chapters, you can
throw exceptions by using the throw statement. Just as with exceptions thrown by the
Framework Class Library’s methods and the CLR, this indicates to client apps that an error
has occurred. A throw statement specifies an object to be thrown. The operand of a throw
statement can be of type Exception or of any type derived from class Exception.

The string passed to the constructor becomes the exception object’s error message.
When a throw statement in a try block executes, the try block exits immediately, and pro-
gram control continues with the first matching catch block (lines 78–81) following the
try block. In this example, the type thrown (Exception) matches the type specified in the
catch, so line 80 outputs a message indicating the exception that occurred. Then, the
finally block (lines 82–86) executes and outputs a message. At this point, program con-
trol continues with the first statement after the close of the finally block (line 88), which
outputs a message indicating that the end of the method has been reached. Program con-
trol then returns to Main. In line 80, we use the exception object’s Message property to
retrieve the error message associated with the exception (i.e., the message passed to the
Exception constructor). Section 13.7 discusses several properties of class Exception.

Lines 23–31 of Main define a try statement in which Main invokes method Throw-

ExceptionWithoutCatch (lines 92–108). The try block enables Main to catch any excep-
tions thrown by ThrowExceptionWithoutCatch. The try block in lines 95–99 of

Calling ThrowExceptionWithCatch
In ThrowExceptionWithCatch
Message: Exception in ThrowExceptionWithCatch
finally executed in ThrowExceptionWithCatch
End of ThrowExceptionWithCatch

Calling ThrowExceptionWithoutCatch
In ThrowExceptionWithoutCatch
finally executed in ThrowExceptionWithoutCatch
Caught exception from ThrowExceptionWithoutCatch in Main

Calling ThrowExceptionCatchRethrow
In ThrowExceptionCatchRethrow
Message: Exception in ThrowExceptionCatchRethrow
finally executed in ThrowExceptionCatchRethrow
Caught exception from ThrowExceptionCatchRethrow in Main

Fig. 13.4 | finally blocks always execute, even when no exception occurs. (Part 4 of 4.)

13.5 finally Block 503

ThrowExceptionWithoutCatch begins by outputting a message. Next, the try block
throws an Exception (line 98) and exits immediately.

Normally, program control would continue at the first catch following this try
block. However, this try block does not have any catch blocks. Therefore, the exception
is not caught in method ThrowExceptionWithoutCatch. Program control proceeds to the
finally block (lines 100–104), which outputs a message. At this point, program control
returns to Main—any statements appearing after the finally block (e.g., line 107) do not
execute. In this example, such statements could cause logic errors, because the exception
thrown in line 98 is not caught. In Main, the catch block in lines 27–31 catches the excep-
tion and displays a message indicating that the exception was caught in Main.

Rethrowing Exceptions
Lines 38–46 of Main define a try statement in which Main invokes method Throw-

ExceptionCatchRethrow (lines 111–136). The try statement enables Main to catch any
exceptions thrown by ThrowExceptionCatchRethrow. The try statement in lines 114–
132 of ThrowExceptionCatchRethrow begins by outputting a message. Next, the try

block throws an Exception (line 117). The try block exits immediately, and program con-
trol continues at the first catch (lines 119–127) following the try block. In this example,
the type thrown (Exception) matches the type specified in the catch, so line 121 outputs
a message indicating where the exception occurred. Line 124 uses the throw statement to
rethrow the exception. This indicates that the catch block performed partial processing
of the exception and now is throwing the exception again (in this case, back to the method
Main) for further processing. In general, it’s considered better practice to throw a new ex-
ception and pass the original one to the new exception’s constructor. This maintains all of
the stack-trace information from the original exception. Rethrowing an exception loses the
original exception’s stack-trace information.

You can also rethrow an exception with a version of the throw statement which takes
an operand that’s the reference to the exception that was caught. It’s important to note,
however, that this form of throw statement resets the throw point, so the original throw
point’s stack-trace information is lost. Section 13.7 demonstrates using a throw statement
with an operand from a catch block. In that section, you’ll see that after an exception is
caught, you can create and throw a different type of exception object from the catch block
and you can include the original exception as part of the new exception object. Class
library designers often do this to customize the exception types thrown from methods in
their class libraries or to provide additional debugging information.

The exception handling in method ThrowExceptionCatchRethrow does not com-
plete, because the throw statement in line 124 immediately terminates the catch block—
if there were any code between line 124 and the end of the block, it would not execute.
When line 124 executes, method ThrowExceptionCatchRethrow terminates and returns
control to Main. Once again, the finally block (lines 128–132) executes and outputs a
message before control returns to Main. When control returns to Main, the catch block in
lines 42–46 catches the exception and displays a message indicating that the exception was
caught. Then the program terminates.

Returning After a finally Block
The next statement to execute after a finally block terminates depends on the exception-
handling state. If the try block successfully completes, or if a catch block catches and han-

504 Chapter 13 Exception Handling: A Deeper Look

dles an exception, the program continues its execution with the next statement after the fi-
nally block. However, if an exception is not caught, or if a catch block rethrows an
exception, program control continues in the next enclosing try block. The enclosing try
could be in the calling method or in one of its callers. It also is possible to nest a try statement
in a try block; in such a case, the outer try statement’s catch blocks would process any ex-
ceptions that were not caught in the inner try statement. If a try block executes and has a
corresponding finally block, the finally block executes even if the try block terminates
due to a return statement. The return occurs after the execution of the finally block.

13.6 The using Statement
Typically resource-release code should be placed in a finally block to ensure that a re-
source is released, regardless of whether there were exceptions when the resource was used
in the corresponding try block. An alternative notation—the using statement (not to be
confused with the using directive for using namespaces)—simplifies writing code in
which you obtain a resource, use the resource in a try block and release the resource in a
corresponding finally block. For example, a file-processing app (Chapter 17) could pro-
cess a file with a using statement to ensure that the file is closed properly when it’s no lon-
ger needed. The resource must be an object that implements the IDisposable interface
and therefore has a Dispose method. The general form of a using statement is

where ExampleClass is a class that implements the IDisposable interface. This code cre-
ates an object of type ExampleClass and uses it in a statement, then calls its Disposemeth-
od to release any resources used by the object. The using statement implicitly places the
code in its body in a try block with a corresponding finally block that calls the object’s
Dispose method. For instance, the preceding brief code segment is equivalent to

Common Programming Error 13.3
If an uncaught exception is awaiting processing when the finally block executes, and the
finally block throws a new exception that’s not caught in the finally block, the first
exception is lost, and the new exception is passed to the next enclosing try block.

Error-Prevention Tip 13.3
When placing code that can throw an exception in a finally block, always enclose the
code in a try statement that catches the appropriate exception types. This prevents the loss
of any uncaught and rethrown exceptions that occur before the finally block executes.

Software Engineering Observation 13.2
Do not place try blocks around every statement that might throw an exception—this can
make programs difficult to read. Instead, place one try block around a significant portion
of code, and follow this try block with catch blocks that handle each possible exception.
Then follow the catch blocks with a single finally block. Use separate try blocks to
distinguish between multiple statements that can throw the same exception type.

using (ExampleClass exampleObject = new ExampleClass())
{

exampleObject.SomeMethod();
}

13.7 Exception Properties 505

The if statement ensures that exampleObject still references an object; otherwise, a Null-
ReferenceException might occur.

13.7 Exception Properties
As we discussed in Section 13.4, exception types derive from class Exception, which has
several properties. These frequently are used to formulate error messages indicating a
caught exception. Two important properties are Message and StackTrace. Property Mes-
sage stores the error message associated with an Exception object. This message can be a
default message associated with the exception type or a customized message passed to an
Exception object’s constructor when the Exception object is thrown. Property Stack-
Trace contains a string that represents the method-call stack. Recall that the runtime en-
vironment at all times keeps a list of open method calls that have been made but have not
yet returned. The StackTrace represents the series of methods that have not finished pro-
cessing at the time the exception occurs. If the debugging information that’s generated by
the compiler for the method is accessible to the IDE, the stack trace also includes line
numbers; the first line number indicates the throw point, and subsequent line numbers in-
dicate the locations from which the methods in the stack trace were called. The IDE cre-
ates PDB files to maintain the debugging information for your projects.

Property InnerException
Another property used frequently is InnerException. Typically, class library programmers
“wrap” exception objects caught in their code so that they then can throw new exception
types that are specific to their libraries. For example, a programmer implementing an ac-
counting system might have some account-number processing code in which account num-
bers are input as strings but represented as ints in the code. Recall that a program can
convert strings to int values with Convert.ToInt32, which throws a FormatException
when it encounters an invalid number format. When an invalid account-number format oc-
curs, the accounting-system programmer might wish to employ a different error message
than the default message supplied by FormatException or might wish to indicate a new ex-
ception type, such as InvalidAccountNumberFormatException. In such cases, you’d provide
code to catch the FormatException, then create an appropriate type of Exception object in
the catch block and pass the original exception as one of the constructor arguments. The
original exception object becomes the InnerException of the new exception object. When
an InvalidAccountNumberFormatException occurs in code that uses the accounting system
library, the catch block that catches the exception can obtain a reference to the original ex-

{
ExampleClass exampleObject = new ExampleClass();

try

{
exampleObject.SomeMethod();

}
finally

{
if (exampleObject != null)

((IDisposable) exampleObject).Dispose();
}

}

506 Chapter 13 Exception Handling: A Deeper Look

ception via property InnerException. So the exception indicates both that the user specified
an invalid account number and that the number format was invalid. If the InnerException
property is null, this indicates that the exception was not caused by another exception.

Other Exception Properties
Class Exception provides other properties, including HelpLink, Source and TargetSite.
Property HelpLink specifies the location of the help file that describes the problem that
occurred. This property is null if no such file exists. Property Source specifies the name
of the app or object that caused the exception. Property TargetSite specifies the method
where the exception originated.

Demonstrating Exception Properties and Stack Unwinding
Our next example (Fig. 13.5) demonstrates properties Message, StackTrace and Inner-

Exception of class Exception. In addition, the example introduces stack unwinding—
when an exception is thrown but not caught in a particular scope, the method-call stack is
“unwound,” and an attempt is made to catch the exception in the next outer try block.
We keep track of the methods on the call stack as we discuss property StackTrace and the
stack-unwinding mechanism. To see the proper stack trace, you should execute this pro-
gram using steps similar to those presented in Section 13.2.

1 // Fig. 13.5: Properties.cs
2 // Stack unwinding and Exception class properties.
3 // Demonstrates using properties Message, StackTrace and InnerException.
4 using System;
5
6 class Properties
7 {
8 static void Main()
9 {

10 // call Method1; any Exception generated is caught
11 // in the catch block that follows
12 try

13 {
14 Method1();
15 } // end try
16 catch (Exception exceptionParameter)
17 {
18 // output the string representation of the Exception, then output
19 // properties Message, StackTrace and InnerException
20 Console.WriteLine("exceptionParameter.ToString: \n{0}\n",
21);
22 Console.WriteLine("exceptionParameter.Message: \n{0}\n",
23);
24 Console.WriteLine("exceptionParameter.StackTrace: \n{0}\n",
25);
26 Console.WriteLine("exceptionParameter.InnerException: \n{0}\n",
27);
28 } // end catch
29 } // end method Main

Fig. 13.5 | Stack unwinding and Exception class properties. (Part 1 of 3.)

exceptionParameter

exceptionParameter.Message

exceptionParameter.StackTrace

exceptionParameter.InnerException

13.7 Exception Properties 507

30
31 // calls Method2
32 static void Method1()
33 {
34
35 } // end method Method1
36
37 // calls Method3
38 static void Method2()
39 {
40
41 } // end method Method2
42
43 // throws an Exception containing an InnerException
44 static void Method3()
45 {
46 // attempt to convert string to int
47 try

48 {
49 Convert.ToInt32("Not an integer");
50 } // end try
51 catch (FormatException formatExceptionParameter)
52 {
53 // wrap FormatException in new Exception
54
55
56 } // end catch
57 } // end method Method3
58 } // end class Properties

System.Exception: --->
System.FormatException:
at System.Number.StringToNumber(String str, NumberStyles options,

NumberBuffer& number, NumberFormatInfo info, Boolean parseDecimal)
at System.Number.ParseInt32(String s, NumberStyles style,

NumberFormatInfo info)
at Properties.Method3() in C:\examples\ch13\Fig13_05\Properties\

Properties\Properties.cs:
--- End of inner exception stack trace ---
at Properties.Method3() in C:\examples\ch13\Fig13_05\Properties\

Properties\Properties.cs:
at Properties.Method2() in C:\examples\ch13\Fig13_05\Properties\

Properties\Properties.cs:
at Properties.Method1() in C:\examples\ch13\Fig13_05\Properties\

Properties\Properties.cs:
at Properties.Main() in C:\examples\ch13\Fig13_05\Properties\

Properties\Properties.cs:

Exception occurred in Method3

at Properties.Method3() in C:\examples\ch13\Fig13_05\Properties\
Properties\Properties.cs:

Fig. 13.5 | Stack unwinding and Exception class properties. (Part 2 of 3.)

Method2();

Method3();

throw new Exception("Exception occurred in Method3",
formatExceptionParameter);

exceptionParameter.ToString:
Exception occurred in Method3

Input string was not in a correct format.

line 49

line 54

line 40

line 34

line 14

exceptionParameter.Message:

exceptionParameter.StackTrace:

line 54

508 Chapter 13 Exception Handling: A Deeper Look

Program execution begins with Main, which becomes the first method on the method-
call stack. Line 14 of the try block in Main invokes Method1 (declared in lines 32–35),
which becomes the second method on the stack. If Method1 throws an exception, the
catch block in lines 16–28 handles the exception and outputs information about the
exception that occurred. Line 34 of Method1 invokes Method2 (lines 38–41), which
becomes the third method on the stack. Then line 40 of Method2 invokes Method3 (lines
44–57), which becomes the fourth method on the stack.

At this point, the method-call stack (from top to bottom) for the program is:

The method called most recently (Method3) appears at the top of the stack; the first method
called (Main) appears at the bottom. The try statement (lines 47–56) in Method3 invokes
method Convert.ToInt32 (line 49), which attempts to convert a string to an int. At this
point, Convert.ToInt32 becomes the fifth and final method on the call stack.

Throwing an Exception with an InnerException

Because the argument to Convert.ToInt32 is not in int format, line 49 throws a Format-
Exception that’s caught in line 51 of Method3. The exception terminates the call to Con-
vert.ToInt32, so the method is unwound (i.e., removed) from the method-call stack. The
catch block in Method3 then creates and throws an Exception object. The first argument
to the Exception constructor is the custom error message for our example, “Exception
occurred in Method3.” The second argument is the InnerException—the Format-

Exception that was caught. The StackTrace for this new exception object reflects the
point at which the exception was thrown (lines 54–55). Now Method3 terminates, because
the exception thrown in the catch block is not caught in the method body. Thus, control
returns to the statement that invoked Method3 in the prior method in the call stack
(Method2). This unwinds Method3 from the method-call stack.

at Properties.Method2() in C:\examples\ch13\Fig13_05\Properties\
Properties\Properties.cs:

at Properties.Method1() in C:\examples\ch13\Fig13_05\Properties\
Properties\Properties.cs:

at Properties.Main() in C:\examples\ch13\Fig13_05\Properties\
Properties\Properties.cs:

System.FormatException:
at System.Number.StringToNumber(String str, NumberStyles options,

NumberBuffer& number, NumberFormatInfo info, Boolean parseDecimal)
at System.Number.ParseInt32(String s, NumberStyles style,

NumberFormatInfo info)
at Properties.Method3() in C:\examples\ch13\Fig13_05\Properties\

Properties\Properties.cs:

Method3
Method2
Method1
Main

Fig. 13.5 | Stack unwinding and Exception class properties. (Part 3 of 3.)

line 40

line 34

line 14

exceptionParameter.InnerException:
Input string was not in a correct format.

line 49

13.8 User-Defined Exception Classes 509

When control returns to line 40 in Method2, the CLR determines that line 40 is not
in a try block. Therefore the exception cannot be caught in Method2, and Method2 termi-
nates. This unwinds Method2 from the call stack and returns control to line 34 in Method1.

Here again, line 34 is not in a try block, so Method1 cannot catch the exception. The
method terminates and is unwound from the call stack, returning control to line 14 in
Main, which is located in a try block. The try block in Main exits and the catch block
(lines 16–28) catches the exception. The catch block uses properties Message, Stack-
Trace and InnerException to create the output. Stack unwinding continues until a catch
block catches the exception or the program terminates.

Displaying Information About the Exception
The first block of output (which we reformatted for readability) in Fig. 13.5 contains the
exception’s string representation, which is returned from an implicit call to method To-
String. The string begins with the name of the exception class followed by the Message
property value. The next four items present the stack trace of the InnerException object.
The remainder of the block of output shows the StackTrace for the exception thrown in
Method3. The StackTrace represents the state of the method-call stack at the throw point
of the exception, rather than at the point where the exception eventually is caught. Each
StackTrace line that begins with “at” represents a method on the call stack. These lines
indicate the method in which the exception occurred, the file in which the method resides
and the line number of the throw point in the file. The inner-exception information in-
cludes the inner-exception stack trace.

The next block of output (two lines) simply displays the Message property’s value
(Exception occurred in Method3) of the exception thrown in Method3.

The third block of output displays the StackTrace property of the exception thrown
in Method3. This StackTrace property contains the stack trace starting from line 54 in
Method3, because that’s the point at which the Exception object was created and thrown.
The stack trace always begins from the exception’s throw point.

Finally, the last block of output displays the string representation of the Inner-
Exception property, which includes the namespace and class name of the exception
object, as well as its Message and StackTrace properties.

13.8 User-Defined Exception Classes
In many cases, you can use existing exception classes from the .NET Framework Class Li-
brary to indicate exceptions that occur in your programs. In some cases, however, you might
wish to create new exception classes specific to the problems that occur in your programs.
User-defined exception classes should derive directly or indirectly from class Exception of
namespace System. When you create code that throws exceptions, they should be well doc-
umented, so that other developers who use your code will know how to handle them.

Error-Prevention Tip 13.4
When catching and rethrowing an exception, provide additional debugging information
in the rethrown exception. To do so, create an Exception object containing more specific
debugging information, then pass the original caught exception to the new exception ob-
ject’s constructor to initialize the InnerException property.

510 Chapter 13 Exception Handling: A Deeper Look

Class NegativeNumberException
Figures 13.6–13.7 demonstrate a user-defined exception class. NegativeNumberException
(Fig. 13.6) represents exceptions that occur when a program performs an illegal operation on
a negative number, such as attempting to calculate its square root.

According to Microsoft’s document on “Best Practices for Handling Exceptions”
(bit.ly/ExceptionsBestPractices), user-defined exceptions should typically extend
class Exception, have a class name that ends with “Exception” and define three construc-

Good Programming Practice 13.1
Associating each type of malfunction with an appropriately named exception class im-
proves program clarity.

Software Engineering Observation 13.3
Before creating a user-defined exception class, investigate the existing exceptions in the
.NET Framework Class Library to determine whether an appropriate exception type
already exists.

1 // Fig. 13.6: NegativeNumberException.cs
2 // NegativeNumberException represents exceptions caused by
3 // illegal operations performed on negative numbers.
4 using System;
5
6
7 {
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 } // end class NegativeNumberException

Fig. 13.6 | NegativeNumberException represents exceptions caused by illegal operations
performed on negative numbers.

class NegativeNumberException : Exception

// default constructor
public NegativeNumberException()

: base("Illegal operation for a negative number")
{

// empty body
} // end default constructor

// constructor for customizing error message
public NegativeNumberException(string messageValue)

: base(messageValue)
{

// empty body
} // end one-argument constructor

// constructor for customizing the exception's error
// message and specifying the InnerException object
public NegativeNumberException(string messageValue,

Exception inner)
: base(messageValue, inner)

{
// empty body

} // end two-argument constructor

13.8 User-Defined Exception Classes 511

tors: a parameterless constructor; a constructor that receives a string argument (the error mes-
sage); and a constructor that receives a string argument and an Exception argument (the
error message and the inner-exception object). Defining these three constructors makes
your exception class more flexible, allowing other programmers to easily use and extend it.

NegativeNumberExceptions most frequently occur during arithmetic operations, so
it seems logical to derive class NegativeNumberException from class ArithmeticExcep-
tion. However, class ArithmeticException derives from class SystemException—the
category of exceptions thrown by the CLR. Per Microsoft’s best practices for exception
handling, user-defined exception classes should inherit from Exception rather than System-

Exception. In this case, we could have used the built-in ArgumentException class, which
is recommended in the best practices for invalid argument values. We create our own
exception type here simply for demonstration purposes.

Class NegativeNumberException
Class SquareRootTest (Fig. 13.7) demonstrates our user-defined exception class. The app
enables the user to input a numeric value, then invokes method SquareRoot (lines 40–48)
to calculate the square root of that value. To perform this calculation, SquareRoot invokes
class Math’s Sqrt method, which receives a double value as its argument. Normally, if the
argument is negative, method Sqrt returns NaN. In this program, we’d like to prevent the
user from calculating the square root of a negative number. If the numeric value that the
user enters is negative, method SquareRoot throws a NegativeNumberException (lines
44–45). Otherwise, SquareRoot invokes class Math’s method Sqrt to compute the square
root (line 47).

When the user inputs a value, the try statement (lines 14–34) attempts to invoke
SquareRoot using the value input by the user. If the user input is not a number, a Format-
Exception occurs, and the catch block in lines 25–29 processes the exception. If the user
inputs a negative number, method SquareRoot throws a NegativeNumberException (lines
44–45); the catch block in lines 30–34 catches and handles this type of exception.

1 // Fig. 13.7: SquareRootTest.cs
2 // Demonstrating a user-defined exception class.
3 using System;
4
5 class SquareRootTest
6 {
7 static void Main(string[] args)
8 {
9 bool continueLoop = true;

10
11 do

12 {
13 // catch any NegativeNumberException thrown
14 try

15 {
16 Console.Write(
17 "Enter a value to calculate the square root of: ");
18 double inputValue = Convert.ToDouble(Console.ReadLine());

Fig. 13.7 | Demonstrating a user-defined exception class. (Part 1 of 2.)

512 Chapter 13 Exception Handling: A Deeper Look

19 double result = SquareRoot(inputValue);
20
21 Console.WriteLine("The square root of {0} is {1:F6}\n",
22 inputValue, result);
23 continueLoop = false;
24 } // end try
25 catch (FormatException formatException)
26 {
27 Console.WriteLine("\n" + formatException.Message);
28 Console.WriteLine("Please enter a double value.\n");
29 } // end catch
30 catch (NegativeNumberException negativeNumberException)
31 {
32 Console.WriteLine("\n" + negativeNumberException.Message);
33 Console.WriteLine("Please enter a non-negative value.\n");
34 } // end catch
35 } while (continueLoop);
36 } // end Main
37
38 // computes square root of parameter; throws
39 // NegativeNumberException if parameter is negative
40 public static double SquareRoot(double value)
41 {
42 // if negative operand, throw NegativeNumberException
43 if (value < 0)
44
45
46 else

47 return Math.Sqrt(value); // compute square root
48 } // end method SquareRoot
49 } // end class SquareRootTest

Enter a value to calculate the square root of: 30
The square root of 30 is 5.477226

Enter a value to calculate the square root of: hello

Input string was not in a correct format.
Please enter a double value.

Enter a value to calculate the square root of: 25
The square root of 25 is 5.000000

Enter a value to calculate the square root of: -2

Square root of negative number not permitted
Please enter a non-negative value.

Enter a value to calculate the square root of: 2
The square root of 2 is 1.414214

Fig. 13.7 | Demonstrating a user-defined exception class. (Part 2 of 2.)

throw new NegativeNumberException(
"Square root of negative number not permitted");

13.9 Wrap-Up 513

13.9 Wrap-Up
In this chapter, you learned how to use exception handling to deal with errors in an app.
We demonstrated that exception handling enables you to remove error-handling code from
the “main line” of the program’s execution. You saw exception handling in the context of
a divide-by-zero example. You learned how to use try blocks to enclose code that may
throw an exception, and how to use catch blocks to deal with exceptions that may arise.
We explained the termination model of exception handling, in which, after an exception is
handled, program control does not return to the throw point. We discussed several impor-
tant classes of the .NET Exception hierarchy, including Exception (from which user-de-
fined exception classes are derived) and SystemException. Next you learned how to use the
finally block to release resources whether or not an exception occurs, and how to throw
and rethrow exceptions with the throw statement. We showed how the using statement can
be used to automate the process of releasing a resource. You then learned how to obtain in-
formation about an exception using Exception properties Message, StackTrace and In-

nerException, and method ToString. You learned how to create your own exception
classes. In the next two chapters, we present an in-depth treatment of graphical user inter-
faces. In these chapters and throughout the rest of the book, we use exception handling to
make our examples more robust, while demonstrating new features of the language.

Summary
Section 13.1 Introduction
• An exception is an indication of a problem that occurs during a program’s execution.

• Exception handling enables you to create apps that can resolve (or handle) exceptions.

Section 13.2 Example: Divide by Zero without Exception Handling
• An exception is thrown when a method or the CLR detects a problem and is unable to handle it.

• A stack trace includes the name of the exception in a descriptive message that indicates the prob-
lem that occurred and the complete method-call stack at the time the exception occurred.

• Division by zero is not allowed in integer arithmetic.

• Division by zero is allowed with floating-point values. Such a calculation results in the value in-
finity, which is represented by Double.PositiveInfinity or Double.NegativeInfinity, depend-
ing on whether the numerator is positive or negative. If both the numerator and denominator
are zero, the result of the calculation is Double.NaN.

• When division by zero occurs in integer arithmetic, a DivideByZeroException is thrown.

• A FormatException occurs when Convert method ToInt32 receives a string that does not repre-
sent a valid integer.

Section 13.3 Example: Handling DivideByZeroExceptions and FormatExceptions
• A try block encloses the code that might throw exceptions, as well as the code that should not

execute if an exception occurs.

• A catch block can specify an identifier representing the exception that the catch block can han-
dle. A general catch clause catches all exception types, but cannot access exception information.

• At least one catch block and/or a finally block must immediately follow the try block.

514 Chapter 13 Exception Handling: A Deeper Look

• An uncaught exception is an exception that occurs for which there’s no matching catch block.

• When a method called in a program detects an exception, or when the CLR detects a problem,
the method or the CLR throws an exception.

• The point in the program at which an exception occurs is called the throw point.

• If an exception occurs in a try block, the try block terminates immediately, and program control
transfers to the first of the following catch blocks in which the exception parameter’s type match-
es the type of the thrown exception.

• After an exception is handled, program control does not return to the throw point, because the
try block has exited. Instead, control resumes after the try statement’s last catch block. This is
known as the termination model of exception handling.

• The try block and its corresponding catch and finally blocks together form a try statement.

• The CLR locates the matching catch by comparing the thrown exception’s type to each catch’s
exception-parameter type. A match occurs if the types are identical or if the thrown exception’s
type is a derived class of the exception-parameter type.

• Once an exception is matched to a catch block, the other catch blocks are ignored.

Section 13.4 .NET Exception Hierarchy
• The C# exception-handling mechanism allows objects only of class Exception and its derived

classes to be thrown and caught.

• Class Exception of namespace System is the base class of the .NET Framework Class Library ex-
ception class hierarchy.

• The CLR generates SystemExceptions, which can occur at any point during the execution of the
program. Many of these exceptions can be avoided if apps are coded properly.

• A benefit of using the exception class hierarchy is that a catch block can catch exceptions of a
particular type or—because of the is-a relationship of inheritance—can use a base-class type to
catch exceptions in a hierarchy of related exception types.

• A catch block that specifies an exception parameter of type Exception can catch all exceptions
that derive from Exception, because Exception is the base class of all exception classes.

Section 13.5 finally Block
• The most common type of resource leak is a memory leak.

• A memory leak occurs when a program allocates memory but does not deallocate it when it’s no
longer needed. Normally, this is not an issue in C#, because the CLR performs garbage collection
of memory that’s no longer needed by an executing program.

• C#’s exception-handling mechanism provides the finally block, which is guaranteed to execute
if program control enters the corresponding try block.

• The finally block executes regardless of whether the corresponding try block executes success-
fully or an exception occurs. This makes the finally block an ideal location in which to place
resource-release code for resources acquired and manipulated in the corresponding try block.

• If a try block executes successfully, the finally block executes immediately after the try block
terminates. If an exception occurs in the try block, the finally block executes immediately after
a catch block completes.

• If the exception is not caught by a catch block associated with the try block, or if a catch block
associated with the try block throws an exception, the finally block executes before the excep-
tion is processed by the next enclosing try block (if there is one).

Terminology 515

• A throw statement can rethrow an exception, indicating that a catch block performed partial pro-
cessing of the exception and now is throwing the exception again for further processing.

• If a try block executes and has a corresponding finally block, the finally block always exe-
cutes.

Section 13.6 The using Statement
• The using statement simplifies writing code in which you obtain an IDisposable resource, use

the resource in a try block and release the resource in a corresponding finally block.

Section 13.7 Exception Properties
• Property Message of class Exception stores the error message associated with an Exception object.

• Property StackTrace of class Exception contains a string that represents the method-call stack.

• Another Exception property used frequently by class library programmers is InnerException.
Typically, you use this property to “wrap” exception objects caught in your code, so that you
then can throw new exception types specific to your libraries.

• When an exception is thrown but not caught in a particular scope, stack unwinding occurs and
an attempt is made to catch the exception in the next outer try block.

Section 13.8 User-Defined Exception Classes
• User-defined exception classes should derive directly or indirectly from class Exception of

namespace System.

• User-defined exceptions should typically extend Exception, have a class name that ends with
“Exception” and define a parameterless constructor, a constructor that receives a string argu-
ment (the error message), and a constructor that receives a string argument and an Exception

argument (the error message and the inner-exception object).

Terminology
catch an exception
catch block
divide by zero
DivideByZeroException class
error-processing code
exception
Exception Assistant
Exception class
exception handling
fault-tolerant program
finally block
FormatException class
general catch clause
handle an exception
HelpLink property of class Exception
IndexOutOfRangeException class
InnerException property of class Exception
memory leak
method-call stack
NullReferenceException class
out-of-range array index

resource leak
resumption model of exception handling
rethrow an exception
robust program
Source property of class Exception
stack trace
stack unwinding
StackTrace property of class Exception
SystemException class
TargetSite property of class Exception
termination model of exception handling
throw an exception
throw point
throw statement
try block
try statement
TryParse method of structure Int32
uncaught exception
unhandled exception
user-defined exception class
using statement

516 Chapter 13 Exception Handling: A Deeper Look

Self-Review Exercises
13.1 Fill in the blanks in each of the following statements:

a) A method is said to an exception when it detects that a problem has occurred.
b) When present, the block associated with a try block always executes.
c) Exception classes are derived from class .
d) The statement that throws an exception is called the of the exception.
e) C# uses the model of exception handling as opposed to the model

of exception handling.
f) An uncaught exception in a method causes the method to from the method-

call stack.
g) Method Convert.ToInt32 can throw a(n) exception if its argument is not a

valid integer value.

13.2 State whether each of the following is true or false. If false, explain why.
a) Exceptions always are handled in the method that initially detects the exception.
b) User-defined exception classes should extend class SystemException.
c) Accessing an out-of-bounds array index causes the CLR to throw an exception.
d) A finally block is optional after a try block that does not have any corresponding

catch blocks.
e) A finally block is guaranteed to execute.
f) It’s possible to return to the throw point of an exception using keyword return.
g) Exceptions can be rethrown.
h) Property Message of class Exception returns a string indicating the method from

which the exception was thrown.

Answers to Self-Review Exercises
13.1 a) throw. b) finally. c) Exception. d) throw point. e) termination, resumption. f) unwind.
g) FormatException.

13.2 a) False. Exceptions can be handled by other methods on the method-call stack. b) False.
User-defined exception classes should typically extend class Exception. c) True. d) False. A try

block that does not have any catch blocks requires a finally block. e) False. The finally block
executes only if program control enters the corresponding try block. f) False. return causes control
to return to the caller. g) True. h) False. Property Message of class Exception returns a string rep-
resenting the error message.

Exercises
13.3 (Exception Base Classes and Derived Classes) Use inheritance to create an exception base
class and various exception-derived classes. Write a program to demonstrate that the catch specify-
ing the base class catches derived-class exceptions.

13.4 (Catching Exceptions) Write a program that demonstrates how various exceptions are
caught with

catch (Exception ex)

13.5 (Order of Exception Handlers) To demonstrate the importance of the order of exception
handlers, write two programs, one with correct ordering of catch blocks (i.e., place the base-class
exception handler after all derived-class exception handlers) and another with improper ordering
(i.e., place the base-class exception handler before the derived-class exception handlers). What hap-
pens when you attempt to compile the second program?

Exercises 517

13.6 (Constructor Failure) Exceptions can be used to indicate problems that occur when an ob-
ject is being constructed. Write a program that shows a constructor passing information about con-
structor failure to an exception handler. The exception thrown also should contain the arguments
sent to the constructor.

13.7 (Rethrowing and Exception) Write a program that demonstrates rethrowing an exception.

13.8 (Not Catching Every Exception) Write a program demonstrating that a method with its own
try block does not have to catch every possible exception that occurs within the try block—some
exceptions can slip through to, and be handled in, other scopes.

13.9 (Exception from a Deeply Nested Method) Write a program that throws an exception from
a deeply nested method. The catch block should follow the try block that encloses the call chain.
The exception caught should be one you defined yourself. In catching the exception, display the ex-
ception’s message and stack trace.

13.10 (FormatExceptions) Create an app that inputs miles driven and gallons used, and calculates
miles per gallon. The example should use exception handling to process the FormatExceptions that
occur when converting the input strings to doubles. If invalid data is entered, display a message in-
forming the user.

14 Graphical User Interfaces
with Windows Forms: Part 1

… the wisest prophets make sure
of the event first.
—Horace Walpole

...The user should feel in control
of the computer; not the other
way around. This is achieved in
applications that embody three
qualities: responsiveness,
permissiveness, and consistency.
—Inside Macintosh, Volume 1
Apple Computer, Inc. 1985

All the better to see you with my
dear.
—The Big Bad Wolf to Little Red Riding
Hood

O b j e c t i v e s
In this chapter you’ll learn:

� Design principles of graphical
user interfaces (GUIs).

� How to create graphical user
interfaces.

� How to process events in
response to user interactions
with GUI controls.

� The namespaces that contain
the classes for GUI controls
and event handling.

� How to create and
manipulate various controls.

� How to add descriptive
ToolTips to GUI controls.

� How to process mouse and
keyboard events.

14.1 Introduction 519

14.1 Introduction
A graphical user interface (GUI) allows a user to interact visually with a program. A GUI
(pronounced “GOO-ee”) gives a program a distinctive “look” and “feel.”

As an example of a GUI, consider Fig. 14.1, which shows a Visual Studio Express
window containing various GUI controls. Near the top, there’s a menu bar containing the
menus FILE, EDIT, VIEW, PROJECT, BUILD, DEBUG, TEAM, TOOLS, TEST, WINDOW, and
HELP. Below that is a tool bar of buttons, each with a defined task, such as creating a new

14.1 Introduction
14.2 Windows Forms
14.3 Event Handling

14.3.1 A Simple Event-Driven GUI
14.3.2 Auto-Generated GUI Code
14.3.3 Delegates and the Event-Handling

Mechanism
14.3.4 Another Way to Create Event

Handlers
14.3.5 Locating Event Information

14.4 Control Properties and Layout

14.5 Labels, TextBoxes and Buttons
14.6 GroupBoxes and Panels
14.7 CheckBoxes and RadioButtons
14.8 PictureBoxes
14.9 ToolTips

14.10 NumericUpDown Control
14.11 Mouse-Event Handling
14.12 Keyboard-Event Handling
14.13 Wrap-Up

Summary | Terminology | Self-Review Exercises | Answers to Self-Review Exercises | Exercises |
Making a Difference Exercises

Look-and-Feel Observation 14.1
Consistent user interfaces enable a user to learn new apps more quickly because the apps
have the same “look” and “feel.”

Fig. 14.1 | GUI controls in the Visual Studio Express 2012 for Windows Desktop window.

Menu Menu barButton Tool barTitle barTab

520 Chapter 14 Graphical User Interfaces with Windows Forms: Part 1

project or opening an existing one. Below that is a tab representing a currently open file—
this tabbed view allows users to switch between the open files. These controls form a user-
friendly interface through which you have been interacting with the IDE.

GUIs are built from GUI controls (which are sometimes called components or wid-
gets—short for window gadgets). GUI controls are objects that can display information
on the screen or enable users to interact with an app via the mouse, keyboard or some other
form of input (such as voice commands). Several common GUI controls are listed in
Fig. 14.2—in the sections that follow and in Chapter 15, we discuss each of these in detail.
Chapter 15 explores the features and properties of additional GUI controls.

14.2 Windows Forms
Windows Forms is one library that can be used to create GUIs—you’ll also learn about Win-
dows 8 UI and Windows Presentation Foundation in later chapters. A Form is a graphical ele-
ment that appears on your computer’s desktop; it can be a dialog, a window or an MDI
window (multiple document interface window)—discussed in Chapter 15. A component is
an instance of a class that implements the IComponent interface, which defines the behaviors
that components must implement, such as how the component is loaded. A control, such as
a Button or Label, has a graphical representation at runtime. Some components lack graph-
ical representations (e.g., class Timer of namespace System.Windows.Forms—see
Chapter 15). Such components are not visible at run time.

Figure 14.3 displays the Windows Forms controls and components from the C#
Toolbox. The controls and components are organized into categories by functionality.
Selecting the category All Windows Forms at the top of the Toolbox allows you to view all
the controls and components from the other tabs in one list (as shown in Fig. 14.3). In
this chapter and the next, we discuss many of these controls and components. To add a
control or component to a Form, select that control or component from the Toolbox and
drag it onto the Form. To deselect a control or component, select the Pointer item in the
Toolbox (the icon at the top of the list). When the Pointer item is selected, you cannot acci-
dentally add a new control to the Form.

Control Description

Label Displays images or uneditable text.

TextBox Enables the user to enter data via the keyboard. It can also be used to display
editable or uneditable text.

Button Triggers an event when clicked with the mouse.

CheckBox Specifies an option that can be selected (checked) or unselected (not checked).

ComboBox Provides a drop-down list of items from which the user can make a selection
either by clicking an item in the list or by typing in a box.

ListBox Provides a list of items from which the user can make a selection by clicking
one or more items.

Panel A container in which controls can be placed and organized.

NumericUpDown Enables the user to select from a range of numeric input values.

Fig. 14.2 | Some basic GUI controls.

14.2 Windows Forms 521

When there are several windows on the screen, the active window is the frontmost and
has a highlighted title bar. A window becomes the active window when the user clicks
somewhere inside it. The active window is said to “have the focus.” For example, in Visual
Studio the active window is the Toolbox when you’re selecting an item from it, or the Prop-
erties window when you’re editing a control’s properties.

A Form is a container for controls and components. When you drag items from the
Toolbox onto the Form, Visual Studio generates code that creates the object and sets its basic
properties. This code is updated when the control or component’s properties are modified
in the IDE. Removing a control or component from the Form deletes the corresponding gen-
erated code. The IDE maintains the generated code in a separate file using partial

classes—classes that are split among multiple files and assembled into a single class by the
compiler. You could write this code yourself, but it’s much easier to allow Visual Studio to
handle the details. We introduced visual programming concepts in Chapter 2. In this
chapter and the next, we use visual programming to build more substantial GUIs.

Each control or component we present in this chapter is located in namespace
System.Windows.Forms. To create a Windows Forms app, you generally create a Windows
Form, set its properties, add controls to the Form, set their properties and implement event
handlers (methods) that respond to events generated by the controls. Figure 14.4 lists
common Form properties, common methods and a common event.

When we create controls and event handlers, Visual Studio generates much of the
GUI-related code. In visual programming, the IDE maintains GUI-related code and you
write the bodies of the event handlers to indicate what actions the program should take
when particular events occur.

Fig. 14.3 | Components and controls for Windows Forms.

Categories by
functionality

Display all
controls and
components

522 Chapter 14 Graphical User Interfaces with Windows Forms: Part 1

14.3 Event Handling
Normally, a user interacts with an app’s GUI to indicate the tasks that the app should per-
form. For example, when you write an e-mail in an e-mail app, clicking the Send button
tells the app to send the e-mail to the specified e-mail addresses. GUIs are event driven.
When the user interacts with a GUI component, the interaction—known as an event—
drives the program to perform a task. Common events (user interactions) that might cause
an app to perform a task include clicking a Button, typing in a TextBox, selecting an item
from a menu, closing a window and moving the mouse. All GUI controls have events asso-
ciated with them. Objects of other types can also have associated events as well. A method
that performs a task in response to an event is called an event handler, and the overall pro-
cess of responding to events is known as event handling.

14.3.1 A Simple Event-Driven GUI
The Form in the app of Fig. 14.5 contains a Button that a user can click to display a Mes-
sageBox. In line 6, notice the namespace declaration, which is inserted for every class you
create. We’ve been removing these from earlier simple examples because they were unnec-
essary. Namespaces organize groups of related classes. Each class’s name is actually a com-
bination of its namespace name, a dot (.) and the class name. This is known as the class’s
fully qualified class name. You can use the class’s simple name (the unqualified class
name—SimpleEventExample) in the app. Each class name is scoped to the namespace in
which it’s defined. If you were to reuse this class in another app, you’d use the fully qual-

Form properties,
methods and an event Description

Common Properties

AcceptButton Default Button that’s clicked for you when you press Enter.

AutoScroll bool value (false by default) that allows or disallows scrollbars when needed.

CancelButton Button that’s clicked when the Escape key is pressed.

FormBorderStyle Border style for the Form (Sizable by default).

Font Font of text displayed on the Form, and the default font for controls added
to the Form.

Text Text in the Form’s title bar.

Common Methods

Close Closes a Form and releases all resources, such as the memory used for the
Form’s contents. A closed Form cannot be reopened.

Hide Hides a Form, but does not destroy the Form or release its resources.

Show Displays a hidden Form.

Common Event

Load Occurs before a Form is displayed to the user. You’ll learn about events and
event-handling in the next section.

Fig. 14.4 | Common Form properties, methods and an event.

14.3 Event Handling 523

ified name or write a using directive so that you could refer to the class by its simple name.
We’ll use namespaces like this in Chapters 15 and 19. If another namespace also contains
a class with the same name, the fully qualified class names can be used to distinguish be-
tween the classes in the app and prevent a name conflict (also called a name collision).

Renaming the Form1.cs File
Using the techniques presented in Chapter 2, create a Form containing a Button. First, cre-
ate a new Windows Forms app. Next, rename the Form1.cs file to SimpleEventExample-
Form.cs in the Solution Explorer. Click the Form in the designer, then use the Properties
window to set the Form’s Text property to "Simple Event Example". Set the Form’s Font
property to Segoe UI, 9pt. To do so, select the Font property in the Properties window,
then click the ellipsis (…) button in the property’s value field to display a font dialog.

Adding a Button to the Form
Drag a Button from the Toolbox onto the Form. In the Properties window for the Button,
set the (Name) property to clickButton and the Text property to Click Me. You’ll notice
that we use a convention in which each variable name we create for a control ends with

1 // Fig. 14.5: SimpleEventExampleForm.cs
2 // Simple event handling example.
3 using System;
4 using System.Windows.Forms;
5
6 namespace SimpleEventExample
7 {
8 // Form that shows a simple event handler
9 public partial class SimpleEventExampleForm : Form

10 {
11 // default constructor
12 public SimpleEventExampleForm()
13 {
14 InitializeComponent();
15 } // end constructor
16
17
18
19
20
21
22 } // end class SimpleEventExampleForm
23 } // end namespace SimpleEventExample

Fig. 14.5 | Simple event-handling example.

// handles click event of Button clickButton
private void clickButton_Click(object sender, EventArgs e)
{

MessageBox.Show("Button was clicked.");
} // end method clickButton_Click

524 Chapter 14 Graphical User Interfaces with Windows Forms: Part 1

the control’s type. For example, in the variable name clickButton, “Button” is the con-
trol’s type.

Adding an Event Handler for the Button’s Click Event
When the user clicks the Button in this example, we want the app to respond by displaying
a MessageBox. To do this, you must create an event handler for the Button’s Click event.
You can create this event handler by double clicking the Button on the Form, which de-
clares the following empty event handler in the program code:

By convention, the IDE names the event-handler method as objectName_eventName (e.g.,
clickButton_Click). The clickButton_Click event handler executes when the user clicks
the clickButton control.

Event Handler Parameters
Each event handler receives two parameters when it’s called. The first—an object reference
typically named sender—is a reference to the object that generated the event. The second is
a reference to an EventArgs object (or an object of an EventArgs derived class), which is
typically named e. This object contains additional information about the event that oc-
curred. EventArgs is the base class of all classes that represent event information.

Displaying a MessageBox

To display a MessageBox in response to the event, insert the statement

in the event handler’s body. The resulting event handler appears in lines 18–21 of
Fig. 14.5. When you execute the app and click the Button, a MessageBox appears display-
ing the text "Button was clicked".

14.3.2 Auto-Generated GUI Code
Visual Studio places the auto-generated GUI code in the Designer.cs file of the Form
(SimpleEventExampleForm.Designer.cs in this example). You can open this file by ex-
panding the node in the Solution Explorer window for the file you’re currently working in
(SimpleEventExampleForm.cs) and double clicking the file name that ends with Design-
er.cs. Figs. 14.6 and 14.7 show this file’s contents. The IDE collapses the code in lines
23–57 of Fig. 14.7 by default—you can click the + icon next to line 23 to expand the code,
then click the – icon next to that line to collapse it.

Now that you have studied classes and objects in detail, this code will be easier to
understand. Since this code is created and maintained by Visual Studio, you generally
don’t need to look at it. In fact, you do not need to understand most of the code shown
here to build GUI apps. However, we now take a closer look to help you understand how
GUI apps work.

The auto-generated code that defines the GUI is actually part of the Form’s class—in
this case, SimpleEventExampleForm. Line 3 of Fig. 14.6 (and line 9 of Fig. 14.5) uses the
partial modifier, which allows this class to be split among multiple files, including the

private void clickButton_Click(object sender, EventArgs e)
{
}

MessageBox.Show("Button was clicked.");

14.3 Event Handling 525

files that contain auto-generated code and those in which you write your own code. Line
59 of Fig. 14.7 declares the clickButton that we created in Design mode. It’s declared as

Fig. 14.6 | First half of the Visual Studio generated code file.

Fig. 14.7 | Second half of the Visual Studio generated code file.

526 Chapter 14 Graphical User Interfaces with Windows Forms: Part 1

an instance variable of class SimpleEventExampleForm. By default, all variable declarations
for controls created through C#’s design window have a private access modifier. The code
also includes the Dispose method for releasing resources (Fig. 14.6, lines 14–21) and
method InitializeComponent (Fig. 14.7, lines 29–55), which contains the code that cre-
ates the Button, then sets some of the Button’s and the Form’s properties. The property
values correspond to the values set in the Properties window for each control. Visual
Studio adds comments to the code that it generates, as in lines 33–35. Line 42 was gener-
ated when we created the event handler for the Button’s Click event.

Method InitializeComponent is called when the Form is created, and establishes
such properties as the Form title, the Form size, control sizes and text. Visual Studio also
uses the code in this method to create the GUI you see in design view. Changing the code
in InitializeComponent may prevent Visual Studio from displaying the GUI properly.

14.3.3 Delegates and the Event-Handling Mechanism
The control that generates an event is known as the event sender. An event-handling
method—known as the event handler—responds to a particular event that a control gen-
erates. When the event occurs, the event sender calls its event handler to perform a task
(i.e., to “handle the event”).

The .NET event-handling mechanism allows you to choose your own names for
event-handling methods. However, each event-handling method must declare the proper
parameters to receive information about the event that it handles. Since you can choose
your own method names, an event sender such as a Button cannot know in advance which
method will respond to its events. So, we need a mechanism to indicate which method is
the event handler for an event.

Delegates
Event handlers are connected to a control’s events via special objects called delegates. A del-
egate type declaration specifies the signature of a method—in event handling, the signature
specifies the return type and arguments for an event handler. GUI controls have predefined
delegates that correspond to every event they can generate. For example, the delegate for a
Button’s Click event is of type EventHandler (namespace System). The online help docu-
mentation declares this type as follows:

This uses the delegate keyword to declare a delegate type named EventHandler, which
can hold references to methods that return void and receive two parameters—one of type
object (the event sender) and one of type EventArgs. If you compare the delegate declara-
tion with clickButton_Click’s first line (Fig. 14.5, line 18), you’ll see that this event han-
dler returns void and receives the parameters specified by the EventHandler delegate. The
preceding declaration actually creates an entire class for you. The details of this special
class’s declaration are handled by the compiler.

Error-Prevention Tip 14.1
The code generated by building a GUI in Design mode is not meant to be modified directly,
which is why this code is placed in a separate file. Modifying this code can prevent the GUI
from being displayed correctly in Design mode and might cause an app to function incor-
rectly. In Design mode, modify control properties only through the Properties window.

public delegate void EventHandler(object sender, EventArgs e);

14.3 Event Handling 527

Indicating the Method that a Delegate Should Call
An event sender calls a delegate object like a method. Since each event handler is declared
as a delegate, the event sender can simply call the appropriate delegate when an event oc-
curs—a Button calls the EventHandler delegate that corresponds to its Click event in re-
sponse to a click. The delegate’s job is to invoke the appropriate method. To enable the
clickButton_Clickmethod to be called, Visual Studio assigns clickButton_Click to the
click Button’s Click EventHandler delegate, as shown in line 42 of Fig. 14.7. This code
is added by Visual Studio when you double click the Button control in Design mode. The
expression

creates an EventHandler delegate object and initializes it with the clickButton_Click

method. Line 42 uses the += operator to add the delegate to the Button’s Click Event-
Handler delegate. This indicates that clickButton_Click will respond when a user clicks
the Button. The += operator is overloaded by the delegate class that’s created by the compiler.

Multicast Delegates
You can actually specify that several different methods should be invoked in response to
an event by adding other delegates to the Button’s Click event with statements similar to
line 42 of Fig. 14.7. Event delegates are multicast—they represent a set of delegate objects
that all have the same signature. Multicast delegates enable several methods to be called in
response to a single event. When an event occurs, the event sender calls every method ref-
erenced by the multicast delegate. This is known as event multicasting. Event delegates
derive from class MulticastDelegate, which derives from class Delegate (both from
namespace System). For most cases, you’ll specify only one event handler for a particular
event on a control.

14.3.4 Another Way to Create Event Handlers
For the GUI app in Fig. 14.5, you double clicked the Button control on the Form to create
its event handler. This technique creates an event handler for a control’s default event—the
event that’s most frequently used with that control. Controls can generate many different
events, and each one can have its own event handler. For instance, your app can also provide
an event handler for a Button’s MouseHover event, which occurs when the mouse pointer re-
mains positioned over the Button for a short period of time. We now discuss how to create
an event handler for an event that’s not a control’s default event.

Using the Properties Window to Create Event Handlers
You can create additional event handlers through the Properties window. If you select a
control on the Form, then click the Events icon (the lightning bolt icon in Fig. 14.8) in the
Properties window, all the events for that control are listed in the window. You can double
click an event’s name to display in the editor an existing event handler for that event, or
to create the event handler if it does not yet exist in your code. You can also select an event,
then use the drop-down list to its right to choose an existing method that should be used
as the event handler for that event. The methods that appear in this drop-down list are the
Form class’s methods that have the proper signature to be an event handler for the selected
event. You can return to viewing the properties of a control by selecting the Properties icon
(Fig. 14.8).

new System.EventHandler(this.clickButton_Click);

528 Chapter 14 Graphical User Interfaces with Windows Forms: Part 1

A single method can handle events from multiple controls. For example, the Click
events of three Buttons could all be handled by the same method. You can specify an event
handler for multiple events by selecting multiple controls (by dragging over them or holding
Shift and clicking each) and selecting a single method in the Properties window’s Events tab.
If you create a new event handler this way, you should rename it appropriately. You could
also select each control individually and specify the same method for each one’s event.

14.3.5 Locating Event Information
Read the Visual Studio documentation to learn about the different events raised by each
control. To do this, select a control in the IDE and press the F1 key to display that con-
trol’s online help (Fig. 14.9). The web page that’s displayed contains basic information

Fig. 14.8 | Viewing events for a Button control in the Properties window.

Fig. 14.9 | Link to list of Button events.

Events icon
Selected event

Properties icon

Control’s class nameLink to list of supported events

14.4 Control Properties and Layout 529

about the control’s class. In the left column of the page are several links to more informa-
tion about the class—Button Constructor, Button Methods, Button Properties and Button
Events. This list may vary by class. Each link displays a subset of the class’s members. Click
the link to the list of events for that control (Button Events in this case) to display the sup-
ported events for that control.

Next, click the name of an event to view its description and examples of its use. We
selected the Click event to display the information in Fig. 14.10. The Click event is a
member of class Control, an indirect base class of class Button. The Remarks section of
the page discusses the details of the selected event. Alternatively, you could use the Object
Browser to look up this information in the System.Windows.Forms namespace. The
Object Browser shows only the members originally defined in a given class. The Click
event is originally defined in class Control and inherited into Button. For this reason, you
must look at class Control in the Object Browser to see the documentation for the Click
event. See Section 10.12 for more information regarding the Object Browser.

14.4 Control Properties and Layout
This section overviews properties that are common to many controls. Controls derive
from class Control (namespace System.Windows.Forms). Figure 14.11 lists some of class
Control’s properties and methods. The properties shown here can be set for many con-
trols. For example, the Text property specifies the text that appears on a control. The lo-
cation of this text varies depending on the control. In a Form, the text appears in the title
bar, but the text of a Button appears on its face.

Fig. 14.10 | Click event details.

Event argument class Event name Event type

530 Chapter 14 Graphical User Interfaces with Windows Forms: Part 1

The Select method transfers the focus to a control and makes it the active control.
When you press the Tab key in an executing Windows Forms app, controls receive the focus
in the order specified by their TabIndex property. This property is set by Visual Studio based
on the order in which controls are added to a Form, but you can change the tabbing order
using VIEW > Tab Order. TabIndex is helpful for users who enter information in many con-
trols, such as a set of TextBoxes that represent a user’s name, address and telephone number.
The user can enter information, then quickly select the next control by pressing the Tab key.

The Enabled property indicates whether the user can interact with a control to gen-
erate an event. Often, if a control is disabled, it’s because an option is unavailable to the
user at that time. For example, text editor apps often disable the “paste” command until
the user copies some text. In most cases, a disabled control’s text appears in gray (rather
than in black). You can also hide a control from the user without disabling the control by
setting the Visible property to false or by calling method Hide. In each case, the control
still exists but is not visible on the Form.

Anchoring and Docking
You can use anchoring and docking to specify the layout of controls inside a container
(such as a Form). Anchoring causes controls to remain at a fixed distance from the sides of

Class Control
properties and
methods Description

Common Properties

BackColor The control’s background color.

BackgroundImage The control’s background image.

Enabled Specifies whether the control is enabled (i.e., if the user can interact with
it). Typically, portions of a disabled control appear “grayed out” as a
visual indication to the user that the control is disabled.

Focused Indicates whether the control has the focus (only available at runtime).

Font The Font used to display the control’s text.

ForeColor The control’s foreground color. This usually determines the color of the
text in the Text property.

TabIndex The tab order of the control. When the Tab key is pressed, the focus
transfers between controls based on the tab order. You can set this order.

TabStop If true, then a user can give focus to this control via the Tab key.

Text The text associated with the control. The location and appearance of the
text vary depending on the type of control.

Visible Indicates whether the control is visible.

Common Methods

Hide Hides the control (sets the Visible property to false).

Select Acquires the focus.

Show Shows the control (sets the Visible property to true).

Fig. 14.11 | Class Control properties and methods.

14.4 Control Properties and Layout 531

the container even when the container is resized. Anchoring enhances the user experience.
For example, if the user expects a control to appear in a particular corner of the app, an-
choring ensures that the control will always be in that corner—even if the user resizes the
Form. Docking attaches a control to a container such that the control stretches across an
entire side or fills an entire area. For example, a button docked to the top of a container
stretches across the entire top of that container, regardless of the width of the container.

When a window (or other type of parent container like a Panel) is resized, anchored
controls are moved (and possibly resized) so that the distance from the sides to which
they’re anchored does not vary. By default, most controls are anchored to the top-left
corner of the Form. To see the effects of anchoring a control, create a simple Windows
Forms app that contains two Buttons. Anchor one control to the right and bottom sides
by setting the Anchor property as shown in Fig. 14.12. Leave the other control with its
default anchoring (top, left). Execute the app and enlarge the Form. Notice that the Button
anchored to the bottom-right corner is always the same distance from the Form’s bottom-
right corner (Fig. 14.13), but that the other control stays its original distance from the top-
left corner of the Form.

Sometimes, it’s desirable for a control to span an entire side of the Form, even when
the Form is resized. For example, a control such as a status bar typically should remain at
the bottom of the Form. Docking allows a control to span an entire side (left, right, top or
bottom) of its parent container or to fill the entire container. When the parent control is

Fig. 14.12 | Manipulating the Anchor property of a control.

Fig. 14.13 | Anchoring demonstration.

Click the down-arrow in
the Anchor property to
display the anchoring
window

Darkened bars indicate the container’s
side(s) to which the control is anchored;
use mouse clicks to select or deselect a bar

Anchoring
window

Before resizing After resizing

Constant
distance to right
and bottom sides

532 Chapter 14 Graphical User Interfaces with Windows Forms: Part 1

resized, the docked control resizes as well. In Fig. 14.14, a Button is docked at the top of
the Form (spanning the top portion). When the Form is resized, the Button is resized to the
Form’s new width. Forms have a Padding property that specifies the distance between the
docked controls and the Form edges. This property specifies four values (one for each side),
and each value is set to 0 by default. Some common control layout properties are summa-
rized in Fig. 14.15.

The Anchor and Dock properties of a Control are set with respect to the Control’s
parent container, which could be a Form or another parent container (such as a Panel; dis-
cussed in Section 14.6). The minimum and maximum Form (or other Control) sizes can
be set via properties MinimumSize and MaximumSize, respectively. Both are of type Size,
which has properties Width and Height to specify the size of the Form. Properties Mini-
mumSize and MaximumSize allow you to design the GUI layout for a given size range. The
user cannot make a Form smaller than the size specified by property MinimumSize and
cannot make a Form larger than the size specified by property MaximumSize. To set a Form
to a fixed size (where the Form cannot be resized by the user), set its minimum and max-
imum size to the same value.

Fig. 14.14 | Docking a Button to the top of a Form.

Control layout
properties Description

Anchor Causes a control to remain at a fixed distance from the side(s) of the con-
tainer even when the container is resized.

Dock Allows a control to span one side of its container or to fill the remaining
space in the container.

Padding Sets the space between a container’s edges and docked controls. The
default is 0, causing the control to appear flush with the container’s sides.

Location Specifies the location (as a set of coordinates) of the upper-left corner of
the control, in relation to its container’s upper-left corner.

Size Specifies the size of the control in pixels as a Size object, which has prop-
erties Width and Height.

MinimumSize,
MaximumSize

Indicates the minimum and maximum size of a Control, respectively.

Fig. 14.15 | Control layout properties.

Before resizing After resizing

Control extends
along entire top
portion of form

14.5 Labels, TextBoxes and Buttons 533

Using Visual Studio To Edit a GUI’s Layout
Visual Studio helps you with GUI layout. When you drag a control across a Form, blue snap
lines appear to help you position the control with respect to others (Fig. 14.16) and the
Form’s edges. This feature makes the control you’re dragging appear to “snap into place”
alongside other controls. Visual Studio also provides the FORMAT menu, which contains
options for modifying your GUI’s layout. The FORMAT menu does not appear in the IDE
unless you select one or more controls in design view. When you select multiple controls,
you can align them with the FORMAT menu’s Align submenu. The FORMAT menu also en-
ables you to modify the space between controls or to center a control on the Form.

14.5 Labels, TextBoxes and Buttons
Labels provide text information (as well as optional images) and are defined with class La-
bel (a derived class of Control). A Label displays text that the user cannot directly modify.
A Label’s text can be changed programmatically by modifying the Label’s Text property.
Figure 14.17 lists common Label properties.

A textbox (class TextBox) is an area in which either text can be displayed by a program
or the user can type text via the keyboard. A password TextBox is a TextBox that hides the
information entered by the user. As the user types characters, the password TextBox masks
the user input by displaying a password character. If you set the property UseSystemPass-

wordChar to true, the TextBox becomes a password TextBox. Users often encounter both
types of TextBoxes, when logging into a computer or website—the username TextBox
allows users to input their usernames; the password TextBox allows users to enter their
passwords. Figure 14.18 lists the common properties and a common event of TextBoxes.

Fig. 14.16 | Snap lines for aligning controls.

CommonLabel
properties Description

Font The font of the text on the Label.

Text The text on the Label.

TextAlign The alignment of the Label’s text on the control—horizon-
tally (left, center or right) and vertically (top, middle or bot-
tom). The default is top, left.

Fig. 14.17 | Common Label properties.

Snap line to help align
controls on their left sides

Snap line that indicates when
a control reaches the
minimum recommended
distance from another control
or the edge of a Form

534 Chapter 14 Graphical User Interfaces with Windows Forms: Part 1

A button is a control that the user clicks to trigger a specific action or to select an
option in a program. As you’ll see, a program can use several types of buttons, such as
checkboxes and radio buttons. All the button classes derive from class ButtonBase

(namespace System.Windows.Forms), which defines common button features. In this sec-
tion, we discuss class Button, which typically enables a user to issue a command to an app.
Figure 14.19 lists common properties and a common event of class Button.

TextBoxproperties
and an event Description

Common Properties

AcceptsReturn If true in a multiline TextBox, pressing Enter in the TextBox creates a
new line. If false (the default), pressing Enter is the same as pressing
the default Button on the Form. The default Button is the one assigned
to a Form’s AcceptButton property.

Multiline If true, the TextBox can span multiple lines. The default value is false.

ReadOnly If true, the TextBox has a gray background, and its text cannot be
edited. The default value is false.

ScrollBars For multiline textboxes, this property indicates which scrollbars appear
(None—the default, Horizontal, Vertical or Both).

Text The TextBox’s text content.

UseSystem-

PasswordChar

When true, the TextBox becomes a password TextBox, and the system-
specified character masks each character the user types.

Common Event

TextChanged Generated when the text changes in a TextBox (i.e., when the user adds
or deletes characters). When you double click the TextBox control in
Design mode, an empty event handler for this event is generated.

Fig. 14.18 | TextBox properties and an event.

Buttonproperties
and an event Description

Common Properties

Text Specifies the text displayed on the Button face.

FlatStyle Modifies a Button’s appearance—Flat (for the Button to display without
a three-dimensional appearance), Popup (for the Button to appear flat
until the user moves the mouse pointer over the Button), Standard
(three-dimensional) and System, where the Button’s appearance is con-
trolled by the operating system. The default value is Standard.

Common Event

Click Generated when the user clicks the Button. When you double click a
Button in design view, an empty event handler for this event is created.

Fig. 14.19 | Button properties and an event.

14.5 Labels, TextBoxes and Buttons 535

Figure 14.20 uses a TextBox, a Button and a Label. The user enters text into a pass-
word box and clicks the Button, causing the text input to be displayed in the Label. Nor-
mally, we would not display this text—the purpose of password TextBoxes is to hide the
text being entered by the user. When the user clicks the Show Me Button, this app retrieves
the text that the user typed in the password TextBox and displays it in a Label.

First, create the GUI by dragging the controls (a TextBox, a Button and a Label) onto
the Form. Once the controls are positioned, change their names in the Properties window
from the default values—textBox1, button1 and label1—to the more descriptive dis-
playPasswordLabel, displayPasswordButton and inputPasswordTextBox. The (Name)
property in the Properties window enables us to change the variable name for a control.
Visual Studio creates the necessary code and places it in method InitializeComponent of
the partial class in the file LabelTextBoxButtonTestForm.Designer.cs.

1 // Fig. 14.20: LabelTextBoxButtonTestForm.cs
2 // Using a TextBox, Label and Button to display
3 // the hidden text in a password TextBox.
4 using System;
5 using System.Windows.Forms;
6
7 namespace LabelTextBoxButtonTest
8 {
9 // Form that creates a password TextBox and

10 // a Label to display TextBox contents
11 public partial class LabelTextBoxButtonTestForm : Form
12 {
13 // default constructor
14 public LabelTextBoxButtonTestForm()
15 {
16 InitializeComponent();
17 } // end constructor
18
19
20
21
22
23
24
25
26 } // end class LabelTextBoxButtonTestForm
27 } // end namespace LabelTextBoxButtonTest

Fig. 14.20 | Program to display hidden text in a password box.

// display user input in Label
private void displayPasswordButton_Click(

object sender, EventArgs e)
{

// display the text that the user typed
displayPasswordLabel.Text = inputPasswordTextBox.Text;

} // end method displayPasswordButton_Click

536 Chapter 14 Graphical User Interfaces with Windows Forms: Part 1

We set displayPasswordButton’s Text property to “Show Me” and clear the Text of
displayPasswordLabel so that it’s blank when the program begins executing. The Bor-
derStyle property of displayPasswordLabel is set to Fixed3D, giving our Label a three-
dimensional appearance. We also changed its TextAlign property to MiddleLeft so that
the Label’s text is displayed centered between its top and bottom. The password character
for inputPasswordTextBox is determined by the user’s system settings when you set Use-
SystemPasswordChar to true.

We create an event handler for displayPasswordButton by double clicking this con-
trol in Design mode. We added line 24 to the event handler’s body. When the user clicks
the Show Me Button in the executing app, line 24 obtains the text entered by the user in
inputPasswordTextBox and displays the text in displayPasswordLabel.

14.6 GroupBoxes and Panels
GroupBoxes and Panels arrange controls on a GUI. GroupBoxes and Panels are typically
used to group several controls of similar functionality or several controls that are related in
a GUI. All of the controls in a GroupBox or Panel move together when the GroupBox or
Panel is moved. Furthermore, a GroupBoxes and Panels can also be used to show or hide
a set of controls at once. When you modify a container’s Visible property, it toggles the
visibility of all the controls within it.

The primary difference between these two controls is that GroupBoxes can display a
caption (i.e., text) and do not include scrollbars, whereas Panels can include scrollbars and
do not include a caption. GroupBoxes have thin borders by default; Panels can be set so
that they also have borders by changing their BorderStyle property. Figures 14.21–14.22
list the common properties of GroupBoxes and Panels, respectively.

Look-and-Feel Observation 14.2
Panels and GroupBoxes can contain other Panels and GroupBoxes for more complex layouts.

GroupBox properties Description

Controls The set of controls that the GroupBox contains.

Text Specifies the caption text displayed at the top of the GroupBox.

Fig. 14.21 | GroupBox properties.

Panel properties Description

AutoScroll Indicates whether scrollbars appear when the Panel is too small to
display all of its controls. The default value is false.

BorderStyle Sets the border of the Panel. The default value is None; other
options are Fixed3D and FixedSingle.

Controls The set of controls that the Panel contains.

Fig. 14.22 | Panel properties.

14.6 GroupBoxes and Panels 537

To create a GroupBox, drag its icon from the Toolbox onto a Form. Then, drag new
controls from the Toolbox into the GroupBox. These controls are added to the GroupBox’s
Controls property and become part of the GroupBox. The GroupBox’s Text property spec-
ifies the caption at the top of the GroupBox.

To create a Panel, drag its icon from the Toolbox onto the Form. You can then add
controls directly to the Panel by dragging them from the Toolbox onto the Panel. To
enable the scrollbars, set the Panel’s AutoScroll property to true. If the Panel is resized
and cannot display all of its controls, scrollbars appear (Fig. 14.23). The scrollbars can be
used to view all the controls in the Panel—at design time and at execution time. In
Fig. 14.23, we set the Panel’s BorderStyle property to FixedSingle so that you can see
the Panel in the Form.

The program in Fig. 14.24 uses a GroupBox and a Panel to arrange Buttons. When
these Buttons are clicked, their event handlers change the text on a Label.

Look-and-Feel Observation 14.3
You can organize a GUI by anchoring and docking controls inside a GroupBox or Panel.
The GroupBox or Panel then can be anchored or docked inside a Form. This divides con-
trols into functional “groups” that can be arranged easily.

Fig. 14.23 | Creating a Panel with scrollbars.

Look-and-Feel Observation 14.4
Use Panels with scrollbars to avoid cluttering a GUI and to reduce the GUI’s size.

1 // Fig. 14.24: GroupBoxPanelExampleForm.cs
2 // Using GroupBoxes and Panels to arrange Buttons.
3 using System;
4 using System.Windows.Forms;

Fig. 14.24 | Using GroupBoxes and Panels to arrange Buttons. (Part 1 of 2.)

Panel
Control inside

Panel

Panel
scrollbars

Panel
resized

538 Chapter 14 Graphical User Interfaces with Windows Forms: Part 1

The mainGroupBox has two Buttons—hiButton (which displays the text Hi) and bye-
Button (which displays the text Bye). The Panel (named mainPanel) also has two Buttons,
leftButton (which displays the text Far Left) and rightButton (which displays the text Far
Right). The mainPanel has its AutoScroll property set to true, allowing scrollbars to appear

5
6 namespace GroupBoxPanelExample
7 {
8 // Form that displays a GroupBox and a Panel
9 public partial class GroupBoxPanelExampleForm : Form

10 {
11 // default constructor
12 public GroupBoxPanelExampleForm()
13 {
14 InitializeComponent();
15 } // end constructor
16
17 // event handler for Hi Button
18 private void hiButton_Click(object sender, EventArgs e)
19 {
20 messageLabel.Text = "Hi pressed"; // change text in Label
21 } // end method hiButton_Click
22
23 // event handler for Bye Button
24 private void byeButton_Click(object sender, EventArgs e)
25 {
26 messageLabel.Text = "Bye pressed"; // change text in Label
27 } // end method byeButton_Click
28
29 // event handler for Far Left Button
30 private void leftButton_Click(object sender, EventArgs e)
31 {
32 messageLabel.Text = "Far left pressed"; // change text in Label
33 } // end method leftButton_Click
34
35 // event handler for Far Right Button
36 private void rightButton_Click(object sender, EventArgs e)
37 {
38 messageLabel.Text = "Far right pressed"; // change text in Label
39 } // end method rightButton_Click
40 } // end class GroupBoxPanelExampleForm
41 } // end namespace GroupBoxPanelExample

Fig. 14.24 | Using GroupBoxes and Panels to arrange Buttons. (Part 2 of 2.)

14.7 CheckBoxes and RadioButtons 539

when the contents of the Panel require more space than the Panel’s visible area. The Label
(named messageLabel) is initially blank. To add controls to mainGroupBox or mainPanel,
Visual Studio calls method Add of each container’s Controls property. This code is placed
in the partial class located in the file GroupBoxPanelExample.Designer.cs.

The event handlers for the four Buttons are located in lines 18–39. Lines 20, 26, 32
and 38 change the text of messageLabel to indicate which Button the user pressed.

14.7 CheckBoxes and RadioButtons
C# has two types of state buttons that can be in the on/off or true/false states—CheckBox-

es and RadioButtons. Like class Button, classes CheckBox and RadioButton are derived
from class ButtonBase.

CheckBoxes
A CheckBox is a small square that either is blank or contains a check mark. When the user
clicks a CheckBox to select it, a check mark appears in the box. If the user clicks the Check-
Box again to deselect it, the check mark is removed. You can also configure a CheckBox to
toggle between three states (checked, unchecked and indeterminate) by setting its Three-

State property to true. Any number of CheckBoxes can be selected at a time. A list of
common CheckBox properties and events appears in Fig. 14.25.

CheckBoxproperties
and events Description

Common Properties

Appearance By default, this property is set to Normal, and the CheckBox displays as
a traditional checkbox. If it’s set to Button, the CheckBox displays as a
Button that looks pressed when the CheckBox is checked.

Checked Indicates whether the CheckBox is checked (contains a check mark) or
unchecked (blank). This property returns a bool value. The default is
false (unchecked).

CheckState Indicates whether the CheckBox is checked or unchecked with a value
from the CheckState enumeration (Checked, Unchecked or
Indeterminate). Indeterminate is used when it’s unclear whether the
state should be Checked or Unchecked. When CheckState is set to
Indeterminate, the CheckBox is usually shaded.

Text Specifies the text displayed to the right of the CheckBox.

ThreeState When this property is true, the CheckBox has three states—checked,
unchecked and indeterminate. By default, this property is false and
the CheckBox has only two states—checked and unchecked.

Common Events

CheckedChanged Generated when the Checked or CheckState property changes. This is a
CheckBox’s default event. When a user double clicks the CheckBox con-
trol in design view, an empty event handler for this event is generated.

CheckStateChanged Generated when the Checked or CheckState property changes.

Fig. 14.25 | CheckBox properties and events.

540 Chapter 14 Graphical User Interfaces with Windows Forms: Part 1

The program in Fig. 14.26 allows the user to select CheckBoxes to change a Label’s
font style. The event handler for one CheckBox applies bold and the event handler for the
other applies italic. If both CheckBoxes are selected, the font style is set to bold and italic.
Initially, neither CheckBox is checked.

The boldCheckBox has its Text property set to Bold. The italicCheckBox has its
Text property set to Italic. The Text property of outputLabel is set to Watch the font

style change. After creating the controls, we define their event handlers. Double clicking
the CheckBoxes at design time creates empty CheckedChanged event handlers.

1 // Fig. 14.26: CheckBoxTestForm.cs
2 // Using CheckBoxes to toggle italic and bold styles.
3 using System;
4 using System.Drawing;
5 using System.Windows.Forms;
6
7 namespace CheckBoxTest
8 {
9 // Form contains CheckBoxes to allow the user to modify sample text

10 public partial class CheckBoxTestForm : Form
11 {
12 // default constructor
13 public CheckBoxTestForm()
14 {
15 InitializeComponent();
16 } // end constructor
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35 } // end class CheckBoxTestForm
36 } // end namespace CheckBoxTest

Fig. 14.26 | Using CheckBoxes to change font styles.

// toggle the font style between bold and
// not bold based on the current setting
private void boldCheckBox_CheckedChanged(

object sender, EventArgs e)
{

outputLabel.Font = new Font(outputLabel.Font,
outputLabel.Font.Style ^ FontStyle.Bold);

} // end method boldCheckBox_CheckedChanged

// toggle the font style between italic and
// not italic based on the current setting
private void italicCheckBox_CheckedChanged(

object sender, EventArgs e)
{

outputLabel.Font = new Font(outputLabel.Font,
outputLabel.Font.Style ^ FontStyle.Italic);

} // end method italicCheckBox_CheckedChanged

14.7 CheckBoxes and RadioButtons 541

To change a Label’s font style, set its Font property to a new Font object (lines 23–24
and 32–33). Class Font is in the System.Drawing namespace. The Font constructor that we
use here takes the current font and new style as arguments. The first argument—output-

Label.Font—uses outputLabel’s original font name and size. The style is specified with a
member of the FontStyle enumeration, which contains Regular, Bold, Italic, Strikeout
and Underline. (The Strikeout style displays text with a line through it.) A Font object’s
Style property is read-only, so it can be set only when the Font object is created.

Combining Font Styles with Bitwise Operators
Styles can be combined via bitwise operators—operators that perform manipulation on
bits of information. Recall from Chapter 1 that all data is represented in the computer as
combinations of 0s and 1s. Each 0 or 1 represents a bit. The FontStyle (namespace Sys-
tem.Drawing) is represented as a set of bits that are selected in a way that allows us to com-
bine different FontStyle elements to create compound styles, using bitwise operators.
These styles are not mutually exclusive, so we can combine different styles and remove them
without affecting the combination of previous FontStyle elements. We can combine
these various font styles, using either the logical OR (|) operator or the logical exclusive OR
(^) operator (also called XOR). When the logical OR operator is applied to two bits, if at
least one bit of the two has the value 1, then the result is 1. Combining styles using the
logical OR operator works as follows. Assume that FontStyle.Bold is represented by bits
01 and that FontStyle.Italic is represented by bits 10. When we use the logical OR (|)
to combine the styles, we obtain the bits 11.

The logical OR operator helps create style combinations. However, what happens if we
want to undo a style combination, as we did in Fig. 14.26?

The logical exclusive OR operator enables us to combine styles and to undo existing style
settings. When logical exclusive OR is applied to two bits, if both bits have the same value,
then the result is 0. If both bits are different, then the result is 1.

Combining styles using logical exclusive OR works as follows. Assume, again, that
FontStyle.Bold is represented by bits 01 and that FontStyle.Italic is represented by
bits 10. When we use logical exclusive OR (^) on both styles, we obtain the bits 11.

Now, suppose that we would like to remove the FontStyle.Bold style from the pre-
vious combination of FontStyle.Bold and FontStyle.Italic. The easiest way to do so
is to reapply the logical exclusive OR (^) operator to the compound style and Font-

Style.Bold.

01 = Bold
10 = Italic
--
11 = Bold and Italic

01 = Bold
10 = Italic
--
11 = Bold and Italic

11 = Bold and Italic
01 = Bold
--
10 = Italic

542 Chapter 14 Graphical User Interfaces with Windows Forms: Part 1

This is a simple example. The advantages of using bitwise operators to combine FontStyle
values become more evident when we consider that there are five FontStyle values (Bold,
Italic, Regular, Strikeout and Underline), resulting in 16 FontStyle combinations.
Using bitwise operators to combine font styles greatly reduces the amount of code required
to check all possible font combinations.

In Fig. 14.26, we need to set the FontStyle so that the text appears in bold if it was
not bold originally, and vice versa. Line 24 uses the bitwise logical exclusive OR operator to
do this. If outputLabel.Font.Style is bold, then the resulting style is not bold. If the text
is originally italic, the resulting style is bold and italic, rather than just bold. The same
applies for FontStyle.Italic in line 33.

If we didn’t use bitwise operators to compound FontStyle elements, we’d have to test
for the current style and change it accordingly. In boldCheckBox_CheckedChanged, we
could test for the regular style and make it bold, test for the bold style and make it regular,
test for the italic style and make it bold italic and test for the italic bold style and make it
italic. This is cumbersome because, for every new style we add, we double the number of
combinations. Adding a CheckBox for underline would require testing eight additional
styles. Adding a CheckBox for strikeout would require testing 16 additional styles.

RadioButtons
Radio buttons (defined with class RadioButton) are similar to CheckBoxes in that they also
have two states—selected and not selected (also called deselected). However, RadioBut-
tons normally appear as a group, in which only one RadioButton can be selected at a time.
Selecting one RadioButton in the group forces all the others to be deselected. Therefore,
RadioButtons are used to represent a set of mutually exclusive options (i.e., a set in which
multiple options cannot be selected at the same time).

All RadioButtons added to a container become part of the same group. To divide
RadioButtons into several groups, they must be added to separate containers, such as
GroupBoxes or Panels. The common properties and a common event of class RadioButton
are listed in Fig. 14.27.

Look-and-Feel Observation 14.5
Use RadioButtons when the user should choose only one option in a group. Use Check-
Boxes when the user should be able to choose multiple options in a group.

RadioButton
properties and an event Description

Common Properties
Checked Indicates whether the RadioButton is checked.
Text Specifies the RadioButton’s text.

Common Event
CheckedChanged Generated every time the RadioButton is checked or unchecked.

When you double click a RadioButton control in design view, an
empty event handler for this event is generated.

Fig. 14.27 | RadioButton properties and an event.

14.7 CheckBoxes and RadioButtons 543

The program in Fig. 14.28 uses RadioButtons to enable users to select options for a
MessageBox. After selecting the desired attributes, the user presses the Display Button to
display the MessageBox. A Label in the lower-left corner shows the result of the Mes-
sageBox (i.e., which Button the user clicked—Yes, No, Cancel, etc.).

Software Engineering Observation 14.1
Forms, GroupBoxes, and Panels can act as logical groups for RadioButtons. The
RadioButtons within each group are mutually exclusive to each other, but not to
RadioButtons in different logical groups.

1 // Fig. 14.28: RadioButtonsTestForm.cs
2 // Using RadioButtons to set message window options.
3 using System;
4 using System.Windows.Forms;
5
6 namespace RadioButtonsTest
7 {
8 // Form contains several RadioButtons--user chooses one
9 // from each group to create a custom MessageBox

10 public partial class RadioButtonsTestForm : Form
11 {
12 // create variables that store the user's choice of options
13 private MessageBoxIcon iconType;
14 private MessageBoxButtons buttonType;
15
16 // default constructor
17 public RadioButtonsTestForm()
18 {
19 InitializeComponent();
20 } // end constructor
21
22 // change Buttons based on option chosen by sender
23 private void buttonType_CheckedChanged(
24 object sender, EventArgs e)
25 {
26 if (sender == okRadioButton) // display OK Button
27 buttonType = MessageBoxButtons.OK;
28
29 // display OK and Cancel Buttons
30 else if (sender == okCancelRadioButton)
31 buttonType = MessageBoxButtons.OKCancel;
32
33 // display Abort, Retry and Ignore Buttons
34 else if (sender == abortRetryIgnoreRadioButton)
35 buttonType = MessageBoxButtons.AbortRetryIgnore;
36
37 // display Yes, No and Cancel Buttons
38 else if (sender == yesNoCancelRadioButton)
39 buttonType = MessageBoxButtons.YesNoCancel;
40

Fig. 14.28 | Using RadioButtons to set message-window options. (Part 1 of 4.)

544 Chapter 14 Graphical User Interfaces with Windows Forms: Part 1

41 // display Yes and No Buttons
42 else if (sender == yesNoRadioButton)
43 buttonType = MessageBoxButtons.YesNo;
44
45 // only one option left--display Retry and Cancel Buttons
46 else

47 buttonType = MessageBoxButtons.RetryCancel;
48 } // end method buttonType_CheckedChanged
49
50 // change Icon based on option chosen by sender
51 private void iconType_CheckedChanged(object sender, EventArgs e)
52 {
53 if (sender == asteriskRadioButton) // display asterisk Icon
54 iconType = MessageBoxIcon.Asterisk;
55
56 // display error Icon
57 else if (sender == errorRadioButton)
58 iconType = MessageBoxIcon.Error;
59
60 // display exclamation point Icon
61 else if (sender == exclamationRadioButton)
62 iconType = MessageBoxIcon.Exclamation;
63
64 // display hand Icon
65 else if (sender == handRadioButton)
66 iconType = MessageBoxIcon.Hand;
67
68 // display information Icon
69 else if (sender == informationRadioButton)
70 iconType = MessageBoxIcon.Information;
71
72 // display question mark Icon
73 else if (sender == questionRadioButton)
74 iconType = MessageBoxIcon.Question;
75
76 // display stop Icon
77 else if (sender == stopRadioButton)
78 iconType = MessageBoxIcon.Stop;
79
80 // only one option left--display warning Icon
81 else

82 iconType = MessageBoxIcon.Warning;
83 } // end method iconType_CheckedChanged
84
85 // display MessageBox and Button user pressed
86 private void displayButton_Click(object sender, EventArgs e)
87 {
88
89
90
91
92
93

Fig. 14.28 | Using RadioButtons to set message-window options. (Part 2 of 4.)

// display MessageBox and store
// the value of the Button that was pressed
DialogResult result = MessageBox.Show(

"This is your Custom MessageBox.", "Custon MessageBox",
buttonType, iconType);

14.7 CheckBoxes and RadioButtons 545

94 // check to see which Button was pressed in the MessageBox
95 // change text displayed accordingly
96 switch (result)
97 {
98 case DialogResult.OK:
99 displayLabel.Text = "OK was pressed.";
100 break;
101 case DialogResult.Cancel:
102 displayLabel.Text = "Cancel was pressed.";
103 break;
104 case DialogResult.Abort:
105 displayLabel.Text = "Abort was pressed.";
106 break;
107 case DialogResult.Retry:
108 displayLabel.Text = "Retry was pressed.";
109 break;
110 case DialogResult.Ignore:
111 displayLabel.Text = "Ignore was pressed.";
112 break;
113 case DialogResult.Yes:
114 displayLabel.Text = "Yes was pressed.";
115 break;
116 case DialogResult.No:
117 displayLabel.Text = "No was pressed.";
118 break;
119 } // end switch
120 } // end method displayButton_Click
121 } // end class RadioButtonsTestForm
122 } // end namespace RadioButtonsTest

Fig. 14.28 | Using RadioButtons to set message-window options. (Part 3 of 4.)

b) AbortRetryIgnore button typea) GUI for testing RadioButtons

546 Chapter 14 Graphical User Interfaces with Windows Forms: Part 1

We store the user’s choices in iconType and buttonType (declared in lines 13–14).
Object iconType is of type MessageBoxIcon, and can have values Asterisk, Error,
Exclamation, Hand, Information, None, Question, Stop and Warning. The sample output
shows only Error, Exclamation, Information and Question icons.

Object buttonType is of type MessageBoxButtons, and can have values Abort-

RetryIgnore, OK, OKCancel, RetryCancel, YesNo and YesNoCancel. The name indicates
the options that are presented to the user in the MessageBox. The sample output windows
show MessageBoxes for all of the MessageBoxButtons enumeration values.

We created two GroupBoxes, one for each set of enumeration values. The GroupBox
captions are Button Type and Icon. The GroupBoxes contain RadioButtons for the corre-
sponding enumeration options, and the RadioButtons’ Text properties are set appropri-
ately. Because the RadioButtons are grouped, only one RadioButton can be selected from
each GroupBox. There’s also a Button (displayButton) labeled Display. When a user clicks
this Button, a customized MessageBox is displayed. A Label (displayLabel) displays
which Button the user pressed within the MessageBox.

The event handler for the RadioButtons handles the CheckedChanged event of each
RadioButton. When a RadioButton contained in the Button Type GroupBox is checked,
the corresponding event handler sets buttonType to the appropriate value. Lines 23–48
contain the event handling for these RadioButtons. Similarly, when the user checks the

Fig. 14.28 | Using RadioButtons to set message-window options. (Part 4 of 4.)

e) AbortRetryIgnore button type f) YesNoCancel button type

h) RetryCancel button typeg) YesNo button type

d) OK button typec) OKCancel button type

14.8 PictureBoxes 547

RadioButtons belonging to the Icon GroupBox, the corresponding event handler associated
with these events (lines 51–83) sets iconType to the appropriate value.

The Click event handler for displayButton (lines 86–120) creates a MessageBox
(lines 90–92). The MessageBox options are specified with the values stored in iconType

and buttonType. When the user clicks one of the MessageBox’s buttons, the result of the
message box is returned to the app. This result is a value from the DialogResult enumer-
ation that contains Abort, Cancel, Ignore, No, None, OK, Retry or Yes. The switch state-
ment in lines 96–119 tests for the result and sets displayLabel.Text appropriately.

14.8 PictureBoxes
A PictureBox displays an image. The image can be one of several formats, such as bitmap,
PNG (Portable Network Graphics), GIF (Graphics Interchange Format) and JPEG. A
PictureBox’s Image property specifies the image that’s displayed, and the SizeMode prop-
erty indicates how the image is displayed (Normal, StretchImage, Autosize, CenterImage
or Zoom). Figure 14.29 describes common PictureBox properties and a common event.

Figure 14.30 uses a PictureBox named imagePictureBox to display one of three
bitmap images—image0.bmp, image1.bmp or image2.bmp. These images are provided in
the Images subdirectory of this chapter’s examples directory. Whenever a user clicks the
Next Image Button, the image changes to the next image in sequence. When the last image
is displayed and the user clicks the Next Image Button, the first image is displayed again.

PictureBoxproperties
and an event Description

Common Properties

Image Sets the image to display in the PictureBox.

SizeMode Enumeration that controls image sizing and positioning. Values are
Normal (default), StretchImage, AutoSize, CenterImage, and Zoom.
Normal places the image in the PictureBox’s top-left corner, and
CenterImage puts the image in the middle. These two options trun-
cate the image if it’s too large. StretchImage resizes the image to fit
in the PictureBox. AutoSize resizes the PictureBox to hold the
image. Zoom resizes the image to to fit the PictureBox but maintains
the original aspect ratio.

Common Event

Click Occurs when the user clicks a control. When you double click this
control in the designer, an event handler is generated for this event.

Fig. 14.29 | PictureBox properties and an event.

1 // Fig. 14.30: PictureBoxTestForm.cs
2 // Using a PictureBox to display images.
3 using System;

Fig. 14.30 | Using a PictureBox to display images. (Part 1 of 2.)

548 Chapter 14 Graphical User Interfaces with Windows Forms: Part 1

4 using System.Drawing;
5 using System.Windows.Forms;
6
7 namespace PictureBoxTest
8 {
9 // Form to display different images when PictureBox is clicked

10 public partial class PictureBoxTestForm : Form
11 {
12 private int imageNum = -1; // determines which image is displayed
13
14 // default constructor
15 public PictureBoxTestForm()
16 {
17 InitializeComponent();
18 } // end constructor
19
20 // change image whenever Next Button is clicked
21 private void nextButton_Click(object sender, EventArgs e)
22 {
23 imageNum = (imageNum + 1) % 3; // imageNum cycles from 0 to 2
24
25
26
27
28
29 } // end method nextButton_Click
30 } // end class PictureBoxTestForm
31 } // end namespace PictureBoxTest

Fig. 14.30 | Using a PictureBox to display images. (Part 2 of 2.)

// retrieve image from resources and load into PictureBox
imagePictureBox.Image = (Image)

(Properties.Resources.ResourceManager.GetObject(
string.Format(“image{0}”, imageNum)));

14.9 ToolTips 549

Using Resources Programmatically
In this example, we added the images to the project as resources. This causes the compiler
to embed the images in the app’s executable file and enables the app to access the images
through the project’s Properties namespace. By embedding the images in the app, you
don’t need to worry about wrapping the images with the app when you move it to another
location or computer.

If you’re creating a new project, use the following steps to add images to the project
as resources:

1. After creating your project, right click the project’s Properties node in the
Solution Explorer and select Open to display the project’s properties.

2. From the tabs on the left, click the Resources tab.

3. At the top of the Resources tab, click the down arrow next to Add Resource and
select Add Existing File… to display the Add existing file to resources dialog.

4. Locate the image files you wish to add as resources and click the Open button. We
provided three sample images in the Images folder with this chapter’s examples.

5. Save your project.

The files now appear in a folder named Resources in the Solution Explorer. We’ll use
this technique in most examples that use images going forward.

A project’s resources are stored in its Resources class (of the project’s Properties
namespace). The Resources class contains a ResourceManager object for interacting with
the resources programmatically. To access an image, you can use the method GetObject,
which takes as an argument the resource name as it appears in the Resources tab (e.g.,
"image0") and returns the resource as an Object. Lines 27–28 invoke GetObject with the
result of the expression

which builds the name of the resource by placing the index of the next picture (imageNum,
which was obtained earlier in line 23) at the end of the word "image". You must convert
this Object to type Image (namespace System.Drawing) to assign it to the PictureBox’s
Image property (line 26).

The Resources class also provides direct access to the resources you define with
expressions of the form Resources.resourceName, where resourceName is the name you
provided to the resource when you created it. When using such an expression, the resource
returned already has the appropriate type. For example, Properties.Resources.image0
is an Image object representing the first image.

14.9 ToolTips
In Chapter 2, we demonstrated tool tips—the helpful text that appears when the mouse
hovers over an item in a GUI. Recall that the tool tips displayed in Visual Studio help you
become familiar with the IDE’s features and serve as useful reminders for each toolbar
icon’s functionality. Many programs use tool tips to remind users of each control’s pur-
pose. For example, Microsoft Word has tool tips that help users determine the purpose of
the app’s icons. This section demonstrates how to use the ToolTip component to add tool

string.Format("image{0}", imageNum)

550 Chapter 14 Graphical User Interfaces with Windows Forms: Part 1

tips to your apps. Figure 14.31 describes common properties and a common event of class
ToolTip.

When you add a ToolTip component from the Toolbox, it appears in the component
tray—the region below the Form in Design mode. Once a ToolTip is added to a Form, a
new property appears in the Properties window for the Form’s other controls. This prop-
erty appears in the Properties window as ToolTip on, followed by the name of the ToolTip
component. For instance, if our Form’s ToolTip were named helpfulToolTip, you would
set a control’s ToolTip on helpfulToolTip property value to specify the control’s tool tip text.
Figure 14.32 demonstrates the ToolTip component. For this example, we create a GUI
containing two Labels, so we can demonstrate different tool tip text for each Label. To
make the sample outputs clearer, we set the BorderStyle property of each Label to
FixedSingle, which displays a solid border. Since there’s no event-handling code in this
example, we do not show you the code for the Form class.

In this example, we named the ToolTip component labelsToolTip. Figure 14.33
shows the ToolTip in the component tray. We set the tool tip text for the first Label to
"First Label" and the tool tip text for the second Label to "Second Label". Figure 14.34
demonstrates setting the tool tip text for the first Label.

ToolTipproperties
and an event Description

Common Properties

AutoPopDelay The amount of time (in milliseconds) that the tool tip appears while
the mouse is over a control.

InitialDelay The amount of time (in milliseconds) that a mouse must hover over a
control before a tool tip appears.

ReshowDelay The amount of time (in milliseconds) between which two different tool
tips appear (when the mouse is moved from one control to another).

Common Event

Draw Raised when the tool tip is displayed. This event allows programmers
to modify the appearance of the tool tip.

Fig. 14.31 | ToolTip properties and an event.

Fig. 14.32 | Demonstrating the ToolTip component.

a) b)

14.10 NumericUpDown Control 551

14.10 NumericUpDown Control
At times, you’ll want to restrict a user’s input choices to a specific range of numeric values.
This is the purpose of the NumericUpDown control. This control appears as a TextBox, with
two small Buttons on the right side—one with an up arrow and one with a down arrow.
By default, a user can type numeric values into this control as if it were a TextBox or click
the up and down arrows to increase or decrease the value in the control, respectively. The
largest and smallest values in the range are specified with the Maximum and Minimum prop-
erties, respectively (both of type decimal). The Increment property (also of type decimal)
specifies by how much the current value changes when the user clicks the arrows. Property
DecimalPlaces specifies the number of decimal places that the control should display as
an integer. Figure 14.35 describes common NumericUpDown properties and an event.

Fig. 14.33 | Demonstrating the component tray.

Fig. 14.34 | Setting a control’s tool tip text.

NumericUpDown
properties and an event Description

Common Properties

DecimalPlaces Specifies how many decimal places to display in the control.

Increment Specifies by how much the current number in the control
changes when the user clicks the control’s up and down arrows.

Fig. 14.35 | NumericUpDown properties and an event. (Part 1 of 2.)

ToolTip in
component tray

Property to set
tool tip text

Tool tip text

552 Chapter 14 Graphical User Interfaces with Windows Forms: Part 1

Figure 14.36 demonstrates a NumericUpDown control in a GUI that calculates interest
rate. The calculations performed in this app are similar to those in Fig. 6.6. TextBoxes are
used to input the principal and interest rate amounts, and a NumericUpDown control is used
to input the number of years for which we want to calculate interest.

Maximum Largest value in the control’s range.

Minimum Smallest value in the control’s range.

UpDownAlign Modifies the alignment of the up and down Buttons on the
NumericUpDown control. This property can be used to display
these Buttons either to the left or to the right of the control.

Value The numeric value currently displayed in the control.

Common Event

ValueChanged This event is raised when the value in the control is changed.
This is the default event for the NumericUpDown control.

1 // Fig. 14.36: InterestCalculatorForm.cs
2 // Demonstrating the NumericUpDown control.
3 using System;
4 using System.Windows.Forms;
5
6 namespace NumericUpDownTest
7 {
8 public partial class InterestCalculatorForm : Form
9 {

10 // default constructor
11 public InterestCalculatorForm()
12 {
13 InitializeComponent();
14 } // end constructor
15
16 private void calculateButton_Click(
17 object sender, EventArgs e)
18 {
19 // declare variables to store user input
20 decimal principal; // store principal
21 double rate; // store interest rate
22 int year; // store number of years
23 decimal amount; // store amount
24 string output; // store output
25
26 // retrieve user input
27 principal = Convert.ToDecimal(principalTextBox.Text);

Fig. 14.36 | Demonstrating the NumericUpDown control. (Part 1 of 2.)

NumericUpDown
properties and an event Description

Fig. 14.35 | NumericUpDown properties and an event. (Part 2 of 2.)

14.11 Mouse-Event Handling 553

For the NumericUpDown control named yearUpDown, we set the Minimum property to 1
and the Maximum property to 10. We left the Increment property set to 1, its default value.
These settings specify that users can enter a number of years in the range 1 to 10 in incre-
ments of 1. If we had set the Increment to 0.5, we could also input values such as 1.5 or
2.5. If you don’t modify the DecimalPlaces property (0 by default), 1.5 and 2.5 display
as 2 and 3, respectively. We set the NumericUpDown’s ReadOnly property to true to indicate
that the user cannot type a number into the control to make a selection. Thus, the user must
click the up and down arrows to modify the value in the control. By default, the ReadOnly
property is set to false. The output for this app is displayed in a multiline read-only
TextBox with a vertical scrollbar, so the user can scroll through the entire output.

14.11 Mouse-Event Handling
This section explains how to handle mouse events, such as clicks and moves, which are
generated when the user interacts with a control via the mouse. Mouse events can be han-

28 rate = Convert.ToDouble(interestTextBox.Text);
29 year = Convert.ToInt32(yearUpDown.Value);
30
31 // set output header
32 output = "Year\tAmount on Deposit\r\n";
33
34 // calculate amount after each year and append to output
35 for (int yearCounter = 1; yearCounter <= year; ++yearCounter)
36 {
37 amount = principal *
38 ((decimal) Math.Pow((1 + rate / 100), yearCounter));
39 output += (yearCounter + "\t" +
40 string.Format("{0:C}", amount) + "\r\n");
41 } // end for
42
43 displayTextBox.Text = output; // display result
44 } // end method calculateButton_Click
45 } // end class InterestCalculatorForm
46 } // end namespace NumericUpDownTest

Fig. 14.36 | Demonstrating the NumericUpDown control. (Part 2 of 2.)

NumericUpDown
control

Click to increase
number of years

Click to decrease
number of years

554 Chapter 14 Graphical User Interfaces with Windows Forms: Part 1

dled for any control that derives from class System.Windows.Forms.Control. For most
mouse events, information about the event is passed to the event-handling method
through an object of class MouseEventArgs, and the delegate used to create the mouse-
event handlers is MouseEventHandler. Each mouse-event-handling method for these
events requires an object and a MouseEventArgs object as arguments.

Class MouseEventArgs contains information related to the mouse event, such as the
mouse pointer’s x- and y-coordinates, the mouse button pressed (Right, Left or Middle)
and the number of times the mouse was clicked. The x- and y-coordinates of the Mouse-
EventArgs object are relative to the control that generated the event—i.e., point (0,0) rep-
resents the upper-left corner of the control where the mouse event occurred. Several
common mouse events and event arguments are described in Fig. 14.37.

Figure 14.38 uses mouse events to draw on a Form. Whenever the user drags the mouse
(i.e., moves the mouse while a mouse button is pressed), small circles appear on the Form
at the position where each mouse event occurs during the drag operation.

Mouse events and event arguments

Mouse Events with Event Argument of Type EventArgs
MouseEnter Mouse cursor enters the control’s boundaries.
MouseHover Mouse cursor hovers within the control’s boundaries.
MouseLeave Mouse cursor leaves the control’s boundaries.

Mouse Events with Event Argument of Type MouseEventArgs
MouseDown Mouse button is pressed while the mouse cursor is within a control’s boundaries.
MouseMove Mouse cursor is moved while in the control’s boundaries.
MouseUp Mouse button is released when the cursor is over the control’s boundaries.
MouseWheel Mouse wheel is moved while the control has the focus.

Class MouseEventArgs Properties
Button Specifies which mouse button was pressed (Left, Right, Middle or None).
Clicks The number of times that the mouse button was clicked.
X The x-coordinate within the control where the event occurred.
Y The y-coordinate within the control where the event occurred.

Fig. 14.37 | Mouse events and event arguments.

1 // Fig. 14.38: PainterForm.cs
2 // Using the mouse to draw on a Form.
3 using System;
4 using System.Drawing;
5 using System.Windows.Forms;
6
7 namespace Painter
8 {

Fig. 14.38 | Using the mouse to draw on a Form. (Part 1 of 2.)

14.11 Mouse-Event Handling 555

9 // creates a Form that’s a drawing surface
10 public partial class PainterForm : Form
11 {
12 bool shouldPaint = false; // determines whether to paint
13
14 // default constructor
15 public PainterForm()
16 {
17 InitializeComponent();
18 } // end constructor
19
20 // should paint when mouse button is pressed down
21 private void (
22 object sender, MouseEventArgs e)
23 {
24
25
26 } // end method PainterForm_MouseDown
27
28 // stop painting when mouse button is released
29 private void (object sender, MouseEventArgs e)
30 {
31
32
33 } // end method PainterForm_MouseUp
34
35 // draw circle whenever mouse moves with its button held down
36 private void (
37 object sender, MouseEventArgs e)
38 {
39
40
41
42
43
44
45
46
47
48 } // end method PainterForm_MouseMove
49 } // end class PainterForm
50 } // end namespace Painter

Fig. 14.38 | Using the mouse to draw on a Form. (Part 2 of 2.)

PainterForm_MouseDown

// indicate that user is dragging the mouse
shouldPaint = true;

PainterForm_MouseUp

// indicate that user released the mouse button
shouldPaint = false;

PainterForm_MouseMove

if (shouldPaint) // check if mouse button is being pressed
{

// draw a circle where the mouse pointer is present
using (Graphics graphics = CreateGraphics())
{

graphics.FillEllipse(
new SolidBrush(Color.BlueViolet), e.X, e.Y, 4, 4);

} // end using; calls graphics.Dispose()
} // end if

556 Chapter 14 Graphical User Interfaces with Windows Forms: Part 1

In line 12, the program declares variable shouldPaint, which determines whether to
draw on the Form. We want the program to draw only while the mouse button is pressed
(i.e., held down). Thus, when the user clicks or holds down a mouse button, the system
generates a MouseDown event, and the event handler (lines 21–26) sets shouldPaint to
true. When the user releases the mouse button, the system generates a MouseUp event,
shouldPaint is set to false in the PainterForm_MouseUp event handler (lines 29–33) and
the program stops drawing. Unlike MouseMove events, which occur continuously as the
user moves the mouse, the system generates a MouseDown event only when a mouse button
is first pressed and generates a MouseUp event only when a mouse button is released.

Whenever the mouse moves over a control, the MouseMove event for that control
occurs. Inside the PainterForm_MouseMove event handler (lines 36–48), the program
draws only if shouldPaint is true (i.e., a mouse button is pressed). In the using state-
ment, line 42 calls inherited Form method CreateGraphics to create a Graphics object
that allows the program to draw on the Form. Class Graphics provides methods that draw
various shapes. For example, lines 44–45 use method FillEllipse to draw a circle. The
first parameter to method FillEllipse in this case is an object of class SolidBrush, which
specifies the solid color that will fill the shape. The color is provided as an argument to
class SolidBrush’s constructor. Type Color contains numerous predefined color con-
stants—we selected Color.BlueViolet. FillEllipse draws an oval in a bounding rect-
angle that’s specified by the x- and y-coordinates of its upper-left corner, its width and its
height—the final four arguments to the method. The x- and y-coordinates represent the
location of the mouse event and can be taken from the mouse-event arguments (e.X and
e.Y). To draw a circle, we set the width and height of the bounding rectangle so that
they’re equal—in this example, both are 4 pixels. Graphics, SolidBrush and Color are all
part of the namespace System.Drawing. Recall from Chapter 13 that the using statement
automatically calls Dispose on the object that was created in the parentheses following
keyword using. This is important because Graphics objects are a limited resource. Calling
Dispose on a Graphics object ensures that its resources are returned to the system for
reuse.

14.12 Keyboard-Event Handling
Key events occur when keyboard keys are pressed and released. Such events can be handled
for any control that inherits from System.Windows.Forms.Control. There are three key
events—KeyPress, KeyUp and KeyDown. The KeyPress event occurs when the user presses
a key that represents an ASCII character. The specific key can be determined with property
KeyChar of the event handler’s KeyPressEventArgs argument. ASCII is a 128-character
set of alphanumeric symbols, a full listing of which can be found in Appendix C.

The KeyPress event does not indicate whether modifier keys (e.g., Shift, Alt and Ctrl)
were pressed when a key event occurred. If this information is important, the KeyUp or Key-
Down events can be used. The KeyEventArgs argument for each of these events contains
information about modifier keys. Figure 14.39 lists important key event information. Sev-
eral properties return values from the Keys enumeration, which provides constants that
specify the various keys on a keyboard. Like the FontStyle enumeration (Section 14.7), the
Keys enumeration is represented with a set of bits, so the enumeration’s constants can be
combined with the bitwise operators to indicate multiple keys pressed at the same time.

14.12 Keyboard-Event Handling 557

Figure 14.40 demonstrates the use of the key-event handlers to display a key pressed
by a user. The program is a Form with two Labels that displays the pressed key on one
Label and modifier key information on the other.

Keyboard events and event arguments

Key Events with Event Arguments of Type KeyEventArgs

KeyDown Generated when a key is initially pressed.

KeyUp Generated when a key is released.

Key Event with Event Argument of Type KeyPressEventArgs

KeyPress Generated when a key is pressed. Raised after KeyDown and before KeyUp.

Class KeyPressEventArgs Properties

KeyChar Returns the ASCII character for the key pressed.

Class KeyEventArgs Properties

Alt Indicates whether the Alt key was pressed.

Control Indicates whether the Ctrl key was pressed.

Shift Indicates whether the Shift key was pressed.

KeyCode Returns the key code for the key as a value from the Keys enumeration. This
does not include modifier-key information. It’s used to test for a specific key.

KeyData Returns the key code for a key combined with modifier information as a Keys
value. This property contains all information about the pressed key.

KeyValue Returns the key code as an int, rather than as a value from the Keys enumera-
tion. This property is used to obtain a numeric representation of the pressed
key. The int value is known as a Windows virtual key code.

Modifiers Returns a Keys value indicating any pressed modifier keys (Alt, Ctrl and Shift).
This property is used to determine modifier-key information only.

Fig. 14.39 | Keyboard events and event arguments.

1 // Fig. 14.40: KeyDemo.cs
2 // Displaying information about the key the user pressed.
3 using System;
4 using System.Windows.Forms;
5
6 namespace KeyDemo
7 {
8 // Form to display key information when key is pressed
9 public partial class KeyDemo : Form

10 {
11 // default constructor
12 public KeyDemo()
13 {

Fig. 14.40 | Demonstrating keyboard events. (Part 1 of 2.)

558 Chapter 14 Graphical User Interfaces with Windows Forms: Part 1

Control charLabel displays the character value of the key pressed, whereas keyInfo-
Label displays information relating to the pressed key. Because the KeyDown and KeyPress
events convey different information, the Form (KeyDemo) handles both.

The KeyPress event handler (lines 18–22) accesses the KeyChar property of the Key-
PressEventArgs object. This returns the pressed key as a char, which we then display in
charLabel (line 21). If the pressed key is not an ASCII character, then the KeyPress event
will not occur, and charLabel will not display any text. ASCII is a common encoding

14 InitializeComponent();
15 } // end constructor
16
17 // display the character pressed using KeyChar
18 private void KeyDemo_KeyPress(
19 object sender, KeyPressEventArgs e)
20 {
21 charLabel.Text = "Key pressed: " + e.KeyChar;
22 } // end method KeyDemo_KeyPress
23
24 // display modifier keys, key code, key data and key value
25 private void KeyDemo_KeyDown(object sender, KeyEventArgs e)
26 {
27 keyInfoLabel.Text =
28 "Alt: " + (e.Alt ? "Yes" : "No") + '\n' +
29 "Shift: " + (e.Shift ? "Yes" : "No") + '\n' +
30 "Ctrl: " + (e.Control ? "Yes" : "No") + '\n' +
31 "KeyCode: " + e.KeyCode + '\n' +
32 "KeyData: " + e.KeyData + '\n' +
33 "KeyValue: " + e.KeyValue;
34 } // end method KeyDemo_KeyDown
35
36 // clear Labels when key released
37 private void KeyDemo_KeyUp(object sender, KeyEventArgs e)
38 {
39 charLabel.Text = "";
40 keyInfoLabel.Text = "";
41 } // end method KeyDemo_KeyUp
42 } // end class KeyDemo
43 } // end namespace KeyDemo

Fig. 14.40 | Demonstrating keyboard events. (Part 2 of 2.)

a) H pressed b) F7 pressed d) Tab pressedc) $ pressed

14.13 Wrap-Up 559

format for letters, numbers, punctuation marks and other characters. It does not support
keys such as the function keys (like F1) or the modifier keys (Alt, Ctrl and Shift).

The KeyDown event handler (lines 25–34) displays information from its KeyEventArgs
object. The event handler tests for the Alt, Shift and Ctrl keys by using the Alt, Shift and
Control properties, each of which returns a bool value—true if the corresponding key is
pressed and false otherwise. The event handler then displays the KeyCode, KeyData and
KeyValue properties.

The KeyCode property returns a Keys enumeration value (line 31). The KeyCode prop-
erty returns the pressed key, but does not provide any information about modifier keys.
Thus, both a capital and a lowercase “a” are represented as the A key.

The KeyData property (line 32) also returns a Keys enumeration value, but this prop-
erty includes data about modifier keys. Thus, if “A” is input, the KeyData shows that both
the A key and the Shift key were pressed. Lastly, KeyValue (line 33) returns an int repre-
senting a pressed key. This int is the key code. The key code is useful when testing for
non-ASCII keys like F12.

The KeyUp event handler (lines 37–41) clears both Labels when the key is released.
As we can see from the output, non-ASCII keys are not displayed in charLabel, because
the KeyPress event is not generated. For example, charLabel does not display any text
when you press the F7 or Tab keys, as shown in Fig. 14.40(b) and (d). However, the Key-
Down event still is generated, and keyInfoLabel displays information about the key that’s
pressed. The Keys enumeration can be used to test for specific keys by comparing the Key-
Code of the pressed key to values in the Keys enumeration.

By default, a keyboard event is handled by the control that currently has the focus.
Sometimes it’s appropriate to have the Form handle these events. This can be accomplished
by setting the Form’s KeyPreview property to true, which makes the Form receive keyboard
events before they’re passed to another control. For example, a key press would raise the
Form’s KeyPress, even if a control within the Form has the focus instead of the Form itself.

14.13 Wrap-Up
This chapter introduced several common GUI controls. We discussed event handling in
detail, and showed how to create event handlers. We showed how delegates are used to
connect event handlers to the events of specific controls. You learned how to use a con-
trol’s properties and Visual Studio to specify the layout of your GUI. We then demonstrat-
ed several controls, beginning with Labels, Buttons and TextBoxes. You learned how to
use GroupBoxes and Panels to organize other controls. We then demonstrated CheckBoxes
and RadioButtons, which are state buttons that allow users to select among several op-
tions. We displayed images in PictureBox controls, displayed helpful text on a GUI with
ToolTip components and specified a range of numeric input values for users with a Nu-
mericUpDown control. We then demonstrated how to handle mouse and keyboard events.
The next chapter introduces additional GUI controls. You’ll learn how to add menus to
your GUIs and create Windows Forms apps that display multiple Forms.

Software Engineering Observation 14.2
To cause a control to react when a particular key is pressed (such as Enter), handle a key
event and test for the pressed key. To cause a Button to be clicked when the Enter key is
pressed on a Form, set the Form’s AcceptButton property.

560 Chapter 14 Graphical User Interfaces with Windows Forms: Part 1

Summary
Section 14.1 Introduction
• A graphical user interface (GUI) allows a user to interact visually with a program.

• GUIs are built from GUI controls.

• GUI controls are objects that can display information on the screen or enable users to interact
with an app via the mouse, keyboard or some other form of input.

Section 14.2 Windows Forms
• Windows Forms are used to create the GUIs for programs.

• A Form is a graphical element that appears on the desktop; it can be a dialog, a window or an
MDI (multiple document interface) window.

• A component is an instance of a class that implements the IComponent interface, which defines
the behaviors that components must implement, such as how the component is loaded.

• A control has a graphical representation at runtime.

• Some components lack graphical representations (e.g., class Timer of namespace System.Win-
dows.Forms). Such components are not visible at runtime.

• When there are several windows on the screen, the active window is the frontmost and has a high-
lighted title bar. A window becomes the active window when the user clicks somewhere inside it.

• The active window is said to “have the focus.”

• A Form is a container for controls and components.

Section 14.3 Event Handling
• Normally, a user interacts with an app’s GUI to indicate the tasks that the app should perform.

• GUIs are event driven.

• When the user interacts with a GUI component, the interaction—known as an event—drives
the program to perform a task. Common events include clicking a Button, typing in a TextBox,
selecting an item from a menu, closing a window and moving the mouse.

• A method that performs a task in response to an event is called an event handler, and the overall
process of responding to events is known as event handling.

Section 14.3.1 A Simple Event-Driven GUI
• An event handler executes only when the user performs the specific event.

• Each event handler receives two parameters when it’s called. The first—an object reference typ-
ically named sender—is a reference to the object that generated the event. The second is a refer-
ence to an event arguments object of type EventArgs (or one of its derived classes), which is
typically named e. This object contains additional information about the event that occurred.

• EventArgs is the base class of all classes that represent event information.

Section 14.3.2 Auto-Generated GUI Code
• Visual Studio generates the code that creates and initializes the GUI that you build in the GUI

design window. This auto-generated code is placed in the Designer.cs file of the Form.

• The auto-generated code that defines the GUI is part of the Form’s class. The use of the partial
modifier in the class declaration allows the class to be split among multiple files.

• The Designer.cs file declares the controls you create in Design mode. By default, all variable dec-
larations for controls created through C#’s design window have a private access modifier.

Summary 561

• The Designer.cs file includes the Dispose method for releasing resources and method Initial-
izeComponent, which sets the properties of the Form and its controls.

• Visual Studio uses the code in InitializeComponent to create the GUI you see in design view.
Changing the code in this method may prevent Visual Studio from displaying the GUI properly.

Section 14.3.3 Delegates and the Event-Handling Mechanism
• The control that generates an event is known as the event sender.

• An event-handling method—known as the event handler—responds to a particular event that a
control generates.

• When an event occurs, the event sender calls its event handler to perform a task.

• The .NET event-handling mechanism allows you to choose your own names for event-handling
methods. However, each event-handling method must declare the proper parameters to receive
information about the event that it handles.

• Event handlers are connected to a control’s events via special objects called delegates.

• A delegate object holds a reference to a method with a signature specified by the delegate type’s
declaration.

• GUI controls have predefined delegates that correspond to every event they can generate.

• An event sender calls a delegate object like a method.

• Since each event handler is declared as a delegate, the event sender can simply call the appropriate
delegate when an event occurs. The delegate’s job is to invoke the appropriate method.

• Event delegates represent a set of delegate objects that all have the same signature.

• When an event occurs, its sender calls every method referenced by a multicast delegate. Multicast
delegates enable several methods to be called in response to a single event.

• Event delegates derive from class MulticastDelegate, which derives from class Delegate (both
from namespace System).

Section 14.3.4 Another Way to Create Event Handlers
• Double-clicking a control on the Form in the designer creates an event handler for a control’s de-

fault event.

• Typically, controls can generate many different events, and each can have its own event handler.

• You can create additional event handlers through the Properties window.

• If you select a control on the Form, then click the Events icon (the lightning bolt icon) in the Prop-
erties window, all the events for that control are listed in the window. You can double click an
event’s name to display the event handler in the editor, if the event handler already exists, or to
create the corresponding event handler.

• You can select an event, then use the drop-down list to its right to choose an existing method
that should be used as the event handler for that event. The methods that appear in this drop-
down list are the Form class’s methods that have the proper signature to be an event handler for
the selected event.

• A single event handler can handle multiple events from multiple controls.

Section 14.3.5 Locating Event Information
• Read the Visual Studio documentation to learn about the different events raised by each control.

To do this, select a control in the IDE and press the F1 key to display that control’s online help.
The web page that’s displayed contains basic information about the control’s class. Click the link
to the list of events for that control to display the supported events for that control.

562 Chapter 14 Graphical User Interfaces with Windows Forms: Part 1

Section 14.4 Control Properties and Layout
• Controls derive from class Control (of namespace System.Windows.Forms).

• The Select method transfers the focus to a control and makes it the active control.

• The Enabled property indicates whether the user can interact with a control to generate an event.

• A programmer can hide a control from the user without disabling the control by setting the Vis-
ible property to false or by calling method Hide.

• Anchoring causes controls to remain at a fixed distance from the sides of the container even when
the control is resized.

• Docking attaches a control to a container such that the control stretches across an entire side or
fills all the remaining space.

• Forms have a Padding property that specifies the distance between the docked controls and the
Form edges.

• The Anchor and Dock properties of a Control are set with respect to the Control’s parent contain-
er, which could be a Form or other parent container (such as a Panel).

• The minimum and maximum Form (or other Control) sizes can be set via properties MinimumSize
and MaximumSize, respectively.

• When dragging a control across a Form, blue lines (known as snap lines) appear to help you po-
sition the control with respect to other controls and the Form’s edges.

• Visual Studio also provides the FORMAT menu, which contains several options for modifying
your GUI’s layout.

Section 14.5 Labels, TextBoxes and Buttons
• Labels provide text information (as well as optional images) that the user cannot directly modify.

• A textbox (class TextBox) is an area in which text either can be displayed by a program or in which
the user can type text via the keyboard.

• A password TextBox is a TextBox that hides the information entered by the user. As the user types,
the password TextBox masks the user input by displaying a password character (usually *). If you
set the UseSystemPasswordChar property to true, the TextBox becomes a password TextBox.

• A button is a control that the user clicks to trigger an action in a program or to select an option.

• All the button classes derive from class ButtonBase (namespace System.Windows.Forms), which
defines common button features.

Section 14.6 GroupBoxes and Panels
• GroupBoxes and Panels arrange controls on a GUI.

• GroupBoxes and Panels are typically used to group several controls of similar functionality or sev-
eral controls that are related in a GUI.

• GroupBoxes can display a caption (i.e., text) and do not include scrollbars, whereas Panels can
include scrollbars and do not include a caption.

• GroupBoxes have thin borders by default; Panels can be set so that they also have borders, by
changing their BorderStyle property.

• The controls of a GroupBox or Panel are added to their Controls properties.

• To enable a Panel’s scrollbars, set the Panel’s AutoScroll property to true. If the Panel is resized
and cannot display all of its controls, scrollbars appear.

Section 14.7 CheckBoxes and RadioButtons
• CheckBoxes and RadioButtons can be in the on/off or true/false states.

Summary 563

• Classes CheckBox and RadioButton are derived from class ButtonBase.

• A CheckBox is a small square that either is blank or contains a check mark. When a CheckBox is
selected, a check mark appears in the box. Any number of CheckBoxes can be selected at a time.

• A CheckBox can be configured to have three states—checked, unchecked, and indeterminate—
by setting its ThreeState property to true.

• Font styles can be combined via bitwise operators, such as the logical OR (|) operator or the log-
ical exclusive OR (^) operator.

• RadioButtons (defined with class RadioButton) are similar to CheckBoxes in that they also have
two states: selected and not selected (also called deselected).

• RadioButtons normally appear as a group, in which only one RadioButton can be selected at a
time. The selection of one RadioButton in the group forces all the others to be deselected. There-
fore, RadioButtons are used to represent a set of mutually exclusive options.

• All RadioButtons added to a container become part of the same group.

Section 14.8 PictureBoxes
• A PictureBox displays an image.

• The Image property specifies the image that’s displayed

• The SizeMode property indicates how the image is displayed (Normal, StretchImage, Autosize,
CenterImage, or Zoom).

• You can embed images into a project as resources.

• Embedded image files appear in a folder named Resources in the Solution Explorer.

• The Resources class (of a project’s Properties namespace) stores a project’s resources.

• Class ResourceManager provides methods for programmatically accessing a project’s resources.

• To access an image (or any other resource) in the project’s resources, you use the method Get-

Object of class ResourceManager, which takes as an argument the resource name as it appears in
the Resources tab and returns the resource as an Object.

• The Resources class also provides direct access to the resources you define with expressions of
the form Resources.resourceName, where resourceName is the name you provided to the resource
when you created it. When using such an expression, the resource returned already has the ap-
propriate type.

Section 14.9 ToolTips
• Tool tips help you become familiar with a Form’s features and serve as useful reminders for each con-

trol’s functionality. In the Properties window, you can specify a tool tip for a control by setting the
ToolTip on componentName entry, where componentName is the name of the ToolTip component.

• The ToolTip component can be used to add tool tips to your app.

• The ToolTip component is placed in the component tray—the gray region below the Form in De-

sign mode.

Section 14.10 NumericUpDown Control
• At times you’ll want to restrict a user’s input choices to a specific range of numeric values. This

is the purpose of the NumericUpDown control.

• The NumericUpDown control appears as a TextBox, with two small Buttons on the right side, one
with an up arrow and one with a down arrow. By default, a user can type numeric values into
this control as if it were a TextBox or click the up and down arrows to increase or decrease the
value in the control, respectively.

564 Chapter 14 Graphical User Interfaces with Windows Forms: Part 1

• The largest and smallest values in the range are specified with the Maximum and Minimum proper-
ties, respectively (both are of type decimal).

• The Increment property (of type decimal) specifies by how much the current number in the con-
trol changes when the user clicks the control’s up and down arrows.

• Setting a NumericUpDown control’s ReadOnly property to true specifies that the user can only use
the up and down arrows to modify the value in the NumericUpDown control.

Section 14.11 Mouse-Event Handling
• Mouse events, such as clicks and moves, are generated when the mouse interacts with a control.

• Mouse events can be handled for any subclass of System.Windows.Forms.Control.

• Class MouseEventArgs contains information related to the mouse event, such as the x- and y-
coordinates of the mouse pointer, the mouse button pressed (Right, Left or Middle) and the
number of times the mouse was clicked.

• Whenever the user clicks or holds down a mouse button, the system generates a MouseDown event.

• When the user releases the mouse button (to complete a “click” operation), the system generates
a single MouseUp event.

• Whenever the mouse moves over a control, the MouseMove event for that control is raised.

Section 14.12 Keyboard-Event Handling
• Key events occur when keys on the keyboard are pressed and released.

• There are three key events—KeyPress, KeyUp and KeyDown.

• The KeyPress event occurs when the user presses a key that represents an ASCII character. The
specific key can be determined with property KeyChar of the event handler’s KeyPressEventArgs
argument.

• The KeyPress event does not indicate whether modifier keys were pressed when a key event oc-
curred. If this information is important, the KeyUp or KeyDown events can be used.

Terminology
active control
active window
anchor a control
bitwise operator
Button properties and events
Button property of class MouseEventArgs
ButtonBase class
checkbox
CheckBox class
Checked property of class CheckBox
Checked property of class RadioButton
CheckedChanged event of class CheckBox
CheckedChanged event of class RadioButton
CheckState property of class CheckBox
CheckStateChanged event of class CheckBox
Color structure
component
component tray
container

Control class
Controls property of a container
DecimalPlaces property of class NumericUpDown
default event
delegate
delegate class
delegate keyword
deselected state
DialogResult enumeration
dock a control
Dock property of class Control
Enabled property of class Control
event
event-driven programming
event handler
event handling
event multicasting
event handler
event sender

Self-Review Exercises 565

FillEllipse method of class Graphics
FlatStyle property of class Button
focus
Font class
FontStyle enumeration
GetObject method of class ResourceManager
Graphics class
GroupBox class
Height property of structure Size
IComponent interface
Increment property of class NumericUpDown
key code
key event
KeyChar property of class KeyPressEventArgs
KeyCode property of class KeyEventArgs
KeyData property of class KeyEventArgs
KeyDown event of class Control
KeyEventArgs class
KeyPress event of class Control
KeyPressEventArgs class
Keys enumeration
KeyUp event of class Control
KeyValue property of class KeyEventArgs
Maximum property of class NumericUpDown
MaximumSize property of class Control
MessageBox class
Minimum property of class NumericUpDown
MinimumSize property of class Control
modifier key
mouse click
mouse event
mouse move
mouse press
MouseDown event of class Control
MouseEventArgs class
MouseEventHandler delegate
MouseMove event of class Control
MouseUp event of class Control

multicast delegate
MulticastDelegate class
multiple document interface (MDI) window
mutual exclusion
“not-selected” state
NumericUpDown class
Padding property of class Control
Panel class
partial class
password TextBox

PictureBox class
radio button
radio button group
RadioButton class
ReadOnly property of class NumericUpDown
ResourceManager class
Resources class
Select method of class Control
selected state
Size property of class Control
Size structure
snap line
SolidBrush class
state button
Style property of class Font
TabIndex property of class Control
TabStop property of class Control
ToolTip class
ThreeState property of class CheckBox
UseSystemPasswordChar property of class

TextBox

UpDownAlign property of class NumericUpDown
Value property of class NumericUpDown
Visible property of class Control
widget
Width property of structure Size
window gadget
Windows Form

Self-Review Exercises
14.1 State whether each of the following is true or false. If false, explain why.

a) The KeyData property includes data about modifier keys.
b) A Form is a container.
c) All Forms, components and controls are classes.
d) CheckBoxes are used to represent a set of mutually exclusive options.
e) A Label displays text that a user running an app can edit.
f) Button presses generate events.
g) All mouse events use the same event arguments class.
h) Visual Studio can register an event and create an empty event handler.

566 Chapter 14 Graphical User Interfaces with Windows Forms: Part 1

i) The NumericUpDown control is used to specify a range of input values.
j) A control’s tool tip text is set with the ToolTip property of class Control.

14.2 Fill in the blanks in each of the following statements:
a) The active control is said to have the .
b) The Form acts as a(n) for the controls that are added.
c) GUIs are driven.
d) Every method that handles the same event must have the same .
e) A(n) TextBox masks user input with a character used repeatedly.
f) Class and class help arrange controls on a GUI and provide logical

groups for radio buttons.
g) Typical mouse events include and .
h) events are generated when a key on the keyboard is pressed or released.
i) The modifier keys are , and .
j) A(n) event or delegate can be used to call multiple methods.

Answers To Self-Review Exercises
14.1 a) True. b) True. c) True. d) False. RadioButtons are used to represent a set of mutually ex-
clusive options. e) False. A Label’s text cannot be edited by the user. f) True. g) False. Some mouse
events use EventArgs, others use MouseEventArgs. h) True. i) True. j) False. A control’s tool tip text
is set using a ToolTip component that must be added to the app.

14.2 a) focus. b) container. c) event. d) signature. e) password. f) GroupBox, Panel. g) mouse
clicks, mouse moves. h) Key. i) Shift, Ctrl, Alt. j) multicast.

Exercises
14.3 Extend the program in Fig. 14.26 to include a CheckBox for every font-style option. [Hint:
Use logical exclusive OR (^) rather than testing for every bit explicitly.]

14.4 Create the GUI in Fig. 14.41 (you do not have to provide functionality).

14.5 Create the GUI in Fig. 14.42 (you do not have to provide functionality).

14.6 (Temperature Conversions) Write a temperature conversion program that converts from
Fahrenheit to Celsius. The Fahrenheit temperature should be entered from the keyboard (via a
TextBox). A Label should be used to display the converted temperature. Use the following formula
for the conversion:

Celsius = (5 / 9) x (Fahrenheit – 32)

Fig. 14.41 | Calculator GUI.

Exercises 567

14.7 (Enhanced Painter) Extend the program of Fig. 14.38 to include options for changing the
size and color of the lines drawn. Create a GUI similar to Fig. 14.43. The user should be able to
draw on the app’s Panel. To retrieve a Graphics object for drawing, call method panelName.Cre-
ateGraphics(), substituting in the name of your Panel.

14.8 (Guess the Number Game) Write a program that plays “guess the number” as follows: Your
program chooses the number to be guessed by selecting an int at random in the range 1–1000. The
program then displays the following text in a label:

I have a number between 1 and 1000--can you guess my number?
Please enter your first guess.

A TextBox should be used to input the guess. As each guess is input, the background color should
change to red or blue. Red indicates that the user is getting “warmer,” blue that the user is getting
“colder.” A Label should display either “Too High” or “Too Low,” to help the user zero in on the cor-
rect answer. When the user guesses the correct answer, display “Correct!” in a message box, change
the Form’s background color to green and disable the TextBox. Recall that a TextBox (like other con-
trols) can be disabled by setting the control’s Enabled property to false. Provide a Button that
allows the user to play the game again. When the Button is clicked, generate a new random num-
ber, change the background to the default color and enable the TextBox.

14.9 (Fuzzy Dice Order Form) Write an app that allows users to process orders for fuzzy dice.
The app should calculate the total price of the order, including tax and shipping. TextBoxes for inputting
the order number, the customer name and the shipping address are provided. Initially, these fields contain
text that describes their purpose. Provide CheckBoxes for selecting the fuzzy-dice color and TextBoxes for
inputting the quantities of fuzzy dice to order. The app should update the total cost, tax and shipping
when the user changes any one of the three quantity fields’ values. The app should also contain a Button
that when clicked, returns all fields to their original values. Use 5% for the tax rate. Shipping charges are

Fig. 14.42 | Printer GUI.

Fig. 14.43 | Drawing Panel GUI.

ComboBox
control

568 Chapter 14 Graphical User Interfaces with Windows Forms: Part 1

$1.50 for up to 20 pairs of dice. If more than 20 pairs of dice are ordered, shipping is free. All fields must
be filled out, and an item must be checked for the user to enter a quantity for that item.

Making a Difference Exercises
14.10 (Ecofont) Ecofont—developed by SPRANQ (a Netherlands-based company)—is a font de-
signed to reduce by as much as 20% the amount of ink used for printing, thus reducing also the num-
ber of ink cartridges used and the environmental impact of the manufacturing and shipping processes
(using less energy, less fuel for shipping, and so on). The font, based on sans-serif Verdana, has small
circular “holes” in the letters that are not visible in smaller sizes—such as the 9- or 10-point type fre-
quently used. Download the free version of Ecofont (www.ecofont.com/en/products/green/font/
download-the-ink-saving-font.html), then install the font file ecofont_vera_sans_regular.ttf us-
ing the instructions from the Ecofont website. Next, develop a GUI-based program that allows you to
type text in a TextBox to be displayed in the Ecofont. Create Increase Font Size and Decrease Font Size
buttons that allow you to scale up or down by one point at a time. Set the TextBox’s Font property to
9 point Ecofont. Set the TextBox’s MultiLine property to true so the user can enter multiple lines of
text. As you scale up the font, you’ll be able to see the holes in the letters more clearly. As you scale
down, the holes will be less apparent. To change the TextBox’s font programmatically, use a statement
of the form:

inputTextBox.Font = new Font(inputTextBox.Font.FontFamily,
inputTextBox.Font.SizeInPoints + 1);

This changes the TextBox’s Font property to a new Font object that uses the TextBox’s current font,
but adds 1 to its SizeInPoints property to increase the font size. A similar statement can be used to
decrease the font size. What is the smallest font size at which you begin to notice the holes?

14.11 (Project: Typing Tutor—Tuning a Crucial Skill in the Computer Age) Typing quickly and
correctly is an essential skill for working effectively with computers and the Internet. In this exercise,
you’ll build an app that can help users learn to “touch type” (i.e., type correctly without looking at
the keyboard). The app should display a virtual keyboard that mimics the one on your computer and
should allow the user to watch what he or she is typing on the screen without looking at the actual
keyboard. Use Buttons to represent the keys. As the user presses each key, the app highlights the cor-
responding Button and adds the character to a TextBox that shows what the user has typed so far.
[Hint: To highlight a Button, use its BackColor property to change its background color. When the
key is released, reset its original background color.]

You can test your program by typing a pangram—a phrase that contains every letter of the
alphabet at least once—such as “The quick brown fox jumped over a lazy dog.” You can find other
pangrams on the web.

To make the program more interesting you could monitor the user’s accuracy. You could have
the user type specific phrases that you’ve prestored in your program and that you display on the
screen above the virtual keyboard. You could keep track of how many keystrokes the user types cor-
rectly and how many are typed incorrectly. You could also keep track of which keys the user is hav-
ing difficulty with and display a report showing those keys.

www.ecofont.com/en/products/green/font/download-the-ink-saving-font.html
www.ecofont.com/en/products/green/font/download-the-ink-saving-font.html

15Graphical User Interfaces
with Windows Forms: Part 2

I claim not to have controlled
events, but confess plainly that
events have controlled me.
—Abraham Lincoln

But, soft! what light through
yonder window breaks?
It is the east, and Juliet is
the sun!
—William Shakespearev

O b j e c t i v e s
In this chapter you’ll learn:

� To create menus, tabbed
windows and multiple
document interface (MDI)
programs.

� To use the ListView and
TreeView controls for
displaying information.

� To create hyperlinks using the
LinkLabel control.

� To display lists of information
in ListBox,
CheckedListBox and
ComboBox controls.

� To input dates with the
MonthCalendar control.

� To input date and time data
with the DateTimePicker
control.

� To create custom controls.

570 Chapter 15 Graphical User Interfaces with Windows Forms: Part 2

15.1 Introduction
This chapter continues our study of Windows Forms GUIs. We start with menus, which
present users with logically organized commands (or options). We show how to develop
menus with the tools provided by Visual Studio. Next, we discuss how to input and display
dates and times using the MonthCalendar and DateTimePicker controls. We also introduce
LinkLabels—powerful GUI components that enable the user to access one of several desti-
nations, such as a file on the current machine or a web page, simply by clicking the mouse.

We demonstrate how to manipulate a list of values via a ListBox and how to combine
several checkboxes in a CheckedListBox. We also create drop-down lists using ComboBoxes
and display data hierarchically with a TreeView control. You’ll learn two other important
GUI elements—tab controls and multiple document interface (MDI) windows. These
components enable you to create real-world programs with sophisticated GUIs.

Visual Studio provides many GUI components, several of which are discussed in this
(and the previous) chapter. You can also design custom controls and add them to the
ToolBox, as we demonstrate in this chapter’s last example. The techniques presented here
form the groundwork for creating more substantial GUIs and custom controls.

15.2 Menus
Menus provide groups of related commands for Windows Forms apps. Although these
commands depend on the program, some—such as Open and Save—are common to
many apps. Menus are an integral part of GUIs, because they organize commands without
“cluttering” the GUI.

In Fig. 15.1, an expanded menu from the Visual C# IDE lists various commands
(called menu items), plus submenus (menus within a menu). The top-level menus appear
in the left portion of the figure, whereas any submenus or menu items are displayed to the
right. The menu that contains a menu item is called that menu item’s parent menu. A
menu item that contains a submenu is considered to be the parent of that submenu.

Menus can have Alt key shortcuts (also called access shortcuts, keyboard shortcuts or
hotkeys), which are accessed by pressing Alt and the underlined letter—for example,
Alt + F typically expands the File menu. Menu items can have shortcut keys as well (com-
binations of Ctrl, Shift, Alt, F1, F2, letter keys, and so on). Some menu items display
checkmarks, usually indicating that multiple options on the menu can be selected at once.

15.1 Introduction
15.2 Menus
15.3 MonthCalendar Control
15.4 DateTimePicker Control
15.5 LinkLabel Control
15.6 ListBox Control
15.7 CheckedListBox Control
15.8 ComboBox Control

15.9 TreeView Control
15.10 ListView Control
15.11 TabControl Control
15.12 Multiple Document Interface (MDI)

Windows
15.13 Visual Inheritance
15.14 User-Defined Controls
15.15 Wrap-Up

Summary | Terminology | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

15.2 Menus 571

To create a menu, open the Toolbox and drag a MenuStrip control onto the Form. This
creates a menu bar across the top of the Form (below the title bar) and places a MenuStrip
icon in the component tray. To select the MenuStrip, click this icon. You can now use
Design mode to create and edit menus for your app. Menus, like other controls, have prop-
erties and events, which can be accessed through the Properties window.

To add menu items to the menu, click the Type Here TextBox (Fig. 15.2) and type
the menu item’s name. This action adds an entry to the menu of type ToolStripMenuItem.
After you press the Enter key, the menu item name is added to the menu. Then more Type
Here TextBoxes appear, allowing you to add items underneath or to the side of the original
menu item (Fig. 15.3).

To create an access shortcut, type an ampersand (&) before the character to be under-
lined. For example, to create the File menu item with the letter F underlined, type &File.
To display an ampersand, type &&. To add other shortcut keys (e.g., Ctrl + F9) for menu
items, set the ShortcutKeys property of the appropriate ToolStripMenuItems. To do this,
select the down arrow to the right of this property in the Properties window. In the window
that appears (Fig. 15.4), use the CheckBoxes and drop-down list to select the shortcut keys.
When you’re finished, click elsewhere on the screen. You can hide the shortcut keys by set-
ting property ShowShortcutKeys to false, and you can modify how the shortcut keys are
displayed in the menu item by modifying property ShortcutKeyDisplayString.

Fig. 15.1 | Menus, submenus and menu items.

Checked menu item

Submenu

Separator bar

Shortcut key Disabled commandsMenu Menu items

Menu icons

572 Chapter 15 Graphical User Interfaces with Windows Forms: Part 2

Fig. 15.2 | Editing menus in Visual Studio.

Fig. 15.3 | Adding ToolStripMenuItems to a MenuStrip.

Fig. 15.4 | Setting a menu item’s shortcut keys.

MenuStrip icon

Type menu name
in TextBox Main menu bar

Place & character
before a letter to

underline it in the
menu, so the

character can be
used as an access

shortcut

TextBoxes for
adding more menus
or for adding items
to the selected menu

Select key (modifier and key
combination specifies the

shortcut key for the menu item)

Use these checkboxes to
specify modifier keys

15.2 Menus 573

\You can remove a menu item by selecting it with the mouse and pressing the Delete key.
Menu items can be grouped logically by separator bars, which are inserted by right clicking
the menu and selecting Insert > Separator or by typing “-” for the text of a menu item.

In addition to text, Visual Studio allows you to easily add TextBoxes and ComboBoxes
(drop-down lists) as menu items. When adding an item in Design mode, you may have
noticed that before you enter text for a new item, you’re provided with a drop-down list.
Clicking the down arrow (Fig. 15.5) allows you to select the type of item to add—Menu-
Item (of type ToolStripMenuItem, the default), ComboBox (of type ToolStripComboBox)
and TextBox (of type ToolStripTextBox). We focus on ToolStripMenuItems. [Note: If
you view this drop-down list for menu items that are not on the top level, a fourth option
appears, allowing you to insert a separator bar.]

ToolStripMenuItems generate a Click event when selected. To create an empty Click
event handler, double click the menu item in Design mode. Common actions in response
to these events include displaying dialogs and setting properties. Common menu proper-
ties and a common event are summarized in Fig. 15.6.

Look-and-Feel Observation 15.1
Buttons can have access shortcuts. Place the & symbol immediately before the desired char-
acter in the Button’s text. To press the button by using its access key in the running app,
the user presses Alt and the underlined character. If the underline is not visible when the
app runs, press the Alt key to display the underlines.

Fig. 15.5 | Menu-item options.

Look-and-Feel Observation 15.2
It’s a convention to place an ellipsis (…) after the name of a menu item (e.g., Save As…)
that requires the user to provide more information—typically through a dialog. A menu
item that produces an immediate action without prompting the user for more information
(e.g., Save) should not have an ellipsis following its name.

Menu item options

574 Chapter 15 Graphical User Interfaces with Windows Forms: Part 2

Class MenuTestForm (Fig. 15.7) creates a simple menu on a Form. The Form has a top-
level File menu with menu items About (which displays a MessageBox) and Exit (which ter-
minates the program). The program also includes a Format menu, which contains menu
items that change the format of the text on a Label. The Format menu has submenus Color
and Font, which change the color and font of the text on a Label.

Create the GUI
To create this GUI, begin by dragging the MenuStrip from the ToolBox onto the Form.
Then use Design mode to create the menu structure shown in the sample outputs. The File
menu (fileToolStripMenuItem) has menu items About (aboutToolStripMenuItem) and
Exit (exitToolStripMenuItem); the Format menu (formatToolStripMenuItem) has two
submenus. The first submenu, Color (colorToolStripMenuItem), contains menu items
Black (blackToolStripMenuItem), Blue (blueToolStripMenuItem), Red (redToolStrip-
MenuItem) and Green (greenToolStripMenuItem). The second submenu, Font (fontTool-
StripMenuItem), contains menu items Times New Roman (timesToolStripMenuItem),
Courier (courierToolStripMenuItem), Comic Sans (comicToolStripMenuItem), a separa-
tor bar (dashToolStripMenuItem), Bold (boldToolStripMenuItem) and Italic (italic-
ToolStripMenuItem).

MenuStrip and
ToolStripMenuItem
properties and an event Description

MenuStrip Properties
RightToLeft Causes text to display from right to left. This is useful for lan-

guages that are read from right to left.

ToolStripMenuItem Properties
Checked Indicates whether a menu item is checked. The default value is

false, meaning that the menu item is unchecked.
CheckOnClick Indicates that a menu item should appear checked or unchecked as

it is clicked.
ShortcutKey-

DisplayString

Specifies text that should appear beside a menu item for a shortcut
key. If left blank, the key names are displayed. Otherwise, the text
in this property is displayed for the shortcut key.

ShortcutKeys Specifies the shortcut key for the menu item (e.g., <Ctrl>-F9 is
equivalent to clicking a specific item).

ShowShortcutKeys Indicates whether a shortcut key is shown beside menu item text.
The default is true, which displays the shortcut key.

Text Specifies the menu item’s text. To create an Alt access shortcut, pre-
cede a character with & (e.g., &File to specify a menu named File

with the letter F underlined).

Common ToolStripMenuItem Event
Click Generated when an item is clicked or a shortcut key is used. This is

the default event when the menu is double clicked in the designer.

Fig. 15.6 | MenuStrip and ToolStripMenuItem properties and an event.

15.2 Menus 575

1 // Fig. 15.7: MenuTestForm.cs
2 // Using Menus to change font colors and styles.
3 using System;
4 using System.Drawing;
5 using System.Windows.Forms;
6
7 namespace MenuTest
8 {
9 // our Form contains a Menu that changes the font color

10 // and style of the text displayed in Label
11 public partial class MenuTestForm : Form
12 {
13 // constructor
14 public MenuTestForm()
15 {
16 InitializeComponent();
17 } // end constructor
18
19 // display MessageBox when About ToolStripMenuItem is selected
20 private void aboutToolStripMenuItem_Click(
21 object sender, EventArgs e)
22 {
23 MessageBox.Show("This is an example\nof using menus.", "About",
24 MessageBoxButtons.OK, MessageBoxIcon.Information);
25 } // end method aboutToolStripMenuItem_Click
26
27 // exit program when Exit ToolStripMenuItem is selected
28 private void exitToolStripMenuItem_Click(
29 object sender, EventArgs e)
30 {
31 Application.Exit();
32 } // end method exitToolStripMenuItem_Click
33
34 // reset checkmarks for Color ToolStripMenuItems
35 private void ClearColor()
36 {
37 // clear all checkmarks
38
39
40
41
42 } // end method ClearColor
43
44 // update Menu state and color display black
45 private void blackToolStripMenuItem_Click(
46 object sender, EventArgs e)
47 {
48 // reset checkmarks for Color ToolStripMenuItems
49 ClearColor();
50
51 // set color to Black
52 displayLabel.ForeColor = Color.Black;

Fig. 15.7 | Menus for changing text font and color. (Part 1 of 4.)

blackToolStripMenuItem.Checked = false;
blueToolStripMenuItem.Checked = false;
redToolStripMenuItem.Checked = false;
greenToolStripMenuItem.Checked = false;

576 Chapter 15 Graphical User Interfaces with Windows Forms: Part 2

53
54 } // end method blackToolStripMenuItem_Click
55
56 // update Menu state and color display blue
57 private void blueToolStripMenuItem_Click(
58 object sender, EventArgs e)
59 {
60 // reset checkmarks for Color ToolStripMenuItems
61 ClearColor();
62
63 // set color to Blue
64 displayLabel.ForeColor = Color.Blue;
65
66 } // end method blueToolStripMenuItem_Click
67
68 // update Menu state and color display red
69 private void redToolStripMenuItem_Click(
70 object sender, EventArgs e)
71 {
72 // reset checkmarks for Color ToolStripMenuItems
73 ClearColor();
74
75 // set color to Red
76 displayLabel.ForeColor = Color.Red;
77
78 } // end method redToolStripMenuItem_Click
79
80 // update Menu state and color display green
81 private void greenToolStripMenuItem_Click(
82 object sender, EventArgs e)
83 {
84 // reset checkmarks for Color ToolStripMenuItems
85 ClearColor();
86
87 // set color to Green
88 displayLabel.ForeColor = Color.Green;
89
90 } // end method greenToolStripMenuItem_Click
91
92 // reset checkmarks for Font ToolStripMenuItems
93 private void ClearFont()
94 {
95 // clear all checkmarks
96
97
98
99 } // end method ClearFont
100
101 // update Menu state and set Font to Times New Roman
102 private void timesToolStripMenuItem_Click(
103 object sender, EventArgs e)
104 {
105 // reset checkmarks for Font ToolStripMenuItems

Fig. 15.7 | Menus for changing text font and color. (Part 2 of 4.)

blackToolStripMenuItem.Checked = true;

blueToolStripMenuItem.Checked = true;

redToolStripMenuItem.Checked = true;

greenToolStripMenuItem.Checked = true;

timesToolStripMenuItem.Checked = false;
courierToolStripMenuItem.Checked = false;
comicToolStripMenuItem.Checked = false;

15.2 Menus 577

106 ClearFont();
107
108 // set Times New Roman font
109
110 displayLabel.Font = new Font("Times New Roman", 14,
111 displayLabel.Font.Style);
112 } // end method timesToolStripMenuItem_Click
113
114 // update Menu state and set Font to Courier
115 private void courierToolStripMenuItem_Click(
116 object sender, EventArgs e)
117 {
118 // reset checkmarks for Font ToolStripMenuItems
119 ClearFont();
120
121 // set Courier font
122
123 displayLabel.Font = new Font("Courier", 14,
124 displayLabel.Font.Style);
125 } // end method courierToolStripMenuItem_Click
126
127 // update Menu state and set Font to Comic Sans MS
128 private void comicToolStripMenuItem_Click(
129 object sender, EventArgs e)
130 {
131 // reset checkmarks for Font ToolStripMenuItems
132 ClearFont();
133
134 // set Comic Sans font
135
136 displayLabel.Font = new Font("Comic Sans MS", 14,
137 displayLabel.Font.Style);
138 } // end method comicToolStripMenuItem_Click
139
140 // toggle checkmark and toggle bold style
141 private void boldToolStripMenuItem_Click(
142 object sender, EventArgs e)
143 {
144 // toggle checkmark
145
146
147 // use Xor to toggle bold, keep all other styles
148 displayLabel.Font = new Font(displayLabel.Font,
149 displayLabel.Font.Style ^ FontStyle.Bold);
150 } // end method boldToolStripMenuItem_Click
151
152 // toggle checkmark and toggle italic style
153 private void italicToolStripMenuItem_Click(
154 object sender, EventArgs e)
155 {
156 // toggle checkmark
157 italicToolStripMenuItem.Checked =
158 !italicToolStripMenuItem.Checked;

Fig. 15.7 | Menus for changing text font and color. (Part 3 of 4.)

timesToolStripMenuItem.Checked = true;

courierToolStripMenuItem.Checked = true;

comicToolStripMenuItem.Checked = true;

boldToolStripMenuItem.Checked = !boldToolStripMenuItem.Checked;

578 Chapter 15 Graphical User Interfaces with Windows Forms: Part 2

Handling the Click Events for the About and Exit Menu Items
The About menu item in the File menu displays a MessageBox when clicked (lines 20–25).
The Exit menu item closes the app through static method Exit of class Application

(line 31). Class Application’s static methods control program execution. Method Exit
causes our app to terminate.

Color Submenu Events
We made the items in the Color submenu (Black, Blue, Red and Green) mutually exclu-
sive—the user can select only one at a time (we explain how we did this shortly). To indi-
cate that a menu item is selected, we will set each Color menu item’s Checked property to
true. This causes a check to appear to the left of a menu item.

159
160 // use Xor to toggle italic, keep all other styles
161 displayLabel.Font = new Font(displayLabel.Font,
162 displayLabel.Font.Style ^ FontStyle.Italic);
163 } // end method italicToolStripMenuItem_Click
164 } // end class MenuTestForm
165 } // end namespace MenuTest

Fig. 15.7 | Menus for changing text font and color. (Part 4 of 4.)

a) Initial GUI b) Selecting the Bold menu item

c) GUI after text set to bold d) Selecting the Red menu item

e) GUI after text set to Red f) Dialog displayed by selecting File > About

15.3 MonthCalendar Control 579

Each Color menu item has its own Click event handler. The method handler for color
Black is blackToolStripMenuItem_Click (lines 45–54). Similarly, the event handlers for
colors Blue, Red and Green are blueToolStripMenuItem_Click (lines 57–66), redTool-
StripMenuItem_Click (lines 69–78) and greenToolStripMenuItem_Click (lines 81–90),
respectively. Each Color menu item must be mutually exclusive, so each event handler calls
method ClearColor (lines 35–42) before setting its corresponding Checked property to
true. Method ClearColor sets the Checked property of each color ToolStripMenuItem to
false, effectively preventing more than one menu item from being selected at a time. In
the designer, we initially set the Black menu item’s Checked property to true, because at
the start of the program, the text on the Form is black.

Font Submenu Events
The Font menu contains three menu items for fonts (Courier, Times New Roman and Comic
Sans) and two menu items for font styles (Bold and Italic). We added a separator bar be-
tween the font and font-style menu items to indicate that these are separate options. A Font

object can specify only one font at a time but can set multiple styles at once (e.g., a font can
be both bold and italic). We set the font menu items to display checks. As with the Color
menu, we must enforce mutual exclusion of these items in our event handlers.

Event handlers for font menu items Times New Roman, Courier and Comic Sans are
timesToolStripMenuItem_Click (lines 102–112), courierToolStripMenuItem_Click

(lines 115–125) and comicToolStripMenuItem_Click (lines 128–138), respectively. These
event handlers are similar to those of the Color menu items. Each clears the Checked proper-
ties for all font menu items by calling method ClearFont (lines 93–99), then sets the
Checked property of the menu item that raised the event to true. This enforces the mutual
exclusion of the font menu items. In the designer, we initially set the Times New Roman
menu item’s Checked property to true, because this is the original font for the text on the
Form. The event handlers for the Bold and Italic menu items (lines 141–163) use the bitwise
logical exclusive OR (^) operator to combine font styles, as we discussed in Chapter 14.

15.3 MonthCalendar Control
Many apps must perform date and time calculations. The .NET Framework provides two
controls that allow an app to retrieve date and time information—the MonthCalendar and
DateTimePicker (Section 15.4) controls.

The MonthCalendar (Fig. 15.8) control displays a monthly calendar on the Form. The
user can select a date from the currently displayed month or can use the provided arrows
to navigate to another month. When a date is selected, it is highlighted. Multiple dates can
be selected by clicking dates on the calendar while holding down the Shift key. The default
event for this control is the DateChanged event, which is generated when a new date is
selected. Properties are provided that allow you to modify the appearance of the calendar,
how many dates can be selected at once, and the minimum date and maximum date that
may be selected. MonthCalendar properties and a common MonthCalendar event are sum-
marized in Fig. 15.9.

Software Engineering Observation 15.1
The mutual exclusion of menu items is not enforced by the MenuStrip, even when the
Checked property is true. You must program this behavior.

580 Chapter 15 Graphical User Interfaces with Windows Forms: Part 2

15.4 DateTimePicker Control
The DateTimePicker control (see output of Fig. 15.11) is similar to the MonthCalendar
control but displays the calendar when a down arrow is selected. The DateTimePicker can
be used to retrieve date and time information from the user. A DateTimePicker’s Value
property stores a DateTime object, which always contains both date and time information.
You can retrieve the date information from the DateTime object by using property Date,
and you can retrieve only the time information by using the TimeOfDay property.

The DateTimePicker is also more customizable than a MonthCalendar control—
more properties are provided to edit the look and feel of the drop-down calendar. Property
Format specifies the user’s selection options using the DateTimePickerFormat enumera-
tion. The values in this enumeration are Long (displays the date in long format, as in
Thursday, July 10, 2013), Short (displays the date in short format, as in 7/10/2013), Time
(displays a time value, as in 5:31:02 PM) and Custom (indicates that a custom format will

Fig. 15.8 | MonthCalendar control.

MonthCalendar
properties and an event Description

MonthCalendar Properties

FirstDayOfWeek Sets which day of the week is the first displayed for each week in
the calendar.

MaxDate The last date that can be selected.

MaxSelectionCount The maximum number of dates that can be selected at once.

MinDate The first date that can be selected.

MonthlyBoldedDates An array of dates that will displayed in bold in the calendar.

SelectionEnd The last of the dates selected by the user.

SelectionRange The dates selected by the user.

SelectionStart The first of the dates selected by the user.

Common MonthCalendar Event

DateChanged Generated when a date is selected in the calendar.

Fig. 15.9 | MonthCalendar properties and an event.

Current day is outlined

Selected day is highlighted

15.4 DateTimePicker Control 581

be used). If value Custom is used, the display in the DateTimePicker is specified using
property CustomFormat. The default event for this control is ValueChanged, which occurs
when the selected value (whether a date or a time) is changed. DateTimePicker properties
and a common event are summarized in Fig. 15.10.

Figure 15.11 demonstrates using a DateTimePicker to select an item’s drop-off time.
Many companies use such functionality—several online DVD rental companies specify
the day a movie is sent out and the estimated time that it will arrive at your home. The
user selects a drop-off day, then an estimated arrival date is displayed. The date is always
two days after drop-off, three days if a Sunday is reached (mail is not delivered on Sunday).

DateTimePicker
properties and an event Description

DateTimePicker Properties

CalendarForeColor Sets the text color for the calendar.

CalendarMonthBackground Sets the calendar’s background color.

CustomFormat Sets the custom format string for the date and/or time
displayed in the control.

Format Sets the format of the date and/or time used for the
date and/or time displayed in the control.

MaxDate The maximum date and time that can be selected.

MinDate The minimum date and time that can be selected.

ShowCheckBox Indicates if a CheckBox should be displayed to the left
of the selected date and time.

ShowUpDown Indicates whether the control displays up and down
Buttons. Helpful when the DateTimePicker is used to
select a time—the Buttons can be used to increase or
decrease hour, minute and second.

Value The data selected by the user.

Common DateTimePicker Event

ValueChanged Generated when the Value property changes, including
when the user selects a new date or time.

Fig. 15.10 | DateTimePicker properties and an event.

1 // Fig. 15.11: DateTimePickerForm.cs
2 // Using a DateTimePicker to select a drop-off time.
3 using System;
4 using System.Windows.Forms;
5
6 namespace DateTimePickerTest
7 {

Fig. 15.11 | Demonstrating DateTimePicker. (Part 1 of 3.)

582 Chapter 15 Graphical User Interfaces with Windows Forms: Part 2

8 // Form lets user select a drop-off date using a DateTimePicker
9 // and displays an estimated delivery date

10 public partial class DateTimePickerForm : Form
11 {
12 // constructor
13 public DateTimePickerForm()
14 {
15 InitializeComponent();
16 } // end constructor
17
18 private void dateTimePickerDropOff_ValueChanged(
19 object sender, EventArgs e)
20 {
21 DateTime dropOffDate = ;
22
23 // add extra time when items are dropped off around Sunday
24 if (dropOffDate.DayOfWeek == DayOfWeek.Friday ||
25 dropOffDate.DayOfWeek == DayOfWeek.Saturday ||
26 dropOffDate.DayOfWeek == DayOfWeek.Sunday)
27
28 //estimate three days for delivery
29 outputLabel.Text =
30 dropOffDate.AddDays(3).ToLongDateString();
31 else

32 // otherwise estimate only two days for delivery
33 outputLabel.Text =
34 dropOffDate.AddDays(2).ToLongDateString();
35 } // end method dateTimePickerDropOff_ValueChanged
36
37 private void DateTimePickerForm_Load(object sender, EventArgs e)
38 {
39 // user cannot select days before today
40
41
42 // user can only select days up to one year in the future
43
44 } // end method DateTimePickerForm_Load
45 } // end class DateTimePickerForm
46 } // end namespace DateTimePickerTest

Fig. 15.11 | Demonstrating DateTimePicker. (Part 2 of 3.)

dateTimePickerDropOff.Value

dateTimePickerDropOff.MinDate = DateTime.Today;

dateTimePickerDropOff.MaxDate = DateTime.Today.AddYears(1);

a) GUI when app first executes shows current date b) Selecting a drop-off date

15.5 LinkLabel Control 583

The DateTimePicker (dropOffDateTimePicker) has its Format property set to Long, so
the user can select just a date in this app. When the user selects a date, the ValueChanged
event occurs. The event handler for this event (lines 18–35) first retrieves the selected date
from the DateTimePicker’s Value property (line 21). Lines 24–26 use the DateTime struc-
ture’s DayOfWeek property to determine the day of the week on which the selected date falls.
The day values are represented using the DayOfWeek enumeration. Lines 29–30 and 33–34
use DateTime’s AddDays method to increase the date by three days or two days, respectively.
The resulting date is then displayed in Long format using method ToLongDateString.

In this app, we do not want the user to be able to select a drop-off day before the cur-
rent day, or one that’s more than a year into the future. To enforce this, we set the Date-
TimePicker’s MinDate and MaxDate properties when the Form is loaded (lines 40 and 43).
Property Today returns the current day, and method AddYears (with an argument of 1) is
used to specify a date one year in the future.

Let’s take a closer look at the output. This app begins by displaying the current date
(Fig. 15.11(a)). In Fig. 15.11(b), we selected the 18th of January. In Fig. 15.11(c), the
estimated arrival date is displayed as the 21st of January. Figure 15.11(d) shows that the
18th, after it is selected, is highlighted in the calendar.

15.5 LinkLabel Control
The LinkLabel control displays links to other resources, such as files or web pages
(Fig. 15.12). A LinkLabel appears as underlined text (colored blue by default). When the
mouse moves over the link, the pointer changes to a hand; this is similar to the behavior
of a hyperlink in a web page. The link can change color to indicate whether it is not yet
visited, previously visited or active (the mouse is over the link). When clicked, the Link-
Label generates a LinkClicked event (see Fig. 15.13). Class LinkLabel is derived from
class Label and therefore inherits all of class Label’s functionality.

Fig. 15.12 | LinkLabel control in running program.

Fig. 15.11 | Demonstrating DateTimePicker. (Part 3 of 3.)

c) GUI after selecting drop-off date d) GUI showing current and selected dates

LinkLabel on a Form Hand image displays when mouse
moves over LinkLabel

584 Chapter 15 Graphical User Interfaces with Windows Forms: Part 2

Class LinkLabelTestForm (Fig. 15.14) uses three LinkLabels to link to the C: drive,
the Deitel website (www.deitel.com) and the Notepad app, respectively. The Text proper-
ties of the LinkLabel’s cDriveLinkLabel, deitelLinkLabel and notepadLinkLabel

describe each link’s purpose.

Look-and-Feel Observation 15.3
A LinkLabel is the preferred control for indicating that the user can click a link to jump
to a resource such as a web page, though other controls can perform similar tasks.

LinkLabelproperties
and an event Description

Common Properties
ActiveLinkColor Specifies the color of the active link when the user is in the process of

clicking the link. The default color (typically red) is set by the system.
LinkArea Specifies which portion of text in the LinkLabel is part of the link.
LinkBehavior Specifies the link’s behavior, such as how the link appears when the

mouse is placed over it.
LinkColor Specifies the original color of the link before it’s been visited. The

default color (typically blue) is set by the system.
LinkVisited If true, the link appears as though it has been visited (its color is

changed to that specified by property VisitedLinkColor). The
default value is false.

Text Specifies the control’s text.
UseMnemonic If true, the & character in the Text property acts as a shortcut (simi-

lar to the Alt shortcut in menus).
VisitedLinkColor Specifies the color of a visited link. The default color (typically pur-

ple) is set by the system.

Common Event (Event arguments LinkLabelLinkClickedEventArgs)
LinkClicked Generated when the link is clicked. This is the default event when

the control is double clicked in Design mode.

Fig. 15.13 | LinkLabel properties and an event.

1 // Fig. 15.14: LinkLabelTestForm.cs
2 // Using LinkLabels to create hyperlinks.
3 using System;
4 using System.Windows.Forms;
5
6 namespace LinkLabelTest
7 {
8 // Form using LinkLabels to browse the C:\ drive,
9 // load a web page and run Notepad

10 public partial class LinkLabelTestForm : Form
11 {

Fig. 15.14 | LinkLabels used to link to a drive, a web page and an app. (Part 1 of 3.)

www.deitel.com

15.5 LinkLabel Control 585

12 // constructor
13 public LinkLabelTestForm()
14 {
15 InitializeComponent();
16 } // end constructor
17
18 // browse C:\ drive
19 private void cDriveLinkLabel_LinkClicked(object sender,
20 LinkLabelLinkClickedEventArgs e)
21 {
22 // change LinkColor after it has been clicked
23
24
25
26 } // end method cDriveLinkLabel_LinkClicked
27
28 // load www.deitel.com in web browser
29 private void deitelLinkLabel_LinkClicked(object sender,
30 LinkLabelLinkClickedEventArgs e)
31 {
32 // change LinkColor after it has been clicked
33
34
35
36 } // end method deitelLinkLabel_LinkClicked
37
38 // run app Notepad
39 private void notepadLinkLabel_LinkClicked(object sender,
40 LinkLabelLinkClickedEventArgs e)
41 {
42 // change LinkColor after it has been clicked
43
44
45
46
47
48 } // end method notepadLinkLabel_LinkClicked
49 } // end class LinkLabelTestForm
50 } // end namespace LinkLabelTest

Fig. 15.14 | LinkLabels used to link to a drive, a web page and an app. (Part 2 of 3.)

driveLinkLabel.LinkVisited = true;

System.Diagnostics.Process.Start(@"C:\");

deitelLinkLabel.LinkVisited = true;

System.Diagnostics.Process.Start("http://www.deitel.com");

notepadLinkLabel.LinkVisited = true;

// program called as if in run
// menu and full path not needed
System.Diagnostics.Process.Start("notepad");

Click first LinkLabel to
look at contents of C: drive

586 Chapter 15 Graphical User Interfaces with Windows Forms: Part 2

The event handlers for the LinkLabels call method Start of class Process

(namespace System.Diagnostics), which allows you to execute other programs, or load
documents or web sites from an app. Method Start can take one argument, the file to
open, or two arguments, the app to run and its command-line arguments. Method Start’s
arguments can be in the same form as if they were provided for input to the Windows Run
command (Start > Run...). For apps that are known to Windows, full path names are not
needed, and the file extension often can be omitted. To open a file of a type that Windows
recognizes (and knows how to handle), simply use the file’s full path name. For example,
if you a pass the method a .docx file, Windows will open it in Microsoft Word (or what-
ever program is registered to open .docx files, if any). The Windows operating system
must be able to use the app associated with the given file’s extension to open the file.

The event handler for cDriveLinkLabel’s LinkClicked event browses the C: drive
(lines 19–26). Line 23 sets the LinkVisited property to true, which changes the link’s
color from blue to purple (the LinkVisited colors can be configured through the Proper-
ties window in Visual Studio). The event handler then passes @"C:\" to method Start

(line 25), which opens a Windows Explorer window. The @ symbol that we placed before
"C:\" indicates that all characters in the string should be interpreted literally—this is
known as a verbatim string. Thus, the backslash within the string is not considered to
be the first character of an escape sequence. This simplifies strings that represent direc-
tory paths, since you do not need to use \\ for each \ character in the path.

The event handler for deitelLinkLabel’s LinkClicked event (lines 29–36) opens the
web page www.deitel.com in the user’s default web browser. We achieve this by passing
the web-page address as a string (line 35), which opens the web page in a new web
browser window or tab. Line 33 sets the LinkVisited property to true.

Fig. 15.14 | LinkLabels used to link to a drive, a web page and an app. (Part 3 of 3.)

Click secondLinkLabel
to go to Deitel website

Click on thirdLinkLabel
to open Notepad

www.deitel.com

15.6 ListBox Control 587

The event handler for notepadLinkLabel’s LinkClicked event (lines 39–48) opens the
Notepad app. Line 43 sets the LinkVisited property to true so that the link appears as a
visited link. Line 47 passes the argument "notepad" to method Start, which runs
notepad.exe. In line 47, neither the full path nor the .exe extension is required—Windows
automatically recognizes the argument given to method Start as an executable file.

15.6 ListBox Control
The ListBox control allows the user to view and select from multiple items in a list. List-
Boxes are static GUI entities, which means that users cannot directly edit the list of items.
The user can be provided with TextBoxes and Buttons with which to specify items to be
added to the list, but the actual additions must be performed in code. The CheckedList-

Box control (Section 15.7) extends a ListBox by including CheckBoxes next to each item
in the list. This allows users to place checks on multiple items at once, as is possible with
CheckBox controls. (Users also can select multiple items from a ListBox by setting the
ListBox’s SelectionMode property, which is discussed shortly.) Figure 15.15 displays a
ListBox and a CheckedListBox. In both controls, scrollbars appear if the number of items
exceeds the ListBox’s viewable area.

Figure 15.16 lists common ListBox properties and methods and a common event.
The SelectionMode property determines the number of items that can be selected. This
property has the possible values None, One, MultiSimple and MultiExtended (from the
SelectionMode enumeration)—the differences among these settings are explained in
Fig. 15.16. The SelectedIndexChanged event occurs when the user selects a new item.

Fig. 15.15 | ListBox and CheckedListBox on a Form.

ListBox properties,
methods and an event Description

Common Properties
Items The collection of items in the ListBox.
MultiColumn Indicates whether the ListBox can display multiple columns. Multi-

ple columns eliminate vertical scrollbars from the display.

Fig. 15.16 | ListBox properties, methods and an event. (Part 1 of 2.)

CheckedListBox

ListBox

Scrollbars appear
if necessary

Selected items

Checked item

588 Chapter 15 Graphical User Interfaces with Windows Forms: Part 2

Both the ListBox and CheckedListBox have properties Items, SelectedItem and
SelectedIndex. Property Items returns a collection of the list items. Collections are a
common way to manage lists of objects in the .NET framework. Many .NET GUI com-
ponents (e.g., ListBoxes) use collections to expose lists of internal objects (e.g., items in a
ListBox). We discuss collections further in Chapter 21. The collection returned by property
Items is represented as an object of type ListBox.ObjectCollection. Property Selected-

Item returns the ListBox’s currently selected item. If the user can select multiple items, use
collection SelectedItems to return all the selected items as a ListBox.SelectedObject-
Colection. Property SelectedIndex returns the index of the selected item—if there could
be more than one, use property SelectedIndices, which returns a ListBox.Selected-
IndexColection. If no items are selected, property SelectedIndex returns -1. Method
GetSelected takes an index and returns true if the corresponding item is selected.

Adding Items to ListBoxes and CheckedListBoxes
To add items to a ListBox or to a CheckedListBox, we must add objects to its Items col-
lection. This can be accomplished by calling method Add to add a string to the ListBox’s
or CheckedListBox’s Items collection. For example, we could write

SelectedIndex Returns the index of the selected item. If no items have been
selected, the property returns -1. If the user selects multiple items,
this property returns only one of the selected indices. If multiple
items are selected, use property SelectedIndices.

SelectedIndices Returns a collection containing the indices for all selected items.
SelectedItem Returns a reference to the selected item. If multiple items are

selected, it can return any of the selected items.
SelectedItems Returns a collection of the selected item(s).
SelectionMode Determines the number of items that can be selected and the means

through which multiple items can be selected. Values None, One (the
default), MultiSimple (multiple selection allowed) or Multi-
Extended (multiple selection allowed using a combination of arrow
keys or mouse clicks and Shift and Ctrl keys).

Sorted Indicates whether items are sorted alphabetically. Setting this prop-
erty’s value to true sorts the items. The default value is false.

Common Methods
ClearSelected Deselects every item.
GetSelected Returns true if the item at the specified index is selected.

Common Event
SelectedIndexChanged Generated when the selected index changes. This is the default

event when the control is double clicked in the designer.

myListBox.Items.Add(myListItem);

ListBox properties,
methods and an event Description

Fig. 15.16 | ListBox properties, methods and an event. (Part 2 of 2.)

15.6 ListBox Control 589

to add string myListItem to ListBox myListBox. To add multiple objects, you can either
call method Addmultiple times or call method AddRange to add an array of objects. Classes
ListBox and CheckedListBox each call the submitted object’s ToString method to deter-
mine the Label for the corresponding object’s entry in the list. This allows you to add dif-
ferent objects to a ListBox or a CheckedListBox that later can be returned through
properties SelectedItem and SelectedItems.

Alternatively, you can add items to ListBoxes and CheckedListBoxes visually by
examining the Items property in the Properties window. Clicking the ellipsis button opens
the String Collection Editor, which contains a text area for adding items; each item appears
on a separate line (Fig. 15.17). Visual Studio then writes code to add these strings to the
Items collection inside method InitializeComponent.

Figure 15.18 uses class ListBoxTestForm to add, remove and clear items from
ListBox displayListBox. Class ListBoxTestForm uses TextBox inputTextBox to allow
the user to type in a new item. When the user clicks the Add Button, the new item appears
in displayListBox. Similarly, if the user selects an item and clicks Remove, the item is
deleted. When clicked, Clear deletes all entries in displayListBox. The user terminates
the app by clicking Exit.

The addButton_Click event handler (lines 20–24) calls method Add of the Items col-
lection in the ListBox. This method takes a string as the item to add to displayListBox.
In this case, the string used is the user input from the inputTextBox (line 22). After the
item is added, inputTextBox.Text is cleared (line 23).

Fig. 15.17 | String Collection Editor.

1 // Fig. 15.18: ListBoxTestForm.cs
2 // Program to add, remove and clear ListBox items
3 using System;
4 using System.Windows.Forms;
5
6 namespace ListBoxTest
7 {
8 // Form uses a TextBox and Buttons to add,
9 // remove, and clear ListBox items

10 public partial class ListBoxTestForm : Form
11 {

Fig. 15.18 | Program that adds, removes and clears ListBox items. (Part 1 of 3.)

590 Chapter 15 Graphical User Interfaces with Windows Forms: Part 2

12 // constructor
13 public ListBoxTestForm()
14 {
15 InitializeComponent();
16 } // end constructor
17
18 // add new item to ListBox (text from input TextBox)
19 // and clear input TextBox
20 private void addButton_Click(object sender, EventArgs e)
21 {
22
23 inputTextBox.Clear();
24 } // end method addButton_Click
25
26 // remove item if one is selected
27 private void removeButton_Click(object sender, EventArgs e)
28 {
29
30
31
32
33 } // end method removeButton_Click
34
35 // clear all items in ListBox
36 private void clearButton_Click(object sender, EventArgs e)
37 {
38
39 } // end method clearButton_Click
40
41 // exit app
42 private void exitButton_Click(object sender, EventArgs e)
43 {
44
45 } // end method exitButton_Click
46 } // end class ListBoxTestForm
47 } // end namespace ListBoxTest

Fig. 15.18 | Program that adds, removes and clears ListBox items. (Part 2 of 3.)

displayListBox.Items.Add(inputTextBox.Text);

// check whether item is selected; if so, remove
if (displayListBox.SelectedIndex != -1)

displayListBox.Items.RemoveAt(
displayListBox.SelectedIndex);

displayListBox.Items.Clear();

Application.Exit();

a) GUI after adding Dog, Cat and Chicken and
before adding Cow

b) GUI after adding Cow and before
deleting Chicken

15.7 CheckedListBox Control 591

The removeButton_Click event handler (lines 27–33) uses method RemoveAt to
remove an item from the ListBox. Event handler removeButton_Click first uses property
SelectedIndex to determine which index is selected. If SelectedIndex is not –1 (i.e., an
item is selected), lines 31–32 remove the item that corresponds to the selected index.

The clearButton_Click event handler (lines 36–39) calls method Clear of the Items
collection (line 38). This removes all the entries in displayListBox. Finally, event handler
exitButton_Click (lines 42–45) terminates the app by calling method Applica-

tion.Exit (line 44).

15.7 CheckedListBox Control
The CheckedListBox control derives from ListBox and displays a CheckBox with each
item. Items can be added via methods Add and AddRange or through the String Collection
Editor. CheckedListBoxes allow multiple items to be checked, but item selection is more
restrictive. The only values for the SelectionMode property are None and One. One allows
a single selection, whereas None allows no selections. Because an item must be selected to
be checked, you must set the SelectionMode to be One if you wish to allow users to check
items. Thus, toggling property SelectionMode between One and None effectively switches
between enabling and disabling the user’s ability to check list items. Common properties,
a method and an event of CheckedListBoxes appear in Fig. 15.19.

Event ItemCheck occurs whenever a user checks or unchecks a CheckedListBox item.
Event-argument properties CurrentValue and NewValue return CheckState values for the
current and new state of the item, respectively. A comparison of these values allows you to
determine whether the CheckedListBox item was checked or unchecked. The Checked-
ListBox control retains the SelectedItems and SelectedIndices properties (it inherits

Common Programming Error 15.1
The IDE displays an error message if you attempt to set the SelectionMode property to
MultiSimple or MultiExtended in the Properties window of a CheckedListBox. If this
value is set programmatically, a runtime error occurs.

Fig. 15.18 | Program that adds, removes and clears ListBox items. (Part 3 of 3.)

c) GUI after deleting Chicken d) GUI after clearing the ListBox

592 Chapter 15 Graphical User Interfaces with Windows Forms: Part 2

them from class ListBox). However, it also includes properties CheckedItems and
CheckedIndices, which return information about the checked items and indices.

In Fig. 15.20, class CheckedListBoxTestForm uses a CheckedListBox and a ListBox
to display a user’s selection of books. The CheckedListBox allows the user to select mul-
tiple titles. In the String Collection Editor, items were added for some Deitel books: C, C++,
Java™, Internet & WWW, VB 2012, Visual C++ and Visual C# 2012 (the abbreviation
HTP stands for “How to Program”). The ListBox (named displayListBox) displays the
user’s selection. In the screenshots accompanying this example, the CheckedListBox

appears to the left, the ListBox on the right.
When the user checks or unchecks an item in itemCheckedListBox, an ItemCheck

event occurs and event handler itemCheckedListBox_ItemCheck (lines 19–31) executes.
An if…else statement (lines 27–30) determines whether the user checked or unchecked
an item in the CheckedListBox. Line 27 uses the NewValue property to determine whether

CheckedListBox
properties, a method
and an event Description

Common Properties (All the ListBox properties, methods and events are inherited by
CheckedListBox.)

CheckedItems Accessible only at runtime. Returns the collection of items that are
checked as a CheckedListBox.CheckedItemCollection. This is dis-
tinct from the selected item, which is highlighted (but not necessarily
checked). There can be at most one selected item at any given time.

CheckedIndices Accessible only at runtime. Returns indices for all checked items as a
CheckedListBox.CheckedIndexCollection.

CheckOnClick When true and the user clicks an item, the item is both selected and
checked or unchecked. By default, this property is false, which
means that the user must select an item, then click it again to check
or uncheck it.

SelectionMode Determines whether items can be selected and checked. The possible
values are One (the default; allows multiple checks to be placed) or
None (does not allow any checks to be placed).

Common Method

GetItemChecked Takes an index and returns true if the corresponding item is
checked.

Common Event (Event arguments ItemCheckEventArgs)

ItemCheck Generated when an item is checked or unchecked.

ItemCheckEventArgs Properties

CurrentValue Indicates whether the current item is checked or unchecked. Possible
values are Checked, Unchecked and Indeterminate.

Index Returns the zero-based index of the item that changed.

NewValue Specifies the new state of the item.

Fig. 15.19 | CheckedListBox properties, a method and an event.

15.7 CheckedListBox Control 593

the item is being checked (CheckState.Checked). If the user checks an item, line 28 adds
the checked entry to the ListBox displayListBox. If the user unchecks an item, line 30
removes the corresponding item from displayListBox. This event handler was created by

1 // Fig. 15.20: CheckedListBoxTestForm.cs
2 // Using a CheckedListBox to add items to a display ListBox
3 using System;
4 using System.Windows.Forms;
5
6 namespace CheckedListBoxTest
7 {
8 // Form uses a checked ListBox to add items to a display ListBox
9 public partial class CheckedListBoxTestForm : Form

10 {
11 // constructor
12 public CheckedListBoxTestForm()
13 {
14 InitializeComponent();
15 } // end constructor
16
17 // item checked or unchecked
18 // add or remove from display ListBox
19 private void itemCheckedListBox_ItemCheck(
20 object sender, ItemCheckEventArgs e)
21 {
22 // obtain reference of selected item
23
24
25 // if item checked, add to ListBox
26 // otherwise remove from ListBox
27 if

28
29 else

30
31 } // end method itemCheckedListBox_ItemCheck
32 } // end class CheckedListBoxTestForm
33 } // end namespace CheckedListBoxTest

Fig. 15.20 | CheckedListBox and ListBox used in an app to display a user selection.

string item = itemCheckedListBox.SelectedItem.ToString();

(e.NewValue == CheckState.Checked)
displayListBox.Items.Add(item);

displayListBox.Items.Remove(item);

a) Initial GUI
displayed when

the app executes

b) GUI after
selecting the

first three items

c) GUI after
deselecting
C++HTP

d) GUI after
selecting

Visual C# 2012
HTP

594 Chapter 15 Graphical User Interfaces with Windows Forms: Part 2

selecting the CheckedListBox in Design mode, viewing the control’s events in the Proper-
ties window and double clicking the ItemCheck event. The default event for a Checked-
ListBox is a SelectedIndexChanged event.

15.8 ComboBox Control
The ComboBox control combines TextBox features with a drop-down list—a GUI compo-
nent that contains a list from which a value can be selected. A ComboBox usually appears as
a TextBox with a down arrow to its right. By default, the user can enter text into the Text-
Box or click the down arrow to display a list of predefined items. If a user chooses an ele-
ment from this list, that element is displayed in the TextBox. If the list contains more
elements than can be displayed in the drop-down list, a scrollbar appears. The maximum
number of items that a drop-down list can display at one time is set by property MaxDrop-

DownItems. Figure 15.21 shows a sample ComboBox in three different states.

As with the ListBox control, you can add objects to collection Items programmati-
cally, using methods Add and AddRange, or visually, with the String Collection Editor.
Figure 15.22 lists common properties and a common event of class ComboBox.

Fig. 15.21 | ComboBox demonstration.

Look-and-Feel Observation 15.4
Use a ComboBox to save space on a GUI. A disadvantage is that, unlike with a ListBox,
the user cannot see available items without expanding the drop-down list.

ComboBox properties
and an event Description

Common Properties

DropDownStyle Determines the type of ComboBox. Value Simple means that the text
portion is editable and the list portion is always visible. Value
DropDown (the default) means that the text portion is editable but
the user must click an arrow button to see the list portion. Value
DropDownList means that the text portion is not editable and the
user must click the arrow button to see the list portion.

Items The collection of items in the ComboBox control.

Fig. 15.22 | ComboBox properties and an event. (Part 1 of 2.)

Click the down arrow to display
items in the drop-down list

Selecting an item from the drop-down
list changes text in the TextBox portion

15.8 ComboBox Control 595

Property DropDownStyle determines the type of ComboBox and is represented as a
value of the ComboBoxStyle enumeration, which contains values Simple, DropDown and
DropDownList. Option Simple does not display a drop-down arrow. Instead, a scrollbar
appears next to the control, allowing the user to select a choice from the list. The user also
can type in a selection. Style DropDown (the default) displays a drop-down list when the
down arrow is clicked (or the down arrow key is pressed). The user can type a new item in
the ComboBox. The last style is DropDownList, which displays a drop-down list but does
not allow the user to type in the TextBox.

The ComboBox control has properties Items (a collection), SelectedItem and
SelectedIndex, which are similar to the corresponding properties in ListBox. There can
be at most one selected item in a ComboBox. If no items are selected, then SelectedIndex
is -1. When the selected item changes, a SelectedIndexChanged event occurs.

Class ComboBoxTestForm (Fig. 15.23) allows users to select a shape to draw—circle,
ellipse, square or pie (in both filled and unfilled versions)—by using a ComboBox. The
ComboBox in this example is uneditable, so the user cannot type in the TextBox.

MaxDropDownItems Specifies the maximum number of items (between 1 and 100) that
the drop-down list can display. If the number of items exceeds the
maximum number of items to display, a scrollbar appears.

SelectedIndex Returns the index of the selected item, or -1 if none are selected.

SelectedItem Returns a reference to the selected item.

Sorted Indicates whether items are sorted alphabetically. Setting this prop-
erty’s value to true sorts the items. The default is false.

Common Event

SelectedIndexChanged Generated when the selected index changes (such as when a differ-
ent item is selected). This is the default event when control is dou-
ble clicked in the designer.

Look-and-Feel Observation 15.5
Make lists (such as ComboBoxes) editable only if the app is designed to accept user-submit-
ted elements. Otherwise, the user might try to enter a custom item that’s improper for the
purposes of your app.

1 // Fig. 15.23: ComboBoxTestForm.cs
2 // Using ComboBox to select a shape to draw.
3 using System;
4 using System.Drawing;
5 using System.Windows.Forms;

Fig. 15.23 | ComboBox used to draw a selected shape. (Part 1 of 3.)

ComboBox properties
and an event Description

Fig. 15.22 | ComboBox properties and an event. (Part 2 of 2.)

596 Chapter 15 Graphical User Interfaces with Windows Forms: Part 2

6
7 namespace ComboBoxTest
8 {
9 // Form uses a ComboBox to select different shapes to draw

10 public partial class ComboBoxTestForm : Form
11 {
12 // constructor
13 public ComboBoxTestForm()
14 {
15 InitializeComponent();
16 } // end constructor
17
18 // get index of selected shape, draw shape
19 private void imageComboBox_SelectedIndexChanged(
20 object sender, EventArgs e)
21 {
22 // create graphics object, Pen and SolidBrush
23 Graphics myGraphics = base.CreateGraphics();
24
25 // create Pen using color DarkRed
26 Pen myPen = new Pen(Color.DarkRed);
27
28 // create SolidBrush using color DarkRed
29 SolidBrush mySolidBrush = new SolidBrush(Color.DarkRed);
30
31 // clear drawing area, setting it to color white
32 myGraphics.Clear(Color.White);
33
34 // find index, draw proper shape
35 switch ()
36 {
37 case 0: // case Circle is selected
38 myGraphics.DrawEllipse(myPen, 50, 50, 150, 150);
39 break;
40 case 1: // case Rectangle is selected
41 myGraphics.DrawRectangle(myPen, 50, 50, 150, 150);
42 break;
43 case 2: // case Ellipse is selected
44 myGraphics.DrawEllipse(myPen, 50, 85, 150, 115);
45 break;
46 case 3: // case Pie is selected
47 myGraphics.DrawPie(myPen, 50, 50, 150, 150, 0, 45);
48 break;
49 case 4: // case Filled Circle is selected
50 myGraphics.FillEllipse(mySolidBrush, 50, 50, 150, 150);
51 break;
52 case 5: // case Filled Rectangle is selected
53 myGraphics.FillRectangle(mySolidBrush, 50, 50, 150,
54 150);
55 break;
56 case 6: // case Filled Ellipse is selected
57 myGraphics.FillEllipse(mySolidBrush, 50, 85, 150, 115);
58 break;

Fig. 15.23 | ComboBox used to draw a selected shape. (Part 2 of 3.)

imageComboBox.SelectedIndex

15.8 ComboBox Control 597

After creating ComboBox imageComboBox, make it uneditable by setting its DropDown-
Style to DropDownList in the Properties window. Next, add items Circle, Square,
Ellipse, Pie, Filled Circle, Filled Square, Filled Ellipse and Filled Pie to the
Items collection using the String Collection Editor. Whenever the user selects an item from
imageComboBox, a SelectedIndexChanged event occurs and event handler imageCombo-
Box_SelectedIndexChanged (lines 19–66) executes. Lines 23–29 create a Graphics

object, a Pen and a SolidBrush, which are used to draw on the Form. The Graphics object
(line 23) allows a pen or brush to draw on a component, using one of several Graphics
methods. The Pen object (line 26) is used by methods DrawEllipse, DrawRectangle and
DrawPie (lines 38, 41, 44 and 47) to draw the outlines of their corresponding shapes. The
SolidBrush object (line 29) is used by methods FillEllipse, FillRectangle and
FillPie (lines 50, 53–54, 57 and 60–61) to fill their corresponding solid shapes. Line 32
colors the entire Form White, using Graphics method Clear.

The app draws a shape based on the selected item’s index. The switch statement (lines
35–63) uses imageComboBox.SelectedIndex to determine which item the user selected.
Graphics method DrawEllipse (line 38) takes a Pen, and the x- and y-coordinates of the

59 case 7: // case Filled Pie is selected
60 myGraphics.FillPie(mySolidBrush, 50, 50, 150, 150, 0,
61 45);
62 break;
63 } // end switch
64
65 myGraphics.Dispose(); // release the Graphics object
66 } // end method imageComboBox_SelectedIndexChanged
67 } // end class ComboBoxTestForm
68 } // end namespace ComboBoxTest

Fig. 15.23 | ComboBox used to draw a selected shape. (Part 3 of 3.)

a) Initial GUI
displayed when

the app executes

b) GUI after
selecting Circle

from the
ComboBox

c) GUI after
selecting Filled

Square from the
ComboBox

d) GUI after
selecting Filled

Pie from the
ComboBox

598 Chapter 15 Graphical User Interfaces with Windows Forms: Part 2

upper-left corner, the width and height of the bounding box (i.e., rectangular area) in
which the ellipse will be displayed. The origin of the coordinate system is in the upper-left
corner of the Form; the x-coordinate increases to the right, and the y-coordinate increases
downward. A circle is a special case of an ellipse (with the width and height equal). Line
38 draws a circle. Line 44 draws an ellipse that has different values for width and height.

Class Graphicsmethod DrawRectangle (line 41) takes a Pen, the x- and y-coordinates
of the upper-left corner and the width and height of the rectangle to draw. Method
DrawPie (line 47) draws a pie as a portion of an ellipse. The ellipse is bounded by a rect-
angle. Method DrawPie takes a Pen, the x- and y-coordinates of the upper-left corner of
the rectangle, its width and height, the start angle (in degrees) and the sweep angle (in
degrees) of the pie. Angles increase clockwise. The FillEllipse (lines 50 and 57), Fill-
Rectangle (line 53–54) and FillPie (line 60–61) methods are similar to their unfilled
counterparts, except that they take a Brush (e.g., SolidBrush) instead of a Pen. Some of
the drawn shapes are illustrated in the screenshots of Fig. 15.23.

15.9 TreeView Control
The TreeView control displays nodes hierarchically in a tree. Traditionally, nodes are ob-
jects that contain values and can refer to other nodes. A parent node contains child nodes,
and the child nodes can be parents to other nodes. Two child nodes that have the same
parent node are considered sibling nodes. A tree is a collection of nodes, usually organized
in a hierarchical manner. The first parent node of a tree is the root node (a TreeView can
have multiple roots). For example, the file system of a computer can be represented as a
tree. The top-level directory (perhaps C:) would be the root, each subfolder of C: would
be a child node and each child folder could have its own children. TreeView controls are
useful for displaying hierarchical information, such as the file structure that we just men-
tioned. We cover nodes and trees in greater detail in Chapter 19, Data Structures.
Figure 15.24 displays a sample TreeView control on a Form.

A parent node can be expanded or collapsed by clicking the plus box or minus box to
its left. Nodes without children do not have these boxes.

The nodes in a TreeView are instances of class TreeNode. Each TreeNode has a Nodes

collection (type TreeNodeCollection), which contains a list of other TreeNodes—known
as its children. The Parent property returns a reference to the parent node (or null if the
node is a root node). Figures 15.25 and 15.26 list the common properties of TreeViews
and TreeNodes, common TreeNode methods and a common TreeView event.

Fig. 15.24 | TreeView displaying a sample tree.

Click – to collapse
node and hide
child nodes

Click + to expand
node and display

child nodes

Root node

Child nodes (of
Manager1)

15.9 TreeView Control 599

TreeViewproperties
and an event Description

Common Properties
CheckBoxes Indicates whether CheckBoxes appear next to nodes. A value of true

displays CheckBoxes. The default value is false.
ImageList Specifies an ImageList object containing the node icons. An Image-

List object is a collection that contains Image objects.
Nodes Returns the collection of TreeNodes in the control as a TreeNodeCol-

lection. It contains methods Add (adds a TreeNode object), Clear
(deletes the entire collection) and Remove (deletes a specific node).
Removing a parent node deletes all of its children.

SelectedNode The selected node.

Common Event (Event arguments TreeViewEventArgs)
AfterSelect Generated after selected node changes. This is the default event when

the control is double clicked in the designer.

Fig. 15.25 | TreeView properties and an event.

TreeNodeproperties
and methods Description

Common Properties
Checked Indicates whether the TreeNode is checked (CheckBoxes property

must be set to true in the parent TreeView).
FirstNode Specifies the first node in the Nodes collection (i.e., the first child in

the tree).
FullPath Indicates the path of the node, starting at the root of the tree.
ImageIndex Specifies the index in the TreeView’s ImageList of the image shown

when the node is deselected.
LastNode Specifies the last node in the Nodes collection (i.e., the last child in the

tree).
NextNode Next sibling node.
Nodes Collection of TreeNodes contained in the current node (i.e., all the

children of the current node). It contains methods Add (adds a Tree-
Node object), Clear (deletes the entire collection) and Remove (deletes
a specific node). Removing a parent node deletes all of its children.

PrevNode Previous sibling node.
SelectedImageIndex Specifies the index in the TreeView’s ImageList of the image to use

when the node is selected.
Text Specifies the TreeNode’s text.

Common Methods
Collapse Collapses a node.

Fig. 15.26 | TreeNode properties and methods. (Part 1 of 2.)

600 Chapter 15 Graphical User Interfaces with Windows Forms: Part 2

To add nodes to the TreeView visually, click the ellipsis next to the Nodes property in
the Properties window. This opens the TreeNode Editor (Fig. 15.27), which displays an
empty tree representing the TreeView. There are Buttons to create a root and to add or delete
a node. To the right are the properties of the current node. Here you can rename the node.

To add nodes programmatically, first create a root node. Create a new TreeNode

object and pass it a string to display. Then call method Add to add this new TreeNode to
the TreeView’s Nodes collection. Thus, to add a root node to TreeView myTreeView, write

where myTreeView is the TreeView to which we are adding nodes, and rootLabel is the text
to display in myTreeView. To add children to a root node, add new TreeNodes to its Nodes
collection. We select the appropriate root node from the TreeView by writing

where myIndex is the root node’s index in myTreeView’s Nodes collection. We add nodes
to child nodes through the same process by which we added root nodes to myTreeView. To
add a child to the root node at index myIndex, write

Expand Expands a node.
ExpandAll Expands all the children of a node.
GetNodeCount Returns the number of child nodes.

Fig. 15.27 | TreeNode Editor.

myTreeView.Nodes.Add(new TreeNode(rootLabel));

myTreeView.Nodes[myIndex]

myTreeView.Nodes[myIndex].Nodes.Add(new TreeNode(ChildLabel));

TreeNodeproperties
and methods Description

Fig. 15.26 | TreeNode properties and methods. (Part 2 of 2.)

Delete currently
selected node

15.9 TreeView Control 601

Class TreeViewDirectoryStructureForm (Fig. 15.28) uses a TreeView to display the
contents of a directory chosen by the user. A TextBox and a Button are used to specify the
directory. First, enter the full path of the directory you want to display. Then click the
Button to set the specified directory as the root node in the TreeView. Each subdirectory
of this directory becomes a child node. This layout is similar to that used in Windows
Explorer. Folders can be expanded or collapsed by clicking the plus or minus boxes that
appear to their left.

When the user clicks the enterButton, all the nodes in directoryTreeView are
cleared (line 68). Then, if the directory exists (line 73), the path entered in inputTextBox
is used to create the root node. Line 76 adds the directory to directoryTreeView as the
root node, and lines 79–80 call method PopulateTreeView (lines 21–62), which takes a
directory (a string) and a parent node. Method PopulateTreeView then creates child
nodes corresponding to the subdirectories of the directory it receives as an argument.

1 // Fig. 15.28: TreeViewDirectoryStructureForm.cs
2 // Using TreeView to display directory structure.
3 using System;
4 using System.Windows.Forms;
5 using System.IO;
6
7 namespace TreeViewDirectoryStructure
8 {
9 // Form uses TreeView to display directory structure

10 public partial class TreeViewDirectoryStructureForm : Form
11 {
12 string substringDirectory; // store last part of full path name
13
14 // constructor
15 public TreeViewDirectoryStructureForm()
16 {
17 InitializeComponent();
18 } // end constructor
19
20 // populate current node with subdirectories
21 public void PopulateTreeView(
22 string directoryValue, TreeNode parentNode)
23 {
24 // array stores all subdirectories in the directory
25 string[] directoryArray =
26 Directory.GetDirectories(directoryValue);
27
28 // populate current node with subdirectories
29 try

30 {
31 // check to see if any subdirectories are present
32 if (directoryArray.Length != 0)
33 {
34 // for every subdirectory, create new TreeNode,
35 // add as a child of current node and recursively
36 // populate child nodes with subdirectories

Fig. 15.28 | TreeView used to display directories. (Part 1 of 3.)

602 Chapter 15 Graphical User Interfaces with Windows Forms: Part 2

37 foreach (string directory in directoryArray)
38 {
39 // obtain last part of path name from the full path
40 // name by calling the GetFileNameWithoutExtension
41 // method of class Path
42 substringDirectory =
43 Path.GetFileNameWithoutExtension(directory);
44
45 // create TreeNode for current directory
46 TreeNode myNode = new TreeNode(substringDirectory);
47
48 // add current directory node to parent node
49 parentNode.Nodes.Add(myNode);
50
51 // recursively populate every subdirectory
52 PopulateTreeView(directory, myNode);
53 } // end foreach
54 } // end if
55 } //end try
56
57 // catch exception
58 catch (UnauthorizedAccessException)
59 {
60 parentNode.Nodes.Add("Access denied");
61 } // end catch
62 } // end method PopulateTreeView
63
64 // handles enterButton click event
65 private void enterButton_Click(object sender, EventArgs e)
66 {
67 // clear all nodes
68 directoryTreeView.Nodes.Clear();
69
70 // check if the directory entered by user exists
71 // if it does, then fill in the TreeView,
72 // if not, display error MessageBox
73 if (Directory.Exists(inputTextBox.Text))
74 {
75 // add full path name to directoryTreeView
76 directoryTreeView.Nodes.Add(inputTextBox.Text);
77
78 // insert subfolders
79 PopulateTreeView(
80 inputTextBox.Text, directoryTreeView.Nodes[0]);
81 }
82 // display error MessageBox if directory not found
83 else

84 MessageBox.Show(inputTextBox.Text + " could not be found.",
85 "Directory Not Found", MessageBoxButtons.OK,
86 MessageBoxIcon.Error);
87 } // end method enterButton_Click
88 } // end class TreeViewDirectoryStructureForm
89 } // end namespace TreeViewDirectoryStructure

Fig. 15.28 | TreeView used to display directories. (Part 2 of 3.)

15.10 ListView Control 603

Method PopulateTreeView (lines 21–62) obtains a list of subdirectories, using
method GetDirectories of class Directory (namespace System.IO) in lines 25–26.
Method GetDirectories takes a string (the current directory) and returns an array of
strings (the subdirectories). If a directory is not accessible for security reasons, an Unau-

thorizedAccessException is thrown. Lines 58–61 catch this exception and add a node
containing “Access denied” instead of displaying the subdirectories.

If there are accessible subdirectories, lines 42–43 use method GetFileNameWithout-

Extension of class Path to increase readability by shortening the full path name to just the
directory name. The Path class provides functionality for working with strings that are file
or directory paths. Next, each string in the directoryArray is used to create a new child
node (line 46). We use method Add (line 49) to add each child node to the parent. Then
method PopulateTreeView is called recursively on every subdirectory (line 52), which
eventually populates the TreeView with the entire directory structure. Our recursive algo-
rithm may cause a delay when the program loads large directories. However, once the folder
names are added to the appropriate Nodes collection, they can be expanded and collapsed
without delay. In the next section, we present an alternate algorithm to solve this problem.

15.10 ListView Control
The ListView control is similar to a ListBox in that both display lists from which the user
can select one or more items (an example of a ListView can be found in Fig. 15.31). List-
View is more versatile and can display items in different formats. For example, a ListView
can display icons next to the list items (controlled by its SmallImageList, LargeImageList
or StateImageList properties) and show the details of items in columns. Property Multi-

Select (a bool) determines whether multiple items can be selected. CheckBoxes can be in-
cluded by setting property CheckBoxes (a bool) to true, making the ListView’s appearance
similar to that of a CheckedListBox. The View property specifies the layout of the ListBox.
Property Activation determines the method by which the user selects a list item. The de-
tails of these properties and the ItemActivate event are explained in Fig. 15.29.

ListView allows you to define the images used as icons for ListView items. To display
images, an ImageList component is required. Create one by dragging it to a Form from the

Fig. 15.28 | TreeView used to display directories. (Part 3 of 3.)

a) GUI after
user enters a

directory path

b) GUI after
the user

presses Enter
to display the

directory’s
contents

604 Chapter 15 Graphical User Interfaces with Windows Forms: Part 2

ToolBox. Then, select the Images property in the Properties window to display the Image
Collection Editor (Fig. 15.30). Here you can browse for images that you wish to add to the
ImageList, which contains an array of Images. Adding images this way embeds them into
the app (like resources), so they do not need to be included separately with the published
app. They’re not however part of the project. In this example, we added images to the
ImageList programmatically rather than using the Image Collection Editor so that we could
use image resources. After creating an empty ImageList, add the file and folder icon images
(provided with this chapter’s examples) to the project as resources. Next, set property Smal-
lImageList of the ListView to the new ImageList object. Property SmallImageList spec-
ifies the image list for the small icons. Property LargeImageList sets the ImageList for
large icons. The items in a ListView are each of type ListViewItem. Icons for the ListView
items are selected by setting the item’s ImageIndex property to the appropriate index.

Class ListViewTestForm (Fig. 15.31) displays files and folders in a ListView, along
with small icons representing each file or folder. If a file or folder is inaccessible because of

ListView properties
and events Description

Common Properties
Activation Determines how the user activates an item. This property takes a value in

the ItemActivation enumeration. Possible values are OneClick (single-
click activation), TwoClick (double-click activation, item changes color
when selected) and Standard (the default; double-click activation, item
does not change color).

CheckBoxes Indicates whether items appear with CheckBoxes. true displays CheckBoxes.
The default is false.

LargeImageList Specifies the ImageList containing large icons for display.
Items Returns the collection of ListViewItems in the control.

MultiSelect Determines whether multiple selection is allowed. The default is true,
which enables multiple selection.

SelectedItems Returns the collection of selected items as a ListView.SelectedListView-
ItemCollection.

SmallImageList Specifies the ImageList containing small icons for display.

View Determines appearance of ListViewItems. Possible values are LargeIcon (the
default; large icon displayed, items can be in multiple columns), SmallIcon
(small icon displayed, items can be in multiple columns), List (small icons
displayed, items appear in a single column), Details (like List, but multiple
columns of information can be displayed per item) and Tile (large icons dis-
played, information provided to right of icon).

Common Events
Click Generated when an item is clicked. This is the default event.

ItemActivate Generated when an item in the ListView is activated (clicked or double
clicked). Does not contain the specifics of which item is activated—you can
use SelectedItems or SelectedIndices to determine this.

Fig. 15.29 | ListView properties and events.

15.10 ListView Control 605

permission settings, a MessageBox appears. The program scans the contents of the direc-
tory as it browses, rather than indexing the entire drive at once.

Method ListViewTestForm_Load

Method ListViewTestForm_Load (lines 114–123) handles the Form’s Load event. When
the app loads, the folder and file icon images are added to the Images collection of file-
FolderImageList (lines 117–118). Since the ListView’s SmallImageList property is set
to this ImageList, the ListView can display these images as icons for each item. Because
the folder icon was added first, it has array index 0, and the file icon has array index 1. The
app also loads its home directory (obtained at line 14) into the ListViewwhen it first loads
(line 121) and displays the directory path (line 122).

Fig. 15.30 | Image Collection Editor window for an ImageList component.

1 // Fig. 15.31: ListViewTestForm.cs
2 // Displaying directories and their contents in ListView.
3 using System;
4 using System.Windows.Forms;
5 using System.IO;
6
7 namespace ListViewTest
8 {
9 // Form contains a ListView which displays

10 // folders and files in a directory
11 public partial class ListViewTestForm : Form
12 {
13 // store current directory
14 string currentDirectory = Directory.GetCurrentDirectory();
15
16 // constructor
17 public ListViewTestForm()
18 {
19 InitializeComponent();
20 } // end constructor

Fig. 15.31 | ListView displaying files and folders. (Part 1 of 4.)

606 Chapter 15 Graphical User Interfaces with Windows Forms: Part 2

21
22 // browse directory user clicked or go up one level
23 private void browserListView_Click(object sender, EventArgs e)
24 {
25 // ensure an item is selected
26 if (browserListView.SelectedItems.Count != 0)
27 {
28 // if first item selected, go up one level
29 if (browserListView.Items[0].Selected)
30 {
31 // create DirectoryInfo object for directory
32 DirectoryInfo directoryObject =
33 new DirectoryInfo(currentDirectory);
34
35 // if directory has parent, load it
36 if (directoryObject.Parent != null)
37 {
38 LoadFilesInDirectory(
39 directoryObject.Parent.FullName);
40 } // end if
41 } // end if
42
43 // selected directory or file
44 else

45 {
46 // directory or file chosen
47
48
49 // if item selected is directory, load selected directory
50 if (Directory.Exists(
51 Path.Combine(currentDirectory, chosen)))
52 {
53 LoadFilesInDirectory(
54 Path.Combine(currentDirectory, chosen));
55 } // end if
56 } // end else
57
58 // update displayLabel
59 displayLabel.Text = currentDirectory;
60 } // end if
61 } // end method browserListView_Click
62
63 // display files/subdirectories of current directory
64 public void LoadFilesInDirectory(string currentDirectoryValue)
65 {
66 // load directory information and display
67 try

68 {
69 // clear ListView and set first item
70
71
72

Fig. 15.31 | ListView displaying files and folders. (Part 2 of 4.)

string chosen = browserListView.SelectedItems[0].Text;

browserListView.Items.Clear();
browserListView.Items.Add("Go Up One Level");

15.10 ListView Control 607

73 // update current directory
74 currentDirectory = currentDirectoryValue;
75 DirectoryInfo newCurrentDirectory =
76 new DirectoryInfo(currentDirectory);
77
78 // put files and directories into arrays
79 DirectoryInfo[] directoryArray =
80 newCurrentDirectory.GetDirectories();
81 FileInfo[] fileArray = newCurrentDirectory.GetFiles();
82
83 // add directory names to ListView
84 foreach (DirectoryInfo dir in directoryArray)
85 {
86 // add directory to ListView
87
88
89
90
91 } // end foreach
92
93 // add file names to ListView
94 foreach (FileInfo file in fileArray)
95 {
96 // add file to ListView
97
98
99
100
101 } // end foreach
102 } // end try
103
104 // access denied
105 catch (UnauthorizedAccessException)
106 {
107 MessageBox.Show("Warning: Some files may not be " +
108 "visible due to permission settings",
109 "Attention", 0, MessageBoxIcon.Warning);
110 } // end catch
111 } // end method LoadFilesInDirectory
112
113 // handle load event when Form displayed for first time
114 private void ListViewTestForm_Load(object sender, EventArgs e)
115 {
116 // add icon images to ImageList
117
118
119
120 // load current directory into browserListView
121 LoadFilesInDirectory(currentDirectory);
122 displayLabel.Text = currentDirectory;
123 } // end method ListViewTestForm_Load
124 } // end class ListViewTestForm
125 } // end namespace ListViewTest

Fig. 15.31 | ListView displaying files and folders. (Part 3 of 4.)

ListViewItem newDirectoryItem =
browserListView.Items.Add(dir.Name);

newDirectoryItem.ImageIndex = 0; // set directory image

ListViewItem newFileItem =
browserListView.Items.Add(file.Name);

newFileItem.ImageIndex = 1; // set file image

fileFolderImageList.Images.Add(Properties.Resources.folder);
fileFolderImageList.Images.Add(Properties.Resources.file);

608 Chapter 15 Graphical User Interfaces with Windows Forms: Part 2

Method LoadFilesInDirectory

The LoadFilesInDirectorymethod (lines 64–111) populates browserListViewwith the
directory passed to it (currentDirectoryValue). It clears browserListView and adds the
element "Go Up One Level". When the user clicks this element, the program attempts to
move up one level (we see how shortly). The method then creates a DirectoryInfo object
initialized with the string currentDirectory (lines 75–76). If permission is not given to
browse the directory, an exception is thrown (and caught in line 105). Method Load-

FilesInDirectory works differently from method PopulateTreeView in the previous
program (Fig. 15.28). Instead of loading all the folders on the hard drive, method Load-

FilesInDirectory loads only the folders in the current directory.
Class DirectoryInfo (namespace System.IO) enables us to browse or manipulate the

directory structure easily. Method GetDirectories (line 80) returns an array of Direc-
toryInfo objects containing the subdirectories of the current directory. Similarly, method
GetFiles (line 81) returns an array of class FileInfo objects containing the files in the
current directory. Property Name (of both class DirectoryInfo and class FileInfo) con-
tains only the directory or file name, such as temp instead of C:\myfolder\temp. To access
the full name, use property FullName.

Fig. 15.31 | ListView displaying files and folders. (Part 4 of 4.)

a) GUI showing app’s
default folder

b) GUI showing the
contents of the

c:\Users
directoy

c) Dialog that
appears if you try

to access a
directory for which

you do not have
permission

15.11 TabControl Control 609

Lines 84–91 and lines 94–101 iterate through the subdirectories and files of the cur-
rent directory and add them to browserListView. Lines 90 and 100 set the ImageIndex
properties of the newly created items. If an item is a directory, we set its icon to a directory
icon (index 0); if an item is a file, we set its icon to a file icon (index 1).

Method browserListView_Click

Method browserListView_Click (lines 23–61) responds when the user clicks control
browserListView. Line 26 checks whether anything is selected. If a selection has been
made, line 29 determines whether the user chose the first item in browserListView. The
first item in browserListView is always Go Up One Level; if it’s selected, the program at-
tempts to go up a level. Lines 32–33 create a DirectoryInfo object for the current direc-
tory. Line 36 tests property Parent to ensure that the user is not at the root of the directory
tree. Property Parent indicates the parent directory as a DirectoryInfo object; if no par-
ent directory exists, Parent returns the value null. If a parent directory does exist, lines
38–39 pass the parent directory’s full name to LoadFilesInDirectory.

If the user did not select the first item in browserListView, lines 44–56 allow the user
to continue navigating through the directory structure. Line 47 creates string chosen and
assigns it the text of the selected item (the first item in collection SelectedItems). Lines
50–51 determine whether the user selected a valid directory (rather than a file). Using the
Combine method of class Path, the program combines strings currentDirectory and
chosen to form the new directory path. The Combine method automatically adds a back-
slash (\), if necessary, between the two pieces. This value is passed to the Exists method
of class Directory. Method Exists returns true if its string parameter is a valid direc-
tory. If so, the program passes the string to method LoadFilesInDirectory (lines 53–
54). Finally, displayLabel is updated with the new directory (line 59).

This program loads quickly, because it indexes only the files in the current directory.
A small delay may occur when a new directory is loaded. In addition, changes in the direc-
tory structure can be shown by reloading a directory. The previous program (Fig. 15.28)
may have a large initial delay, as it loads an entire directory structure. This type of trade-
off is typical in the software world.

15.11 TabControl Control
The TabControl creates tabbed windows, such as those in Visual Studio (Fig. 15.32). This
enables you to specify more information in the same space on a Form and group displayed
data logically. TabControls contain TabPage objects, which are similar to Panels and
GroupBoxes in that TabPages also can contain controls. You first add controls to the Tab-
Page objects, then add the TabPages to the TabControl. Only one TabPage is displayed at
a time. To add objects to the TabPage and the TabControl, write

Software Engineering Observation 15.2
When designing apps that run for long periods of time, you might choose a large initial
delay to improve performance throughout the rest of the program. However, in apps that
run for only short periods, developers often prefer fast initial loading times and small
delays after each action.

myTabPage.Controls.Add(myControl);
myTabControl.TabPages.Add(myTabPage);

610 Chapter 15 Graphical User Interfaces with Windows Forms: Part 2

The preceding statements call method Add of the Controls collection and method Add
of the TabPages collection. The example adds TabControl myControl to TabPage myTab-
Page, then adds myTabPage to myTabControl. Alternatively, we can use method AddRange
to add an array of TabPages or controls to a TabControl or TabPage, respectively.
Figure 15.33 depicts a sample TabControl.

You can add TabControls visually by dragging and dropping them onto a Form in Design
mode. To add TabPages in Design mode, click the top of the TabControl, open its smart tasks
menu and select Add Tab (Fig. 15.34). Alternatively, click the TabPages property in the Prop-
erties window and add tabs in the dialog that appears. To change a tab label, set the Text

property of the TabPage. Clicking the tabs selects the TabControl—to select the TabPage,
click the control area underneath the tabs. You can add controls to the TabPage by dragging
and dropping items from the ToolBox. To view different TabPages, click the appropriate tab
(in either design or run mode). Common properties and a common event of TabControls are
described in Fig. 15.35.

Each TabPage generates a Click event when its tab is clicked. Event handlers for this
event can be created by double clicking the body of the TabPage.

Class UsingTabsForm (Fig. 15.36) uses a TabControl to display various options
relating to the text on a label (Color, Size and Message). The last TabPage displays an
About message, which describes the use of TabControls.

Fig. 15.32 | Tabbed windows in Visual Studio.

Fig. 15.33 | TabControl with TabPages example.

Tabs

TabPage

Controls in TabPage TabControl

15.11 TabControl Control 611

Fig. 15.34 | TabPages added to a TabControl.

TabControl
properties and an
event Description

Common Properties

ImageList Specifies images to be displayed on tabs.

ItemSize Specifies the tab size.

Multiline Indicates whether multiple rows of tabs can be displayed.

SelectedIndex Index of the selected TabPage.

SelectedTab The selected TabPage.

TabCount Returns the number of tab pages.

TabPages Returns the collection of TabPages within the TabControl as a Tab-
Control.TabPageCollection.

Common Event

SelectedIndexChanged Generated when SelectedIndex changes (i.e., another TabPage is
selected).

Fig. 15.35 | TabControl properties and an event.

1 // Fig. 15.36: UsingTabsForm.cs
2 // Using TabControl to display various font settings.
3 using System;
4 using System.Drawing;
5 using System.Windows.Forms;
6
7 namespace UsingTabs
8 {
9 // Form uses Tabs and RadioButtons to display various font settings

10 public partial class UsingTabsForm : Form
11 {
12 // constructor
13 public UsingTabsForm()
14 {
15 InitializeComponent();
16 } // end constructor

Fig. 15.36 | TabControl used to display various font settings. (Part 1 of 3.)

Smart tasks menu

612 Chapter 15 Graphical User Interfaces with Windows Forms: Part 2

17
18 // event handler for Black RadioButton
19 private void blackRadioButton_CheckedChanged(
20 object sender, EventArgs e)
21 {
22 displayLabel.ForeColor = Color.Black; // change color to black
23 } // end method blackRadioButton_CheckedChanged
24
25 // event handler for Red RadioButton
26 private void redRadioButton_CheckedChanged(
27 object sender, EventArgs e)
28 {
29 displayLabel.ForeColor = Color.Red; // change color to red
30 } // end method redRadioButton_CheckedChanged
31
32 // event handler for Green RadioButton
33 private void greenRadioButton_CheckedChanged(
34 object sender, EventArgs e)
35 {
36 displayLabel.ForeColor = Color.Green; // change color to green
37 } // end method greenRadioButton_CheckedChanged
38
39 // event handler for 12 point RadioButton
40 private void size12RadioButton_CheckedChanged(
41 object sender, EventArgs e)
42 {
43 // change font size to 12
44 displayLabel.Font = new Font(displayLabel.Font.Name, 12);
45 } // end method size12RadioButton_CheckedChanged
46
47 // event handler for 16 point RadioButton
48 private void size16RadioButton_CheckedChanged(
49 object sender, EventArgs e)
50 {
51 // change font size to 16
52 displayLabel.Font = new Font(displayLabel.Font.Name, 16);
53 } // end method size16RadioButton_CheckedChanged
54
55 // event handler for 20 point RadioButton
56 private void size20RadioButton_CheckedChanged(
57 object sender, EventArgs e)
58 {
59 // change font size to 20
60 displayLabel.Font = new Font(displayLabel.Font.Name, 20);
61 } // end method size20RadioButton_CheckedChanged
62
63 // event handler for Hello! RadioButton
64 private void helloRadioButton_CheckedChanged(
65 object sender, EventArgs e)
66 {
67 displayLabel.Text = "Hello!"; // change text to Hello!
68 } // end method helloRadioButton_CheckedChanged
69

Fig. 15.36 | TabControl used to display various font settings. (Part 2 of 3.)

15.11 TabControl Control 613

The textOptionsTabControl and the colorTabPage, sizeTabPage, messageTabPage
and aboutTabPage are created in the designer (as described previously). The colorTabPage
contains three RadioButtons for the colors black (blackRadioButton), red (red-
RadioButton) and green (greenRadioButton). This TabPage is displayed in Fig. 15.36(a).
The CheckedChanged event handler for each RadioButton updates the color of the text in
displayLabel (lines 22, 29 and 36). The sizeTabPage (Fig. 15.36(b)) has three RadioBut-
tons, corresponding to font sizes 12 (size12RadioButton), 16 (size16RadioButton) and
20 (size20RadioButton), which change the font size of displayLabel—lines 44, 52 and
60, respectively. The messageTabPage (Fig. 15.36(c)) contains two RadioButtons for the
messages Hello! (helloRadioButton) and Goodbye! (goodbyeRadioButton). The two
RadioButtons determine the text on displayLabel (lines 67 and 74, respectively). The
aboutTabPage (Fig. 15.36(d)) contains a Label (messageLabel) describing the purpose of
TabControls.

70 // event handler for Goodbye! RadioButton
71 private void goodbyeRadioButton_CheckedChanged(
72 object sender, EventArgs e)
73 {
74 displayLabel.Text = "Goodbye!"; // change text to Goodbye!
75 } // end method goodbyeRadioButton_CheckedChanged
76 } // end class UsingTabsForm
77 } // end namespace UsingTabs

Software Engineering Observation 15.3
A TabPage can act as a container for a single logical group of RadioButtons, enforcing their
mutual exclusivity. To place multiple RadioButton groups inside a single TabPage, you
should group RadioButtons within Panels or GroupBoxes contained within the TabPage.

Fig. 15.36 | TabControl used to display various font settings. (Part 3 of 3.)

a) Selecting the Red
RadioButton from

the Color tab

b) Selecting the
20 Point

RadioButton
from the Size tab

c) Selecting the
Goodbye!

RadioButton from
the Message tab

d) Selecting the
About tab

614 Chapter 15 Graphical User Interfaces with Windows Forms: Part 2

15.12 Multiple Document Interface (MDI) Windows
In previous chapters, we have built only single document interface (SDI) apps. Such pro-
grams (including Microsoft’s Notepad and Paint) can support only one open window or
document at a time. SDI apps usually have limited abilities—Paint and Notepad, for ex-
ample, have limited image- and text-editing features. To edit multiple documents, the user
must execute another instance of the SDI app.

Many complex apps are multiple document interface (MDI) programs, which allow
users to edit multiple documents at once (e.g., Microsoft Office products). MDI programs
also tend to be more complex—Paint Shop Pro and Photoshop have a greater number of
image-editing features than does Paint.

An MDI program’s main window is called the parent window, and each window
inside the app is referred to as a child window. Although an MDI app can have many child
windows, each has only one parent window. Furthermore, a maximum of one child
window can be active at once. Child windows cannot be parents themselves and cannot
be moved outside their parent. Otherwise, a child window behaves like any other window
(with regard to closing, minimizing, resizing, and so on). A child window’s functionality
can differ from that of other child windows of the parent. For example, one child window
might allow the user to edit images, another might allow the user to edit text and a third
might display network traffic graphically, but all could belong to the same MDI parent.
Figure 15.37 depicts a sample MDI app with two child windows.

To create an MDI Form, create a new Form and set its IsMdiContainer property to
true. The Form changes appearance, as in Fig. 15.38. Next, create a child Form class to be
added to the Form. To do this, right click the project in the Solution Explorer, select
Project > Add Windows Form… and name the file. Edit the Form as you like. To add the
child Form to the parent, we must create a new child Form object, set its MdiParent

property to the parent Form and call the child Form’s Show method. In general, to add a
child Form to a parent, write

Fig. 15.37 | MDI parent window and MDI child windows.

ChildFormClass childForm = New ChildFormClass();
childForm.MdiParent = parentForm;
childForm.Show();

MDI parent

MDI child

MDI child

15.12 Multiple Document Interface (MDI) Windows 615

In most cases, the parent Form creates the child, so the parentForm reference is this.
The code to create a child usually lies inside an event handler, which creates a new window
in response to a user action. Menu selections (such as File, followed by a submenu option
of New, followed by a submenu option of Window) are common techniques for creating
new child windows.

Class Form property MdiChildren returns an array of child Form references. This is
useful if the parent window wants to check the status of all its children (for example,
ensuring that all are saved before the parent closes). Property ActiveMdiChild returns a
reference to the active child window; it returns null if there are no active child windows.
Other features of MDI windows are described in Fig. 15.39.

Fig. 15.38 | SDI and MDI forms.

MDI Form properties,
a method and an
event Description

Common MDI Child Properties

IsMdiChild Indicates whether the Form is an MDI child. If true, Form is an
MDI child (read-only property).

MdiParent Specifies the MDI parent Form of the child.

Common MDI Parent Properties

ActiveMdiChild Returns the Form that’s the currently active MDI child (returns
null if no children are active).

IsMdiContainer Indicates whether a Form can be an MDI parent. If true, the Form
can be an MDI parent. The default value is false.

MdiChildren Returns the MDI children as an array of Forms.

Common Method

LayoutMdi Determines the display of child forms on an MDI parent. The
method takes as a parameter an MdiLayout enumeration with
possible values ArrangeIcons, Cascade, TileHorizontal and
TileVertical. Figure 15.42 depicts the effects of these values.

Common Event

MdiChildActivate Generated when an MDI child is closed or activated.

Fig. 15.39 | MDI parent and MDI child properties, a method and an event.

Single Document Interface (SDI) Multiple Document Interface (MDI)

616 Chapter 15 Graphical User Interfaces with Windows Forms: Part 2

Child windows can be minimized, maximized and closed independently of the parent
window. Figure 15.40 shows two images: one containing two minimized child windows
and a second containing a maximized child window. When the parent is minimized or
closed, the child windows are minimized or closed as well. Notice that the title bar in
Fig. 15.40(b) is Form1 - [Child1]. When a child window is maximized, its title-bar text is
inserted into the parent window’s title bar. When a child window is minimized or maxi-
mized, its title bar displays a restore icon, which can be used to return the child window
to its previous size (its size before it was minimized or maximized).

C# provides a property that helps track which child windows are open in an MDI
container. Property MdiWindowListItem of class MenuStrip specifies which menu, if any,
displays a list of open child windows that the user can select to bring the corresponding
window to the foreground. When a new child window is opened, an entry is added to the
end of the list (Fig. 15.41). If ten or more child windows are open, the list includes the
option More Windows..., which allows the user to select a window from a list in a dialog.

MDI containers allow you to organize the placement of its child windows. The child
windows in an MDI app can be arranged by calling method LayoutMdi of the parent Form.
Method LayoutMdi takes an MdiLayout enumeration, which can have values ArrangeIcons,
Cascade, TileHorizontal and TileVertical. Tiled windows completely fill the parent
and do not overlap; such windows can be arranged horizontally (value TileHorizontal) or
vertically (value TileVertical). Cascaded windows (value Cascade) overlap—each is the
same size and displays a visible title bar, if possible. Value ArrangeIcons arranges the icons
for any minimized child windows. If minimized windows are scattered around the parent
window, value ArrangeIcons orders them neatly at the bottom-left corner of the parent
window. Figure 15.42 illustrates the values of the MdiLayout enumeration.

Fig. 15.40 | Minimized and maximized child windows.

Good Programming Practice 15.1
When creating MDI apps, include a menu that displays a list of the open child windows.
This helps the user select a child window quickly, rather than having to search for it in
the parent window.

Parent window icons:
minimize, maximize and close

Maximized child window icons:
minimize, restore and close

Minimized child window icons:
restore, maximize and close

Parent title bar indicates
maximized child

a) b)

15.12 Multiple Document Interface (MDI) Windows 617

Class UsingMDIForm (Fig. 15.43) demonstrates MDI windows. Class UsingMDIForm
uses three instances of child Form ChildForm (Fig. 15.44), each containing a PictureBox
that displays an image. The parent MDI Form contains a menu enabling users to create
and arrange child Forms.

Fig. 15.41 | MenuStrip property MdiWindowListItem example.

Fig. 15.42 | MdiLayout enumeration values.

Ten or more child windows enables
the More Windows… option

Child windows list

a) ArrangeIcons b) Cascade

c) TileHorizontal d) TileVertical

618 Chapter 15 Graphical User Interfaces with Windows Forms: Part 2

MDI Parent Form
Figure 15.43 presents class UsingMDIForm—the app’s MDI parent Form. This Form, which
is created first, contains two top-level menus. The first of these menus, File (fileTool-
StripMenuItem), contains both an Exit item (exitToolStripMenuItem) and a New sub-
menu (newToolStripMenuItem) consisting of items for each type of child window. The
second menu, Window (windowToolStripMenuItem), provides options for laying out the
MDI children, plus a list of the active MDI children.

1 // Fig. 15.43: UsingMDIForm.cs
2 // Demonstrating use of MDI parent and child windows.
3 using System;
4 using System.Windows.Forms;
5
6 namespace UsingMDI
7 {
8 // Form demonstrates the use of MDI parent and child windows
9 public partial class UsingMDIForm : Form

10 {
11 // constructor
12 public UsingMDIForm()
13 {
14 InitializeComponent();
15 } // end constructor
16
17 // create Lavender Flowers image window
18 private void lavenderToolStripMenuItem_Click(
19 object sender, EventArgs e)
20 {
21 // create new child
22
23
24
25
26 } // end method lavenderToolStripMenuItem_Click
27
28 // create Purple Flowers image window
29 private void purpleToolStripMenuItem_Click(
30 object sender, EventArgs e)
31 {
32 // create new child
33
34
35
36
37 } // end method purpleToolStripMenuItem_Click
38
39 // create Yellow Flowers image window
40 private void yellowToolStripMenuItem_Click(
41 object sender, EventArgs e)
42 {

Fig. 15.43 | MDI parent-window class. (Part 1 of 3.)

ChildForm child = new ChildForm(
"Lavender Flowers", "lavenderflowers");

child.MdiParent = this; // set parent
child.Show(); // display child

ChildForm child = new ChildForm(
"Purple Flowers", "purpleflowers");

child.MdiParent = this; // set parent
child.Show(); // display child

15.12 Multiple Document Interface (MDI) Windows 619

43 // create new child
44
45
46
47
48 } // end method yellowToolStripMenuItem_Click
49
50 // exit app
51 private void exitToolStripMenuItem_Click(
52 object sender, EventArgs e)
53 {
54 Application.Exit();
55 } // end method exitToolStripMenuItem_Click
56
57 // set Cascade layout
58 private void cascadeToolStripMenuItem_Click(
59 object sender, EventArgs e)
60 {
61
62 } // end method cascadeToolStripMenuItem_Click
63
64 // set TileHorizontal layout
65 private void tileHorizontalToolStripMenuItem_Click(
66 object sender, EventArgs e)
67 {
68
69 } // end method tileHorizontalToolStripMenuItem
70
71 // set TileVertical layout
72 private void tileVerticalToolStripMenuItem_Click(
73 object sender, EventArgs e)
74 {
75
76 } // end method tileVerticalToolStripMenuItem_Click
77 } // end class UsingMDIForm
78 } // end namespace UsingMDI

Fig. 15.43 | MDI parent-window class. (Part 2 of 3.)

Child child = new ChildForm(
"Yellow Flowers", "yellowflowers");

child.MdiParent = this; // set parent
child.Show(); // display child

this.LayoutMdi(MdiLayout.Cascade);

this.LayoutMdi(MdiLayout.TileHorizontal);

this.LayoutMdi(MdiLayout.TileVertical);

a) Selecting the Lavender Flowers menu item b) Lavender Flowers ChildForm window displayed

620 Chapter 15 Graphical User Interfaces with Windows Forms: Part 2

In the Properties window, we set the Form’s IsMdiContainer property to true,
making the Form an MDI parent. In addition, we set the MenuStrip’s MdiWindowListItem
property to windowToolStripMenuItem. This enables the Window menu to contain the list
of child MDI windows.

The Cascade menu item (cascadeToolStripMenuItem) has an event handler
(cascadeToolStripMenuItem_Click, lines 58–62) that arranges the child windows in a
cascading manner. The event handler calls method LayoutMdiwith the argument Cascade
from the MdiLayout enumeration (line 61).

The Tile Horizontal menu item (tileHorizontalToolStripMenuItem) has an event
handler (tileHorizontalToolStripMenuItem_Click, lines 65–69) that arranges the child
windows in a horizontal manner. The event handler calls method LayoutMdi with the
argument TileHorizontal from the MdiLayout enumeration (line 68).

Finally, the Tile Vertical menu item (tileVerticalToolStripMenuItem) has an event
handler (tileVerticalToolStripMenuItem_Click, lines 72–76) that arranges the child
windows in a vertical manner. The event handler calls method LayoutMdi with the argu-
ment TileVertical from the MdiLayout enumeration (line 75).

MDI Child Form

At this point, the app is still incomplete—we must define the MDI child class. To do this,
right click the project in the Solution Explorer and select Add > Windows Form…. Then
name the new class in the dialog as ChildForm (Fig. 15.44). Next, we add a PictureBox
(displayPictureBox) to ChildForm. In ChildForm’s constructor, line 16 sets the title-bar
text. Lines 19–21 retrieve the appropriate image resource, cast it to an Image and set dis-
playPictureBox’s Image property. The images that are used can be found in the Images
subfolder of this chapter’s examples directory.

After the MDI child class is defined, the parent MDI Form (Fig. 15.43) can create new
child windows. The event handlers in lines 18–48 create a new child Form corresponding
to the menu item clicked. Lines 22–23, 33–34 and 44–45 create new instances of Child-
Form. Lines 24, 35 and 46 set each Child’s MdiParent property to the parent Form. Lines
25, 36 and 47 call method Show to display each child Form.

Fig. 15.43 | MDI parent-window class. (Part 3 of 3.)

c) Selecting the Cascade menu item d) Cascaded child windows in an MDI window

15.13 Visual Inheritance 621

15.13 Visual Inheritance
Chapter 11 discussed how to create classes by inheriting from other classes. We have also
used inheritance to create Forms that display a GUI, by deriving our new Form classes from
class System.Windows.Forms.Form. This is an example of visual inheritance. The derived
Form class contains the functionality of its Form base class, including any base-class prop-
erties, methods, variables and controls. The derived class also inherits all visual aspects—
such as sizing, component layout, spacing between GUI components, colors and fonts—
from its base class.

Visual inheritance enables you to achieve visual consistency across apps. For example,
you could define a base Form that contains a product’s logo, a specific background color, a
predefined menu bar and other elements. You then could use the base Form throughout an
app for uniformity and branding. You can also create controls that inherit from other con-
trols. For example, you might create a custom UserControl (discussed in Section 15.14)
that’s derived from an existing control.

Creating a Base Form
Class VisualInheritanceBaseForm (Fig. 15.45) derives from Form. The output depicts
the workings of the program. The GUI contains two Labels with text Bugs, Bugs, Bugs
and Copyright 2014, by Deitel & Associates, Inc., as well as one Button displaying the text
Learn More. When a user presses the Learn More Button, method learnMoreButton_Click
(lines 18–24) is invoked. This method displays a MessageBox that provides some informa-
tive text.

1 // Fig. 15.44: ChildForm.cs
2 // Child window of MDI parent.
3 using System;
4 using System.Drawing;
5 using System.Windows.Forms;
6
7 namespace UsingMDI
8 {
9 public partial class ChildForm : Form

10 {
11 public ChildForm(string title, string resourceName)
12 {
13 // Required for Windows Form Designer support
14 InitializeComponent();
15
16 Text = title; // set title text
17
18 // set image to display in PictureBox
19 displayPictureBox.Image =
20 (Image) (Properties.Resources.ResourceManager.GetObject(
21 resourceName);
22 } // end constructor
23 } // end class ChildForm
24 } // end namespace UsingMDI

Fig. 15.44 | MDI child ChildForm.

622 Chapter 15 Graphical User Interfaces with Windows Forms: Part 2

Steps for Declaring and Using a Reusable Class
Before a Form (or any class) can be used in multiple apps, it must be placed in a class library
to make it reusable. The steps for creating a reusable class are:

1. Declare a public class. If the class is not public, it can be used only by other
classes in the same assembly—that is, compiled into the same DLL or EXE file.

2. Choose a namespace name and add a namespace declaration to the source-code
file for the reusable class declaration.

3. Compile the class into a class library.

4. Add a reference to the class library in an app.

1 // Fig. 15.45: VisualInheritanceBaseForm.cs
2 // Base Form for use with visual inheritance.
3 using System;
4 using System.Windows.Forms;
5
6 namespace VisualInheritanceBase
7 {
8 // base Form used to demonstrate visual inheritance
9 public partial class VisualInheritanceBaseForm : Form

10 {
11 // constructor
12 public VisualInheritanceForm()
13 {
14 InitializeComponent();
15 } // end constructor
16
17 // display MessageBox when Button is clicked
18 private void learnMoreButton_Click(object sender, EventArgs e)
19 {
20 MessageBox.Show(
21 "Bugs, Bugs, Bugs is a product of deitel.com",
22 "Learn More", MessageBoxButtons.OK,
23 MessageBoxIcon.Information);
24 } // end method learnMoreButton_Click
25 } // end class VisualInheritanceBaseForm
26 } // end namespace VisualInheritanceBase

Fig. 15.45 | Class VisualInheritanceBaseForm, which inherits from class Form, contains a
Button (Learn More).

15.13 Visual Inheritance 623

5. Use the class.

Let’s take a look at these steps in the context of this example:

Step 1: Creating a public Class
For Step 1 in this discussion, we use the public class VisualInheritanceBaseForm de-
clared in Fig. 15.45. By default, every new Form class you create is declares as a public class.

Step 2: Adding the namespace Declaration
For Step 2, we use the namespace declaration that was created for us by the IDE. By de-
fault, every new class you define is placed in a namespace with the same name as the proj-
ect. In almost every example in the text, we’ve seen that classes from preexisting libraries,
such as the .NET Framework Class Library, can be imported into a C# app. Each class
belongs to a namespace that contains a group of related classes. As apps become more com-
plex, namespaces help you manage the complexity of app components. Class libraries and
namespaces also facilitate software reuse by enabling apps to add classes from other
namespaces (as we’ve done in most examples). We removed the namespace declarations in
earlier chapters because they were not necessary.

Placing a class inside a namespace declaration indicates that the class is part of the
specified namespace. The namespace name is part of the fully qualified class name, so the
name of class VisualInheritanceTestForm is actually VisualInheritanceBase.Visual-
InheritanceBaseForm. You can use this fully qualified name in your apps, or you can
write a using directive and use the class’s simple name (the unqualified class name—Visu-

alInheritanceBaseForm) in the app. If another namespace also contains a class with the
same name, the fully qualified class names can be used to distinguish between the classes
in the app and prevent a name conflict (also called a name collision).

Step 3: Compiling the Class Library
To allow other Forms to inherit from VisualInheritanceForm, we must package Visual-
InheritanceForm as a class library and compile it into a .dll file. Such as file is known as
a dynamically linked library—a way to package classes that you can reference from other
apps. Right click the project name in the Solution Explorer and select Properties, then
choose the Application tab. In the Output type drop-down list, change Windows Application
to Class Library. Building the project produces the .dll. You can configure a project to be
a class library when you first create it by selecting the Class Library template in the New Proj-
ect dialog. [Note: A class library cannot execute as a stand-alone app. The screen captures
in Fig. 15.45 were taken before changing the project to a class library.]

Step 4: Adding a Reference to the Class Library
Once the class is compiled and stored in the class library file, the library can be referenced
from any app by indicating to the Visual C# Express IDE where to find the class library
file. To visually inherit from VisualInheritanceBaseForm, first create a new Windows
app. Right-click the project name in the Solution Explorer window and select Add Refer-
ence... from the pop-up menu that appears. The dialog box that appears will contain a list
of class libraries from the .NET Framework. Some class libraries, like the one containing
the System namespace, are so common that they’re added to your app by the IDE. The
ones in this list are not.

624 Chapter 15 Graphical User Interfaces with Windows Forms: Part 2

In the Reference Manager dialog box, click Browse then click the Browse… button.
When you build a class library, Visual C# places the .dll file in the project’s bin\Debug
or bin\Release folder, depending on whether the Solution Configurations drop-down list
in the IDE’s toolbar is set to Debug or Release. In the Browse tab, you can navigate to the
directory containing the class library file you created in Step 3, as shown in Fig. 15.46.
Select the .dll file and click OK.

Step 5: Using the Class—Deriving From a Base Form
Open the file that defines the new app’s GUI and modify the line that defines the class to
indicate that the app’s Form should inherit from class VisualInheritanceBaseForm. The
class-declaration line should now appear as follows:

Unless you specify namespace VisualInheritanceBase in a using directive, you must use
the fully qualified name VisualInheritanceBase.VisualInheritanceBaseForm. In De-
sign view, the new app’s Form should now display the controls inherited from the base
Form (Fig. 15.47). We can now add more components to the Form.

f

Fig. 15.46 | Using the Reference Manager dialog to browse for a DLL.

public partial class VisualInhertianceTestForm :
VisualInheritanceBase.VisualInheritanceBaseForm

15.13 Visual Inheritance 625

Class VisualInheritanceTestForm
Class VisualInheritanceTestForm (Fig. 15.48) is a derived class of VisualInheritance-
BaseForm. The output illustrates the functionality of the program. The components, their
layouts and the functionality of base class VisualInheritanceBaseForm (Fig. 15.45) are
inherited by VisualInheritanceTestForm. We added an additional Button with text
About this Program. When a user presses this Button, method aboutButton_Click (lines
19–25) is invoked. This method displays another MessageBox providing different infor-
mative text (lines 21–24).

Fig. 15.47 | Form demonstrating visual inheritance.

1 // Fig. 15.48: VisualInheritanceTestForm.cs
2 // Derived Form using visual inheritance.
3 using System;
4 using System.Windows.Forms;
5
6 namespace VisualInheritanceTest
7 {
8 // derived form using visual inheritance
9

10
11 {
12 // constructor
13 public VisualInheritanceTestForm()
14 {
15 InitializeComponent();
16 } // end constructor
17
18 // display MessageBox when Button is clicked
19 private void aboutButton_Click(object sender, EventArgs e)
20 {
21 MessageBox.Show(
22 "This program was created by Deitel & Associates.",
23 "About This Program", MessageBoxButtons.OK,
24 MessageBoxIcon.Information);
25 } // end method aboutButton_Click
26 } // end class VisualInheritanceTestForm
27 } // end namespace VisualInheritanceTest

Fig. 15.48 | Class VisualInheritanceTestForm, which inherits from class
VisualInheritanceBaseForm, contains an additional Button. (Part 1 of 2.)

public partial class VisualInheritanceTestForm :
VisualInheritanceBase.VisualInheritanceBaseForm

626 Chapter 15 Graphical User Interfaces with Windows Forms: Part 2

If a user clicks the Learn More button, the event is handled by the base-class event han-
dler learnMoreButton_Click. Because VisualInheritanceBaseForm uses a private

access modifier to declare its controls, VisualInheritanceTestForm cannot modify the
controls inherited from class VisualInheritanceBaseForm visually or programmatically.
The IDE displays a small icon at the top left of the visually inherited controls to indicate
that they’re inherited and cannot be altered.

15.14 User-Defined Controls
The .NET Framework allows you to create custom controls. These custom controls ap-
pear in the user’s Toolbox and can be added to Forms, Panels or GroupBoxes in the same
way that we add Buttons, Labels and other predefined controls. The simplest way to create
a custom control is to derive a class from an existing control, such as a Label. This is useful
if you want to add functionality to an existing control, rather than replacing it with one
that provides the desired functionality. For example, you can create a new type of Label
that behaves like a normal Label but has a different appearance. You accomplish this by
inheriting from class Label and overriding method OnPaint.

Method OnPaint

All controls have an OnPaint method, which the system calls when a component must be
redrawn (such as when the component is resized). The method receives a PaintEventArgs
object, which contains graphics information—property Graphics is the graphics object
used to draw, and property ClipRectangle defines the rectangular boundary of the con-
trol. Whenever the system raises a Paint event to draw the control on the screen, the con-
trol catches the event and calls its OnPaint method. The base class’s OnPaint should be
called explicitly from an overridden OnPaint implementation before executing custom-

Fig. 15.48 | Class VisualInheritanceTestForm, which inherits from class
VisualInheritanceBaseForm, contains an additional Button. (Part 2 of 2.)

Derived class
cannot modify
these controls

Derived class can
modify this control

15.14 User-Defined Controls 627

paint code. In most cases, you want to do this to ensure that the original painting code
executes in addition to the code you define in the custom control’s class.

Creating New Controls
To create a new control composed of existing controls, use class UserControl. Controls
added to a custom control are called constituent controls. For example, a programmer
could create a UserControl composed of a Button, a Label and a TextBox, each associated
with some functionality (for example, the Button setting the Label’s text to that contained
in the TextBox). The UserControl acts as a container for the controls added to it. The
UserControl contains constituent controls, but it does not determine how these constit-
uent controls are displayed. To control the appearance of each constituent control, you
can handle each control’s Paint event or override OnPaint. Both the Paint event handler
and OnPaint are passed a PaintEventArgs object, which can be used to draw graphics
(lines, rectangles, and so on) on the constituent controls.

Using another technique, a programmer can create a brand-new control by inheriting
from class Control. This class does not define any specific behavior; that’s left to you.
Instead, class Control handles the items associated with all controls, such as events and
sizing handles. Method OnPaint should contain a call to the base class’s OnPaint method,
which calls the Paint event handlers. You add code that draws custom graphics inside the
overridden OnPaint method. This technique allows for the greatest flexibility but also
requires the most planning. All three approaches are summarized in Fig. 15.49.

Custom-control techniques
and PaintEventArgs
properties Description

Custom-Control Techniques

Inherit from Windows
Forms control

You can do this to add functionality to a preexisting control. If
you override method OnPaint, call the base class’s OnPaint
method. You only can add to the original control’s appearance,
not redesign it.

Create a UserControl You can create a UserControl composed of multiple preexist-
ing controls (e.g., to combine their functionality). You place
drawing code in a Paint event handler or overridden OnPaint

method.

Inherit from class Control Define a brand new control. Override method OnPaint, then
call base-class method OnPaint and include methods to draw
the control. With this method you can customize control
appearance and functionality.

PaintEventArgs Properties

Graphics The control’s graphics object, which is used to draw on the
control.

ClipRectangle Specifies the rectangle indicating the boundary of the control.

Fig. 15.49 | Custom-control creation.

628 Chapter 15 Graphical User Interfaces with Windows Forms: Part 2

Clock Control
We create a “clock” control in Fig. 15.50. This is a UserControl composed of a Label and
a Timer—whenever the Timer raises an event (once per second in this example), the Label
is updated to reflect the current time.

Timers
Timers (System.Windows.Forms namespace) are non-visual components that generate
Tick events at a set interval. This interval is set by the Timer’s Interval property, which
defines the number of milliseconds (thousandths of a second) between events. By default,
timers are disabled and do not generate events.

Adding a User Control
This app contains a user control (ClockUserControl) and a Form that displays the user
control. Create a Windows app, then create a UserControl class by selecting Project > Add
User Control…. This displays a dialog from which we can select the type of item to add—
user controls are already selected. We then name the file (and the class) ClockUserCon-
trol. Our empty ClockUserControl is displayed as a grey rectangle.

1 // Fig. 15.50: ClockUserControl.cs
2 // User-defined control with a timer and a Label.
3 using System;
4 using System.Windows.Forms;
5
6 namespace ClockExample
7 {
8 // UserControl that displays the time on a Label
9 public partial class ClockUserControl : UserControl

10 {
11 // constructor
12 public ClockUserControl()
13 {
14 InitializeComponent();
15 } // end constructor
16
17 // update Label at every tick
18 private void clockTimer_Tick(object sender, EventArgs e)
19 {
20 // get current time (Now), convert to string
21 displayLabel.Text = DateTime.Now.ToLongTimeString();
22 } // end method clockTimer_Tick
23 } // end class ClockUserControl
24 } // end namespace ClockExample

Fig. 15.50 | UserControl-defined clock.

15.14 User-Defined Controls 629

Designing the User Control
You can treat this control like a Windows Form, meaning that you can add controls using
the ToolBox and set properties using the Properties window. However, instead of creating
an app, you’re simply creating a new control composed of other controls. Add a Label
(displayLabel) and a Timer (clockTimer) to the UserControl. Set the Timer interval to
1000 milliseconds and set displayLabel’s text with each Tick event (lines 18–22). To
generate events, clockTimer must be enabled by setting property Enabled to true in the
Properties window.

Structure DateTime (namespace System) contains property Now, which returns the
current time. Method ToLongTimeString converts Now to a string containing the current
hour, minute and second (along with AM or PM, depending on your locale). We use this
to set the time in displayLabel in line 21.

Once created, our clock control appears as an item in the ToolBox in the section titled
ProjectName Components, where ProjectName is your project’s name. You may need to
switch to the app’s Form before the item appears in the ToolBox. To use the control, simply
drag it to the Form and run the Windows app. We gave the ClockUserControl object a
white background to make it stand out in the Form. Figure 15.50 shows the output of
Clock, which contains our ClockUserControl. There are no event handlers in Clock, so
we show only the code for ClockUserControl.

Sharing Custom Controls with Other Developers
Visual Studio allows you to share custom controls with other developers. To create a User-
Control that can be exported to other solutions, do the following:

1. Create a new Class Library project.

2. Delete Class1.cs, initially provided with the app.

3. Right click the project in the Solution Explorer and select Add > User Control….
In the dialog that appears, name the user-control file and click Add.

4. Inside the project, add controls and functionality to the UserControl (Fig. 15.51).

5. Build the project. Visual Studio creates a .dll file for the UserControl in the
output directory (bin/Release or bin/Release). The file is not executable; class
libraries are used to define classes that are reused in other executable apps.

6. Create a new Windows app.

7. In the new Windows app, right click the ToolBox and select Choose Items…. In
the Choose Toolbox Items dialog that appears, click Browse…. Browse for the
.dll file from the class library created in Steps 1–5. The item will then appear in

Fig. 15.51 | Custom-control creation.

630 Chapter 15 Graphical User Interfaces with Windows Forms: Part 2

the Choose Toolbox Items dialog (Fig. 15.52). If it’s not already checked, check
this item. Click OK to add the item to the Toolbox. This control can now be add-
ed to the Form as if it were any other control.

15.15 Wrap-Up
Many of today’s commercial apps provide GUIs that are easy to use and manipulate. Because
of this demand for user-friendly GUIs, the ability to design sophisticated GUIs is an essential
programming skill. Visual Studio’s IDE makes GUI development quick and easy. In
Chapters 14 and 15, we presented basic Windows Forms GUI development techniques. In
Chapter 15, we demonstrated how to create menus, which provide users easy access to an
app’s functionality. You learned the DateTimePicker and MonthCalendar controls, which
allow users to input date and time values. We demonstrated LinkLabels, which are used to
link the user to an app or a web page. You used several controls that provide lists of data to
the user—ListBoxes, CheckedListBoxes and ListViews. We used the ComboBox control to
create drop-down lists, and the TreeView control to display data in hierarchical form. We
then introduced complex GUIs that use tabbed windows and multiple document interfaces.
The chapter concluded with demonstrations of visual inheritance and creating custom con-
trols. In Chapter 16, we introduce string and character processing.

Fig. 15.52 | Custom control added to the ToolBox.

Summary
Section 15.2 Menus
• Menus provide groups of related commands for Windows Forms apps.

• An expanded menu lists menu items and submenus.

• A menu that contains a menu item is called that menu item’s parent menu. A menu item that
contains a submenu is considered to be the parent of that submenu.

Summary 631

• All menus and menu items can have shortcut keys.

• Some menu items display checkmarks, indicating that multiple options on the menu can be se-
lected at once.

• The MenuStrip control is used to create menus in a GUI.

• Top-level menus and their menu items are represented using type ToolStripMenuItem.

• To create an access shortcut, type an ampersand (&) before the character to be underlined.

• To add other shortcut keys, set the ShortcutKeys property of the ToolStripMenuItem.

• You can hide shortcut keys by setting property ShowShortcutKeys to false. You can modify how
shortcut keys are displayed in the menu item by modifying property ShortcutKeyDisplayString.

• A menu item’s Checked property is used to display a check to the left of the menu item.

Section 15.3 MonthCalendar Control
• The MonthCalendar control displays a monthly calendar.

• The user can select a date from the currently displayed month or navigate to another month.

• A MonthCalendar’s DateChanged event occurs when a new date is selected.

Section 15.4 DateTimePicker Control
• The DateTimePicker control can be used to retrieve date and/or time information from the user.

• Property Format of class DateTimePicker specifies the user’s selection options.

• The DateTimePicker’s ValueChanged event is raised when the selected value is changed.

Section 15.5 LinkLabel Control
• The LinkLabel control displays links to other resources, such as files or web pages.

• A LinkLabel appears as underlined text (colored blue by default). When the mouse moves over
the link, the pointer changes to a hand; this is similar to a hyperlink in a web page.

• The link can change color to indicate whether the link is new, previously visited or active.

• When clicked, the LinkLabel generates a LinkClicked event.

Section 15.6 ListBox Control
• The ListBox control allows the user to view and select items in a list.

• ListBox property SelectionMode determines the number of items that can be selected.

• The SelectedIndexChanged event of class ListBox occurs when the user selects a new item.

• Property Items returns all the list items as a collection.

• Property SelectedItem returns the currently selected item.

• Use method Add to add an item to the ListBox’s Items collection.

• You can add items to ListBoxes and CheckedListBoxes visually by using the Items property in
the Properties window.

Section 15.7 CheckedListBox Control
• The CheckedListBox control extends a ListBox by including a checkbox next to each item.

• Items can be added via methods Add and AddRange or through the String Collection Editor.

• CheckedListBoxes imply that multiple items can be checked.

• CheckedListBox event ItemCheck occurs when a user checks or unchecks a CheckedListBox item.

632 Chapter 15 Graphical User Interfaces with Windows Forms: Part 2

Section 15.8 ComboBox Control
• The ComboBox control combines TextBox features with a drop-down list.

• Property MaxDropDownItems specifies the maximum number of items that can display at one
time.

• You can add objects to collection Items programmatically, using methods Add and AddRange, or
visually, with the String Collection Editor.

• Property DropDownStyle determines the type of ComboBox and is represented as a value of the Com-
boBoxStyle enumeration, which contains values Simple, DropDown and DropDownList.

• There can be at most one selected item in a ComboBox (if none, then SelectedIndex is -1).

• When the selected item changes in a ComboBox, a SelectedIndexChanged event occurs.

Section 15.9 TreeView Control
• The TreeView control displays nodes hierarchically in a tree.

• Traditionally, nodes are objects that contain values and can refer to other nodes.

• A parent node contains child nodes, and the child nodes can be parents to other nodes.

• Two child nodes that have the same parent node are considered sibling nodes.

• A tree is a collection of nodes, usually organized in a hierarchical manner. The first parent node
of a tree is a root node—there can be multiple root nodes.

• TreeView controls are useful for displaying hierarchical information.

• In a TreeView, a parent node can be expanded or collapsed by clicking the plus box or minus box
to its left. Nodes without children do not have these boxes.

• The nodes displayed in a TreeView are instances of class TreeNode.

• Each TreeNode has a Nodes collection (type TreeNodeCollection), containing a list of TreeNodes.

• To add nodes to a TreeView visually, click the ellipsis next to property Nodes in the Properties win-
dow. This opens the TreeNode Editor, which displays an empty tree representing the TreeView.

• To add nodes programmatically, you must create a root TreeNode object and pass it a string to
display. Then call method Add to add this new TreeNode to the TreeView’s Nodes collection.

Section 15.10 ListView Control
• The ListView control is similar to a ListBox in that both display lists from which the user can

select one or more items. ListView is more flexible and can display items in different formats.

• Property MultiSelect (a bool) determines whether multiple items can be selected.

• To display images, an ImageList component is required.

• Property SmallImageList of class ListView sets the ImageList for the small icons.

• Property LargeImageList of class ListView sets the ImageList for large icons.

• The items in a ListView are each of type ListViewItem.

Section 15.11 TabControl Control
• The TabControl control creates tabbed windows.

• TabControls contain TabPage objects. Only one TabPage is displayed at a time.

• You can add TabControls visually by dragging and dropping them on a Form in Design mode.

• To add TabPages in Design mode, open the TabControl’s smart tasks menu and click Add Tab, or
click the TabPages property in the Properties window, and add tabs in the dialog that appears.

• Each TabPage raises a Click event when its tab is clicked.

Terminology 633

Section 15.12 Multiple Document Interface (MDI) Windows
• The app window of a multiple document interface (MDI) program is called the parent window,

and each window inside the app is referred to as a child window.

• Child windows cannot be parents themselves and cannot be moved outside their parent.

• To create an MDI Form, create a new Form and set its IsMdiContainer property to true.

• To add a child Form to the parent, create a new child Form object, set its MdiParent property to
the parent Form and call the child Form’s Show method.

• Property MdiWindowListItem of class MenuStrip specifies which menu, if any, displays a list of
open child windows.

• MDI containers allow you to organize the placement of child windows. The child windows in
an MDI app can be arranged by calling method LayoutMdi of the parent Form.

Section 15.13 Visual Inheritance
• Visual inheritance allows you to create a new Form by inheriting from an existing Form. The de-

rived Form class contains the functionality of its base class.

• Visual inheritance can also be applied with other controls as well.

• Visual inheritance enables you to achieve visual consistency across apps by reusing code.

• A reusable class is typically placed in a class library.

• When you compile a class library, the compiler will create a .dll file, known as a dynamically
linked library—a way to package classes that you can reference from other apps.

Section 15.14 User-Defined Controls
• The .NET Framework allows you to create custom controls.

• Custom controls can appear in the user’s Toolbox and can be added to Forms, Panels or Group-
Boxes in the same way that Buttons, Labels and other predefined controls are added.

• The simplest way to create a custom control is to derive a class from an existing control, such as
a Label. This is useful if you want to add functionality to an existing control, rather than replac-
ing it with one that provides the desired functionality.

• To create a new control composed of existing controls, use class UserControl.

• Controls added to a custom control are called constituent controls.

• A programmer can create a brand-new control by inheriting from class Control. This class does
not define any specific behavior; that task is left to you.

• Timers are non-visual components that generate Tick events at a set interval. This interval is set
by the Timer’s Interval property, which defines the number of milliseconds (thousandths of a
second) between events. Timers are disabled by default.

Terminology
access shortcut
Activation property of class ListView
ActiveMdiChild property of class Form
AddDays method of struct DateTime
AddYears method of struct DateTime
Application class
cascaded window
CheckBoxes property of class ListView
Checked property of class ToolStripMenuItem

CheckedListBox class
child node
child window
Clear method of class Graphics
Click event of class ToolStripMenuItem
ClipRectangle property of class

PaintEventArgs

ComboBox class
ComboBoxStyle enumeration

634 Chapter 15 Graphical User Interfaces with Windows Forms: Part 2

constituent controls
CustomFormat property of class DateTimePicker
Date property of struct DateTime
DateChanged event of class MonthCalendar
DateTime struct

DateTimePicker class
DateTimePickerFormat enumeration
DayOfWeek enumeration
DayOfWeek property of struct DateTime
DirectoryInfo class
.dll file
DrawEllipse method of class Graphics
DrawPie method of class Graphics
DrawRectangle method of class Graphics
DropDownStyle property of class ComboBox
dynamically linked library
Exists method of class Directory
Exit method of class Application
FileInfo class
FillEllipse method of class Graphics
FillPie method of class Graphics
FillRectangle method of class Graphics
Format property of class DateTimePicker
FullName property of class DirectoryInfo
FullName property of class FileInfo
GetDirectoriesmethod of class DirectoryInfo
GetFiles method of class DirectoryInfo
GetSelected method of class ListBox
Graphics property of class PaintEventArgs
hotkey
ImageIndex property of class ListViewItem
ImageList class
Images property of class ImageList
Interval property of class Timer
IsMdiContainer property of class Form
ItemCheck event of class CheckedListBox
Items property of class ComboBox
Items property of class ListBox
keyboard shortcut
LargeImageList property of class ListView
LinkLabel class
ListBox class
ListView class
ListViewItem class
MaxDate property of class DateTimePicker
MaxDropDownItems property of class ComboBox
MdiChildren property of class Form
MdiParent property of class Form
MdiWindowListItem property of class MenuStrip
MenuStrip class

MinDate property of class DateTimePicker
MonthCalendar class
multiple document interface (MDI)
MultiSelect property of class ListView
Name property of class DirectoryInfo
Name property of class FileInfo
node
Nodes collection
Now property of struct DateTime
ObjectCollection class
OnPaint method of class Control
PaintEventArgs class
parent node
Parent property of class DirectoryInfo
parent window
Path class
Process class
root node
SelectedIndex property of class ComboBox
SelectedIndex property of class ListBox
SelectedIndexChanged event of class ComboBox
SelectedIndexChanged event of class ListBox
SelectedIndices property of class ListBox
SelectedItem property of class ComboBox
SelectedItem property of class ListBox
SelectedItems property of class ListBox
SelectionMode enumeration
SelectionMode property of class ListBox
separator bar
ShortcutKeyDisplayString property of class

ToolStripMenuItem

ShortcutKeys property of class
ToolStripMenuItem

ShowShortcutKeys property of class
ToolStripMenuItem

sibling node
Single document interface (SDI)
SmallImageList property of class ListView
Start method of class Process
System.Diagnostics namespace
TabControl class
TabPage class
TabPages property of class TabControl
Text property of class TabPage
Tick event of class Timer
tiled window
TimeOfDay property of struct DateTime
Timer class
ToLongDateString method of struct DateTime
ToLongTimeString method of struct DateTime

Self-Review Exercises 635

ToolStripMenuItem class
tree
TreeNode class
TreeNodeCollection type
TreeView class
TreeViewEventArgs class

UserControl class
Value property of class DateTimePicker
ValueChanged event of class DateTimePicker
verbatim string

View property of class ListView
visual inheritance

Self-Review Exercises
15.1 State whether each of the following is true or false. If false, explain why.

a) Menus provide groups of related classes.
b) Menu items can display ComboBoxes, checkmarks and access shortcuts.
c) The ListBox control allows only single selection (like a RadioButton).
d) A ComboBox control typically has a drop-down list.
e) Deleting a parent node in a TreeView control deletes its child nodes.
f) The user can select only one item in a ListView control.
g) A TabPage can act as a container for RadioButtons.
h) An MDI child window can have MDI children.
i) MDI child windows can be moved outside the boundaries of their parent window.
j) There are two basic ways to create a customized control.

15.2 Fill in the blanks in each of the following statements:
a) Method of class Process can open files and web pages, similar to the Run...

command in Windows.
b) If more elements appear in a ComboBox than can fit, a(n) appears.
c) The top-level node in a TreeView is the node.
d) A(n) and a(n) can display icons contained in an ImageList control.
e) The property allows a menu to display a list of active child windows.
f) Class allows you to combine several controls into a single,custom control.
g) The saves space by layering TabPages on top of each other.
h) The window layout option makes all MDI windows the same size and layers

them so every title bar is visible (if possible).
i) are typically used to display hyperlinks to other resources, files or web pages.

Answers to Self-Review Exercises
15.1 a) False. Menus provide groups of related commands. b) True. c) False. It can have single
or multiple selection. d) True. e) True. f) False. The user can select one or more items. g) True.
h) False. Only an MDI parent window can have MDI children. An MDI parent window cannot be
an MDI child. i) False. MDI child windows cannot be moved outside their parent window. j) False.
There are three ways: 1) Derive from an existing control, 2) use a UserControl or 3) derive from
Control and create a control from scratch.

15.2 a) Start. b) scrollbar. c) root. d) ListView, TreeView. e) MdiWindowListItem. f) UserCon-
trol. g) TabControl. h) Cascade. i) LinkLabels.

Exercises
15.3 (Using ComboBoxes) Write an app that displays the names of 15 states in a ComboBox. When
an item is selected from the ComboBox, remove it.

15.4 (Using ComboBoxes and ListBoxes) Modify your solution to the previous exercise to add a
ListBox. When the user selects an item from the ComboBox, remove the item from the ComboBox and

636 Chapter 15 Graphical User Interfaces with Windows Forms: Part 2

add it to the ListBox. Your program should check to ensure that the ComboBox contains at least one
item. If it does not, display a message, using a message box, then terminate program execution when
the user dismisses the message box.

15.5 (Sorting Strings) Write an app that allows the user to enter strings in a TextBox. Each
string input is added to a ListBox. As each string is added to the ListBox, ensure that the strings
are in sorted order. [Note: Use property Sorted.]

15.6 (File Browser) Create a file browser (similar to Windows Explorer) based on the programs
in Figs. 15.14, 15.28 and 15.31. The file browser should have a TreeView, which allows the user to
browse directories. There should also be a ListView, which displays the contents (all subdirectories
and files) of the directory being browsed. Double clicking a file in the ListView should open it, and
double clicking a directory in either the ListView or the TreeView should browse it. If a file or di-
rectory cannot be accessed because of its permission settings, notify the user.

15.7 (MDI Text Editor) Create an MDI text editor. Each child window should contain a multi-
line RichTextBox. The MDI parent should have a Format menu, with submenus to control the size,
font and color of the text in the active child window. Each submenu should have at least three op-
tions. In addition, the parent should have a File menu, with menu items New (create a new child),
Close (close the active child) and Exit (exit the app). The parent should have a Window menu to dis-
play a list of the open child windows and their layout options.

15.8 (Login User Control) Create a UserControl called LoginPasswordUserControl that contains
a Label (loginLabel) that displays string "Login:", a TextBox (loginTextBox), where the user in-
puts a login name, a Label (passwordLabel) that displays the string "Password:" and, finally, a
TextBox (passwordTextBox) where a user inputs a password (set property PasswordChar to "*" in the
TextBox’s Properties window). LoginPasswordUserControl must provide public read-only proper-
ties Login and Password that allow an app to retrieve the user input from loginTextBox and pass-

wordTextBox. The UserControlmust be exported to an app that displays the values input by the user
in LoginPasswordUserControl.

15.9 (Restaurant Bill Calculator) A restaurant wants an app that calculates a table’s bill. The app
should display all the menu items from Fig. 15.53 in four ComboBoxes. Each ComboBox should con-
tain a category of food offered by the restaurant (Beverage, Appetizer, Main Course and Dessert).
The user can choose from one of these ComboBoxes to add an item to a table’s bill. As each item is
selected in the ComboBoxes, add the price of that item to the bill. The user can click the Clear Bill
Button to restore the Subtotal:, Tax: and Total: fields to $0.00.

Name Category Price Name Category Price

Soda Beverage $1.95 Chicken Alfredo Main Course $13.95

Tea Beverage $1.50 Chicken Picatta Main Course $13.95

Coffee Beverage $1.25 Turkey Club Main Course $11.95

Mineral Water Beverage $2.95 Lobster Pie Main Course $19.95

Juice Beverage $2.50 Prime Rib Main Course $20.95

Milk Beverage $1.50 Shrimp Scampi Main Course $18.95

Buffalo Wings Appetizer $5.95 Turkey Dinner Main Course $13.95

Buffalo Fingers Appetizer $6.95 Stuffed Chicken Main Course $14.95

Potato Skins Appetizer $8.95 Apple Pie Dessert $5.95

Fig. 15.53 | Food items and prices. (Part 1 of 2.)

Exercises 637

15.10 (Using TabPages) Create an app that contains three TabPages. On the first TabPage, place a
CheckedListBox with six items. On the second TabPage, place six TextBoxes. On the last TabPage, place
six LinkLabels. The user’s selections on the first TabPage should specify which of the six LinkLabels will
be displayed. To hide or display a LinkLabel’s value, use its Visible property. Use the second TabPage
to modify the web page that’s opened by the LinkLabels.

15.11 (MDI Drawing Programs) Create an MDI app with child windows that each have a Panel for
drawing. Add menus to the MDI app that allow the user to modify the size and color of the paintbrush.
When running this app, be aware that if one of the windows overlaps another, the Panel will be cleared.

Nachos Appetizer $8.95 Sundae Dessert $3.95

Mushroom Caps Appetizer $10.95 Carrot Cake Dessert $5.95

Shrimp Cocktail Appetizer $12.95 Mud Pie Dessert $4.95

Chips and Salsa Appetizer $6.95 Apple Crisp Dessert $5.95

Seafood Alfredo Main Course $15.95

Name Category Price Name Category Price

Fig. 15.53 | Food items and prices. (Part 2 of 2.)

16 Strings and Characters: A
Deeper Look

The chief defect of Henry King
Was chewing little bits of string.
—Hilaire Belloc

The difference between the
almost-right word and the right
word is really a large matter—
it’s the difference between the
lightning bug and the lightning.
—Mark Twain

O b j e c t i v e s
In this chapter you’ll:

� Create and manipulate
immutable character-string
objects of class string and
mutable character-string
objects of class
StringBuilder.

� Use various methods of
classes string and
StringBuilder.

� To manipulate character
objects of struct Char.

� To use regular-expression
classes Regex and Match.

16.1 Introduction 639

16.1 Introduction
This chapter introduces the .NET Framework Class Library’s string- and character-pro-
cessing capabilities and demonstrates how to use regular expressions to search for patterns
in text. The techniques it presents can be employed in text editors, word processors, page-
layout software, computerized typesetting systems and other kinds of text-processing soft-
ware. Previous chapters presented some basic string-processing capabilities. Now we dis-
cuss in detail the text-processing capabilities of class string and type char from the
System namespace and class StringBuilder from the System.Text namespace.

We begin with an overview of the fundamentals of characters and strings in which we
discuss character constants and string literals. We then provide examples of class string’s
many constructors and methods. The examples demonstrate how to determine the length
of strings, copy strings, access individual characters in strings, search strings, obtain substrings
from larger strings, compare strings, concatenate strings, replace characters in strings and
convert strings to uppercase or lowercase letters.

Next, we introduce class StringBuilder, which is used to build strings dynamically.
We demonstrate StringBuilder capabilities for determining and specifying the size of a
StringBuilder, as well as appending, inserting, removing and replacing characters in a
StringBuilder object. We then introduce the character-testing methods of struct Char
that enable a program to determine whether a character is a digit, a letter, a lowercase
letter, an uppercase letter, a punctuation mark or a symbol other than a punctuation mark.
Such methods are useful for validating individual characters in user input. In addition,
type Char provides methods for converting a character to uppercase or lowercase.

We provide an online section that discusses regular expressions. We present classes
Regex and Match from the System.Text.RegularExpressions namespace as well as the
symbols that are used to form regular expressions. We then demonstrate how to find pat-
terns in a string, match entire strings to patterns, replace characters in a string that match a
pattern and split strings at delimiters specified as a pattern in a regular expression.

16.1 Introduction
16.2 Fundamentals of Characters and

Strings
16.3 string Constructors
16.4 string Indexer, Length Property

and CopyTo Method
16.5 Comparing strings
16.6 Locating Characters and Substrings

in strings
16.7 Extracting Substrings from strings
16.8 Concatenating strings
16.9 Miscellaneous string Methods

16.10 Class StringBuilder
16.11 Length and Capacity Properties,

EnsureCapacity Method and
Indexer of Class StringBuilder

16.12 Append and AppendFormat
Methods of Class StringBuilder

16.13 Insert, Remove and Replace
Methods of Class StringBuilder

16.14 Char Methods
16.15 (Online) Introduction to Regular

Expressions
16.16 Wrap-Up

Summary | Terminology | Self-Review Exercises | Answers to Self-Review Exercises | Exercises |
Making a Difference Exercises

640 Chapter 16 Strings and Characters: A Deeper Look

16.2 Fundamentals of Characters and Strings
Characters are the fundamental building blocks of C# source code. Every program is com-
posed of characters that, when grouped together meaningfully, create a sequence that the
compiler interprets as instructions describing how to accomplish a task. A program also
can contain character constants. A character constant is a character that’s represented as
an integer value, called a character code. For example, the integer value 122 corresponds to
the character constant 'z'. The integer value 10 corresponds to the newline character
'\n'. Character constants are established according to the Unicode character set, an in-
ternational character set that contains many more symbols and letters than does the ASCII
character set (listed in Appendix C). To learn more about Unicode, see Appendix F.

A string is a series of characters treated as a unit. These characters can be uppercase
letters, lowercase letters, digits and various special characters: +, -, *, /, $ and others. A
string is an object of class string in the System namespace.1 We write string literals, also
called string constants, as sequences of characters in double quotation marks, as follows:

A declaration can assign a string literal to a string reference. The declaration

initializes the string color to refer to the string literal object "blue".

Verbatim Strings
On occasion, a string will contain multiple backslash characters (this often occurs in the
name of a file). To avoid excessive backslash characters, it’s possible to exclude escape se-
quences and interpret all the characters in a string literally, using the @ character to create
what’s known as a verbatim string. Backslashes within the double quotation marks follow-
ing the @ character are not considered escape sequences. Often this simplifies program-
ming and makes the code easier to read. For example, consider the string
"C:\MyFolder\MySubFolder\MyFile.txt" with the following assignment:

Using the verbatim string syntax, the assignment can be altered to

This approach also has the advantage of allowing string literals to span multiple lines by
preserving all newlines, spaces and tabs.

1. C# provides the string keyword as an alias for class String. In this book, we use the term string.

"John Q. Doe"

"9999 Main Street"

"Waltham, Massachusetts"

"(201) 555-1212"

string color = "blue";

Performance Tip 16.1
If there are multiple occurrences of the same string literal object in an app, a single copy
of it will be referenced from each location in the program that uses that string literal. It’s
possible to share the object in this manner, because string literal objects are implicitly
constant. Such sharing conserves memory.

string file = "C:\\MyFolder\\MySubFolder\\MyFile.txt";

string file = @"C:\MyFolder\MySubFolder\MyFile.txt";

16.3 string Constructors 641

16.3 string Constructors
Class string provides eight constructors for initializing strings in various ways.
Figure 16.1 demonstrates three of the constructors.

Lines 10–11 allocate the char array characterArray, which contains nine characters.
Lines 12–16 declare the strings originalString, string1, string2, string3 and
string4. Line 12 assigns string literal "Welcome to C# programming!" to string refer-
ence originalString. Line 13 sets string1 to reference the same string literal.

Line 14 assigns to string2 a new string, using the string constructor with a char-
acter array argument. The new string contains a copy of the array’s characters.

Line 15 assigns to string3 a new string, using the string constructor that takes a
char array and two int arguments. The second argument specifies the starting index posi-
tion (the offset) from which characters in the array are to be copied. The third argument
specifies the number of characters (the count) to be copied from the specified starting posi-
tion in the array. The new string contains a copy of the specified characters in the array.
If the specified offset or count indicates that the program should access an element outside
the bounds of the character array, an ArgumentOutOfRangeException is thrown.

Line 16 assigns to string4 a new string, using the string constructor that takes as
arguments a character and an int specifying the number of times to repeat that character
in the string.

1 // Fig. 16.1: StringConstructor.cs
2 // Demonstrating string class constructors.
3 using System;
4
5 class StringConstructor
6 {
7 public static void Main(string[] args)
8 {
9

10
11
12
13
14
15
16
17
18 Console.WriteLine("string1 = " + "\"" + string1 + "\"\n" +
19 "string2 = " + "\"" + string2 + "\"\n" +
20 "string3 = " + "\"" + string3 + "\"\n" +
21 "string4 = " + "\"" + string4 + "\"\n");
22 } // end Main
23 } // end class StringConstructor

string1 = "Welcome to C# programming!"
string2 = "birth day"
string3 = "day"
string4 = "CCCCC"

Fig. 16.1 | string constructors.

// string initialization
char[] characterArray =

{ 'b', 'i', 'r', 't', 'h', ' ', 'd', 'a', 'y' };
string originalString = "Welcome to C# programming!";
string string1 = originalString;
string string2 = new string(characterArray);
string string3 = new string(characterArray, 6, 3);
string string4 = new string('C', 5);

642 Chapter 16 Strings and Characters: A Deeper Look

16.4 string Indexer, Length Property and CopyTo
Method
The app in Fig. 16.2 presents the string indexer, which facilitates the retrieval of any
character in the string, and the string property Length, which returns the length of the
string. The string method CopyTo copies a specified number of characters from a
string into a char array.

Software Engineering Observation 16.1
In most cases, it’s not necessary to make a copy of an existing string. All strings are
immutable—their character contents cannot be changed after they’re created. Also, if
there are one or more references to a string (or any object for that matter), the object
cannot be reclaimed by the garbage collector.

1 // Fig. 16.2: StringMethods.cs
2 // Using the indexer, property Length and method CopyTo
3 // of class string.
4 using System;
5
6 class StringMethods
7 {
8 public static void Main(string[] args)
9 {

10 string string1 = "hello there";
11 char[] characterArray = new char[5];
12
13 // output string1
14 Console.WriteLine("string1: \"" + string1 + "\"");
15
16
17
18
19 // loop through characters in string1 and display reversed
20 Console.Write("The string reversed is: ");
21
22 for (int i = - 1; i >= 0; --i)
23 Console.Write();
24
25 // copy characters from string1 into characterArray
26
27 Console.Write("\nThe character array is: ");
28
29 for (int i = 0; i < ; ++i)
30 Console.Write();
31
32 Console.WriteLine("\n");
33 } // end Main
34 } // end class StringMethods

Fig. 16.2 | string indexer, Length property and CopyTo method. (Part 1 of 2.)

// test Length property
Console.WriteLine("Length of string1: " + string1.Length);

string1.Length
string1[i]

string1.CopyTo(0, characterArray, 0, characterArray.Length);

characterArray.Length
characterArray[i]

16.5 Comparing strings 643

This app determines the length of a string, displays its characters in reverse order and
copies a series of characters from the string to a character array. Line 17 uses string
property Length to determine the number of characters in string1. Like arrays, strings
always know their own size.

Lines 22–23 write the characters of string1 in reverse order using the string indexer.
The string indexer treats a string as an array of chars and returns each character at a
specific position in the string. The indexer receives an integer argument as the position
number and returns the character at that position. As with arrays, the first element of a
string is considered to be at position 0.

Line 26 uses stringmethod CopyTo to copy the characters of string1 into a character
array (characterArray). The first argument given to method CopyTo is the index from
which the method begins copying characters in the string. The second argument is the
character array into which the characters are copied. The third argument is the index spec-
ifying the starting location at which the method begins placing the copied characters into
the character array. The last argument is the number of characters that the method will
copy from the string. Lines 29–30 output the char array contents one character at a time.

16.5 Comparing strings
The next two examples demonstrate various methods for comparing strings. To understand
how one string can be “greater than” or “less than” another, consider the process of alpha-
betizing a series of last names. The reader would, no doubt, place "Jones" before "Smith",
because the first letter of "Jones" comes before the first letter of "Smith" in the alphabet.
The alphabet is more than just a set of 26 letters—it’s an ordered list of characters in which
each letter occurs in a specific position. For example, Z is more than just a letter of the al-
phabet; it’s specifically the twenty-sixth letter of the alphabet. Computers can order charac-
ters alphabetically because they’re represented internally as numeric codes and those codes
are ordered according to the alphabet so, for example, 'a' is less than 'b'—see Appendix C.

Comparing Strings with Equals, CompareTo and the Equality Operator (==)
Class string provides several ways to compare strings. The app in Fig. 16.3 demonstrates
the use of method Equals, method CompareTo and the equality operator (==).

The condition in line 21 uses string method Equals to compare string1 and literal
string "hello" to determine whether they’re equal. Method Equals (inherited from
object and overridden in string) tests two strings for equality (i.e., checks whether the
strings have identical contents). The method returns true if the objects are equal and false

string1: "hello there"
Length of string1: 11
The string reversed is: ereht olleh
The character array is: hello

Common Programming Error 16.1
Attempting to access a character that’s outside a string’s bounds results in an Index-

OutOfRangeException.

Fig. 16.2 | string indexer, Length property and CopyTo method. (Part 2 of 2.)

644 Chapter 16 Strings and Characters: A Deeper Look

otherwise. In this case, the condition returns true, because string1 references string lit-
eral object "hello". Method Equals uses word sorting rules that depend on your system’s
currently selected culture. Comparing "hello" with "HELLO" would return false, because
the lowercase letters are different from the those of corresponding uppercase letters.

1 // Fig. 16.3: StringCompare.cs
2 // Comparing strings
3 using System;
4
5 class StringCompare
6 {
7 public static void Main(string[] args)
8 {
9 string string1 = "hello";

10 string string2 = "good bye";
11 string string3 = "Happy Birthday";
12 string string4 = "happy birthday";
13
14 // output values of four strings
15 Console.WriteLine("string1 = \"" + string1 + "\"" +
16 "\nstring2 = \"" + string2 + "\"" +
17 "\nstring3 = \"" + string3 + "\"" +
18 "\nstring4 = \"" + string4 + "\"\n");
19
20 // test for equality using Equals method
21 if ()
22 Console.WriteLine("string1 equals \"hello\"");
23 else

24 Console.WriteLine("string1 does not equal \"hello\"");
25
26 // test for equality with ==
27 if ()
28 Console.WriteLine("string1 equals \"hello\"");
29 else

30 Console.WriteLine("string1 does not equal \"hello\"");
31
32 // test for equality comparing case
33 if () // static method
34 Console.WriteLine("string3 equals string4");
35 else

36 Console.WriteLine("string3 does not equal string4");
37
38 // test CompareTo
39 Console.WriteLine("\nstring1.CompareTo(string2) is " +
40 + "\n" +
41 "string2.CompareTo(string1) is " +
42 + "\n" +
43 "string1.CompareTo(string1) is " +
44 + "\n" +
45 "string3.CompareTo(string4) is " +
46 + "\n" +

Fig. 16.3 | string test to determine equality. (Part 1 of 2.)

string1.Equals("hello")

string1 == "hello"

string.Equals(string3, string4)

string1.CompareTo(string2)

string2.CompareTo(string1)

string1.CompareTo(string1)

string3.CompareTo(string4)

16.5 Comparing strings 645

The condition in line 27 uses the overloaded equality operator (==) to compare string
string1 with the literal string "hello" for equality. In C#, the equality operator also
compares the contents of two strings. Thus, the condition in the if statement evaluates
to true, because the values of string1 and "hello" are equal.

Line 33 tests whether string3 and string4 are equal to illustrate that comparisons
are indeed case sensitive. Here, static method Equals is used to compare the values of
two strings. "Happy Birthday" does not equal "happy birthday", so the condition of the
if statement fails, and the message "string3 does not equal string4" is output (line 36).

Lines 40–48 use string method CompareTo to compare strings. Method CompareTo
returns 0 if the strings are equal, a negative value if the string that invokes CompareTo is
less than the string that’s passed as an argument and a positive value if the string that
invokes CompareTo is greater than the string that’s passed as an argument.

Notice that CompareTo considers string3 to be greater than string4. The only dif-
ference between these two strings is that string3 contains two uppercase letters in posi-
tions where string4 contains lowercase letters—the uppercase version of a letter has a
lower numeric code than the corresponding lowercase letter (e.g., 'A' is 65 and 'a' is 97).

Determining Whether a String Begins or Ends with a Specified String
Figure 16.4 shows how to test whether a string instance begins or ends with a given
string. Method StartsWith determines whether a string instance starts with the string
text passed to it as an argument. Method EndsWith determines whether a string instance
ends with the string text passed to it as an argument. Class StringStartEnd’s Mainmeth-
od defines an array of strings (called strings), which contains "started", "starting",
"ended" and "ending". The remainder of method Main tests the elements of the array to
determine whether they start or end with a particular set of characters.

Line 13 uses method StartsWith, which takes a string argument. The condition in
the if statement determines whether the string at index i of the array starts with the char-
acters "st". If so, the method returns true, and strings[i] is output along with a message.

47 "string4.CompareTo(string3) is " +
48 + "\n\n");
49 } // end Main
50 } // end class StringCompare

string1 = "hello"
string2 = "good bye"
string3 = "Happy Birthday"
string4 = "happy birthday"

string1 equals "hello"
string1 equals "hello"
string3 does not equal string4

string1.CompareTo(string2) is 1
string2.CompareTo(string1) is -1
string1.CompareTo(string1) is 0
string3.CompareTo(string4) is 1
string4.CompareTo(string3) is -1

Fig. 16.3 | string test to determine equality. (Part 2 of 2.)

string4.CompareTo(string3)

646 Chapter 16 Strings and Characters: A Deeper Look

Line 21 uses method EndsWith to determine whether the string at index i of the
array ends with the characters "ed". If so, the method returns true, and strings[i] is dis-
played along with a message.

16.6 Locating Characters and Substrings in strings
In many apps, it’s necessary to search for a character or set of characters in a string. For
example, a programmer creating a word processor would want to provide capabilities for
searching through documents. The app in Fig. 16.5 demonstrates some of the many ver-
sions of stringmethods IndexOf, IndexOfAny, LastIndexOf and LastIndexOfAny, which
search for a specified character or substring in a string. We perform all searches in this
example on the string letters (initialized with "abcdefghijklmabcdefghijklm") locat-
ed in method Main of class StringIndexMethods.

Lines 14, 16 and 18 use method IndexOf to locate the first occurrence of a character
or substring in a string. If it finds a character, IndexOf returns the index of the specified

1 // Fig. 16.4: StringStartEnd.cs
2 // Demonstrating StartsWith and EndsWith methods.
3 using System;
4
5 class StringStartEnd
6 {
7 public static void Main(string[] args)
8 {
9 string[] strings = { "started", "starting", "ended", "ending" };

10
11 // test every string to see if it starts with "st"
12 for (int i = 0; i < strings.Length; i++)
13 if ()
14 Console.WriteLine("\"" + strings[i] + "\"" +
15 " starts with \"st\"");
16
17 Console.WriteLine();
18
19 // test every string to see if it ends with "ed"
20 for (int i = 0; i < strings.Length; i++)
21 if ()
22 Console.WriteLine("\"" + strings[i] + "\"" +
23 " ends with \"ed\"");
24
25 Console.WriteLine();
26 } // end Main
27 } // end class StringStartEnd

"started" starts with "st"
"starting" starts with "st"

"started" ends with "ed"
"ended" ends with "ed"

Fig. 16.4 | StartsWith and EndsWith methods.

strings[i].StartsWith("st")

strings[i].EndsWith("ed")

16.6 Locating Characters and Substrings in strings 647

1 // Fig. 16.5: StringIndexMethods.cs
2 // Using string-searching methods.
3 using System;
4
5 class StringIndexMethods
6 {
7 public static void Main(string[] args)
8 {
9 string letters = "abcdefghijklmabcdefghijklm";

10 char[] searchLetters = { 'c', 'a', '$' };
11
12 // test IndexOf to locate a character in a string
13 Console.WriteLine("First 'c' is located at index " +
14);
15 Console.WriteLine("First 'a' starting at 1 is located at index " +
16);
17 Console.WriteLine("First '$' in the 5 positions starting at 3 " +
18 "is located at index " +);
19
20 // test LastIndexOf to find a character in a string
21 Console.WriteLine("\nLast 'c' is located at index " +
22);
23 Console.WriteLine("Last 'a' up to position 25 is located at " +
24 "index " +);
25 Console.WriteLine("Last '$' in the 5 positions ending at 15 " +
26 "is located at index " +);
27
28 // test IndexOf to locate a substring in a string
29 Console.WriteLine("\nFirst \"def\" is located at index " +
30);
31 Console.WriteLine("First \"def\" starting at 7 is located at " +
32 "index " +);
33 Console.WriteLine("First \"hello\" in the 15 positions " +
34 "starting at 5 is located at index " +
35);
36
37 // test LastIndexOf to find a substring in a string
38 Console.WriteLine("\nLast \"def\" is located at index " +
39);
40 Console.WriteLine("Last \"def\" up to position 25 is located " +
41 "at index " +);
42 Console.WriteLine("Last \"hello\" in the 15 positions " +
43 "ending at 20 is located at index " +
44);
45
46 // test IndexOfAny to find first occurrence of character in array
47 Console.WriteLine("\nFirst 'c', 'a' or '$' is " +
48 "located at index " +);
49 Console.WriteLine("First 'c', 'a' or '$' starting at 7 is " +
50 "located at index " +);
51 Console.WriteLine("First 'c', 'a' or '$' in the 5 positions " +
52 "starting at 7 is located at index " +
53);

Fig. 16.5 | Searching for characters and substrings in strings. (Part 1 of 2.)

letters.IndexOf('c')

letters.IndexOf('a', 1)

letters.IndexOf('$', 3, 5)

letters.LastIndexOf('c')

letters.LastIndexOf('a', 25)

letters.LastIndexOf('$', 15, 5)

letters.IndexOf("def")

letters.IndexOf("def", 7)

letters.IndexOf("hello", 5, 15)

letters.LastIndexOf("def")

letters.LastIndexOf("def", 25)

letters.LastIndexOf("hello", 20, 15)

letters.IndexOfAny(searchLetters)

letters.IndexOfAny(searchLetters, 7)

letters.IndexOfAny(searchLetters, 7, 5)

648 Chapter 16 Strings and Characters: A Deeper Look

character in the string; otherwise, IndexOf returns –1. The expression in line 16 uses a
version of method IndexOf that takes two arguments—the character to search for and the
starting index at which the search of the string should begin. The method does not
examine any characters that occur prior to the starting index (in this case, 1). The expres-
sion in line 18 uses another version of method IndexOf that takes three arguments—the
character to search for, the index at which to start searching and the number of characters
to search.

Lines 22, 24 and 26 use method LastIndexOf to locate the last occurrence of a char-
acter in a string. Method LastIndexOf performs the search from the end of the string
to the beginning of the string. If it finds the character, LastIndexOf returns the index of
the specified character in the string; otherwise, LastIndexOf returns –1. There are three
versions of method LastIndexOf. The expression in line 22 uses the version that takes as
an argument the character for which to search. The expression in line 24 uses the version
that takes two arguments—the character for which to search and the highest index from

54
55 // test LastIndexOfAny to find last occurrence of character
56 // in array
57 Console.WriteLine("\nLast 'c', 'a' or '$' is " +
58 "located at index " +);
59 Console.WriteLine("Last 'c', 'a' or '$' up to position 1 is " +
60 "located at index " +
61);
62 Console.WriteLine("Last 'c', 'a' or '$' in the 5 positions " +
63 "ending at 25 is located at index " +
64);
65 } // end Main
66 } // end class StringIndexMethods

First 'c' is located at index 2
First 'a' starting at 1 is located at index 13
First '$' in the 5 positions starting at 3 is located at index -1

Last 'c' is located at index 15
Last 'a' up to position 25 is located at index 13
Last '$' in the 5 positions ending at 15 is located at index -1

First "def" is located at index 3
First "def" starting at 7 is located at index 16
First "hello" in the 15 positions starting at 5 is located at index -1

Last "def" is located at index 16
Last "def" up to position 25 is located at index 16
Last "hello" in the 15 positions ending at 20 is located at index -1

First 'c', 'a' or '$' is located at index 0
First 'c', 'a' or '$' starting at 7 is located at index 13
First 'c', 'a' or '$' in the 5 positions starting at 7 is located at index -1

Last 'c', 'a' or '$' is located at index 15
Last 'c', 'a' or '$' up to position 1 is located at index 0
Last 'c', 'a' or '$' in the 5 positions ending at 25 is located at index -1

Fig. 16.5 | Searching for characters and substrings in strings. (Part 2 of 2.)

letters.LastIndexOfAny(searchLetters)

letters.LastIndexOfAny(searchLetters, 1)

letters.LastIndexOfAny(searchLetters, 25, 5)

16.7 Extracting Substrings from strings 649

which to begin searching backward for the character. The expression in line 26 uses a third
version of method LastIndexOf that takes three arguments—the character for which to
search, the starting index from which to start searching backward and the number of char-
acters (the portion of the string) to search.

Lines 29–44 use versions of IndexOf and LastIndexOf that take a string instead of
a character as the first argument. These versions of the methods perform identically to
those described above except that they search for sequences of characters (or substrings)
that are specified by their string arguments.

Lines 47–64 use methods IndexOfAny and LastIndexOfAny, which take an array of
characters as the first argument. These versions of the methods also perform identically to
those described above, except that they return the index of the first occurrence of any of
the characters in the character-array argument.

16.7 Extracting Substrings from strings
Class string provides two Substring methods, which create a new string by copying
part of an existing string. Each method returns a new string. The app in Fig. 16.6 dem-
onstrates the use of both methods.

Common Programming Error 16.2
In the overloaded methods LastIndexOf and LastIndexOfAny that take three parame-
ters, the second argument must be greater than or equal to the third. This might seem
counterintuitive, but remember that the search moves from the end of the string toward
the start of the string.

1 // Fig. 16.6: SubString.cs
2 // Demonstrating the string Substring method.
3 using System;
4
5 class SubString
6 {
7 public static void Main(string[] args)
8 {
9 string letters = "abcdefghijklmabcdefghijklm";

10
11 // invoke Substring method and pass it one parameter
12 Console.WriteLine("Substring from index 20 to end is \"" +
13 + "\"");
14
15 // invoke Substring method and pass it two parameters
16 Console.WriteLine("Substring from index 0 of length 6 is \"" +
17 + "\"");
18 } // end method Main
19 } // end class SubString

Substring from index 20 to end is "hijklm"
Substring from index 0 of length 6 is "abcdef"

Fig. 16.6 | Substrings generated from strings.

letters.Substring(20)

letters.Substring(0, 6)

650 Chapter 16 Strings and Characters: A Deeper Look

The statement in line 13 uses the Substring method that takes one int argument.
The argument specifies the starting index from which the method copies characters in the
original string. The substring returned contains a copy of the characters from the
starting index to the end of the string. If the index specified in the argument is outside
the bounds of the string, the program throws an ArgumentOutOfRangeException.

The second version of method Substring (line 17) takes two int arguments. The
first argument specifies the starting index from which the method copies characters from
the original string. The second argument specifies the length of the substring to copy.
The substring returned contains a copy of the specified characters from the original
string. If the supplied length of the substring is too large (i.e., the substring tries to
retrieve characters past the end of the original string), an ArgumentOutOfRangeExcep-

tion is thrown.

16.8 Concatenating strings
The + operator is not the only way to perform string concatenation. The static method
Concat of class string (Fig. 16.7) concatenates two strings and returns a new string

containing the combined characters from both original strings. Line 16 appends the
characters from string2 to the end of a copy of string1, using method Concat. The state-
ment in line 16 does not modify the original strings.

1 // Fig. 16.7: SubConcatenation.cs
2 // Demonstrating string class Concat method.
3 using System;
4
5 class StringConcatenation
6 {
7 public static void Main(string[] args)
8 {
9 string string1 = "Happy ";

10 string string2 = "Birthday";
11
12 Console.WriteLine("string1 = \"" + string1 + "\"\n" +
13 "string2 = \"" + string2 + "\"");
14 Console.WriteLine(
15 "\nResult of string.Concat(string1, string2) = " +
16);
17 Console.WriteLine("string1 after concatenation = " + string1);
18 } // end Main
19 } // end class StringConcatenation

string1 = "Happy "
string2 = "Birthday"

Result of string.Concat(string1, string2) = Happy Birthday
string1 after concatenation = Happy

Fig. 16.7 | Concat static method.

string.Concat(string1, string2)

16.9 Miscellaneous string Methods 651

16.9 Miscellaneous string Methods
Class string provides several methods that return modified copies of strings. The app in
Fig. 16.8 demonstrates the use of these methods, which include stringmethods Replace,
ToLower, ToUpper and Trim.

1 // Fig. 16.8: StringMethods2.cs
2 // Demonstrating string methods Replace, ToLower, ToUpper, Trim,
3 // and ToString.
4 using System;
5
6 class StringMethods2
7 {
8 public static void Main(string[] args)
9 {

10 string string1 = "cheers!";
11 string string2 = "GOOD BYE ";
12 string string3 = " spaces ";
13
14 Console.WriteLine("string1 = \"" + string1 + "\"\n" +
15 "string2 = \"" + string2 + "\"\n" +
16 "string3 = \"" + string3 + "\"");
17
18 // call method Replace
19 Console.WriteLine(
20 "\nReplacing \"e\" with \"E\" in string1: \"" +
21 + "\"");
22
23 // call ToLower and ToUpper
24 Console.WriteLine("\nstring1.ToUpper() = \"" +
25 + "\"\nstring2.ToLower() = \"" +
26 + "\"");
27
28 // call Trim method
29 Console.WriteLine("\nstring3 after trim = \"" +
30 + "\"");
31
32 Console.WriteLine("\nstring1 = \"" + string1 + "\"");
33 } // end Main
34 } // end class StringMethods2

string1 = "cheers!"
string2 = "GOOD BYE "
string3 = " spaces "

Replacing "e" with "E" in string1: "chEErs!"

string1.ToUpper() = "CHEERS!"
string2.ToLower() = "good bye "

string3 after trim = "spaces"

string1 = "cheers!"

Fig. 16.8 | string methods Replace, ToLower, ToUpper and Trim.

string1.Replace('e', 'E')

string1.ToUpper()
string2.ToLower()

string3.Trim()

652 Chapter 16 Strings and Characters: A Deeper Look

Line 21 uses string method Replace to return a new string, replacing every occur-
rence in string1 of character 'e' with 'E'. Method Replace takes two arguments—a
char for which to search and another char with which to replace all matching occurrences
of the first argument. The original string remains unchanged. If there are no occurrences
of the first argument in the string, the method returns the original string. An over-
loaded version of this method allows you to provide two strings as arguments.

The string method ToUpper generates a new string (line 25) that replaces any low-
ercase letters in string1 with their uppercase equivalents. The method returns a new
string containing the converted string; the original string remains unchanged. If there
are no characters to convert, the original string is returned. Line 26 uses string method
ToLower to return a new string in which any uppercase letters in string2 are replaced by
their lowercase equivalents. The original string is unchanged. As with ToUpper, if there are
no characters to convert to lowercase, method ToLower returns the original string.

Line 30 uses string method Trim to remove all whitespace characters that appear at
the beginning and end of a string. Without otherwise altering the original string, the
method returns a new string that contains the string, but omits leading and trailing
whitespace characters. This method is particularly useful for retrieving user input (i.e., via
a TextBox). Another version of method Trim takes a character array and returns a copy of
the string that does not begin or end with any of the characters in the array argument.

16.10 Class StringBuilder
The string class provides many capabilities for processing strings. However a string’s
contents can never change. Operations that seem to concatenate strings are in fact creat-
ing new strings—the += operator creates a new string and assigns its reference to the
variable on the left of the += operator.

The next several sections discuss the features of class StringBuilder (namespace
System.Text), used to create and manipulate dynamic string information—i.e., mutable
strings. Every StringBuilder can store a certain number of characters that’s specified by its
capacity. Exceeding the capacity of a StringBuilder causes the capacity to expand to accom-
modate the additional characters. As we’ll see, members of class StringBuilder, such as
methods Append and AppendFormat, can be used for concatenation like the operators + and
+= for class string. StringBuilder is particularly useful for manipulating in place a large
number of strings, as it’s much more efficient than creating individual immutable strings.

Class StringBuilder provides six overloaded constructors. Class StringBuilderCon-
structor (Fig. 16.9) demonstrates three of these overloaded constructors.

Line 10 employs the no-parameter StringBuilder constructor to create a String-

Builder that contains no characters and has an implementation-specific default initial
capacity. Line 11 uses the StringBuilder constructor that takes an int argument to create a
StringBuilder that contains no characters and has the initial capacity specified in the int
argument (i.e., 10). Line 12 uses the StringBuilder constructor that takes a string argu-

Performance Tip 16.2
Objects of class string are immutable (i.e., constant strings), whereas objects of class
StringBuilder are mutable. C# can perform certain optimizations involving strings
(such as the sharing of one string among multiple references), because it knows these ob-
jects will not change.

16.11 Class StringBuilder 653

ment to create a StringBuilder containing the characters of the string argument—the ini-
tial capacity might differ from the string’s size. Lines 14–16 implicitly use StringBuilder
method ToString to obtain string representations of the StringBuilders’ contents.

16.11 Length and Capacity Properties,
EnsureCapacity Method and Indexer of Class
StringBuilder
Class StringBuilder provides the Length and Capacity properties to return the number
of characters currently in a StringBuilder and the number of characters that a String-
Builder can store without allocating more memory, respectively. These properties also
can increase or decrease the length or the capacity of the StringBuilder. Method Ensure-
Capacity allows you to reduce the number of times that a StringBuilder’s capacity must
be increased. The method ensures that the StringBuilder’s capacity is at least the speci-
fied value. The program in Fig. 16.10 demonstrates these methods and properties.

1 // Fig. 16.9: StringBuilderConstructor.cs
2 // Demonstrating StringBuilder class constructors.
3 using System;
4 using System.Text;
5
6 class StringBuilderConstructor
7 {
8 public static void Main(string[] args)
9 {

10
11
12
13
14 Console.WriteLine("buffer1 = \"" + buffer1 + "\"");
15 Console.WriteLine("buffer2 = \"" + buffer2 + "\"");
16 Console.WriteLine("buffer3 = \"" + buffer3 + "\"");
17 } // end Main
18 } // end class StringBuilderConstructor

buffer1 = ""
buffer2 = ""
buffer3 = "hello"

Fig. 16.9 | StringBuilder class constructors.

1 // Fig. 16.10: StringBuilderFeatures.cs
2 // Demonstrating some features of class StringBuilder.
3 using System;
4 using System.Text;
5
6 class StringBuilderFeatures
7 {

Fig. 16.10 | StringBuilder size manipulation. (Part 1 of 2.)

StringBuilder buffer1 = new StringBuilder();
StringBuilder buffer2 = new StringBuilder(10);
StringBuilder buffer3 = new StringBuilder("hello");

654 Chapter 16 Strings and Characters: A Deeper Look

The program contains one StringBuilder, called buffer. Lines 10–11 of the pro-
gram use the StringBuilder constructor that takes a string argument to instantiate the
StringBuilder and initialize its value to "Hello, how are you?". Lines 14–16 output the
content, length and capacity of the StringBuilder.

Line 18 expands the capacity of the StringBuilder to a minimum of 75 characters.
If new characters are added to a StringBuilder so that its length exceeds its capacity, the
capacity grows to accommodate the additional characters in the same manner as if method
EnsureCapacity had been called.

Line 23 uses property Length to set the length of the StringBuilder to 10—this does
not change the Capacity. If the specified length is less than the current number of charac-
ters in the StringBuilder, the contents of the StringBuilder are truncated to the speci-
fied length. If the specified length is greater than the number of characters currently in the
StringBuilder, null characters (that is, '\0' characters) are appended to the String-
Builder until the total number of characters in the StringBuilder is equal to the specified
length.

8 public static void Main(string[] args)
9 {

10
11
12
13 // use Length and Capacity properties
14 Console.WriteLine("buffer = " + buffer +
15 "\nLength = " + +
16 "\nCapacity = " +);
17
18 // ensure a capacity of at least 75
19 Console.WriteLine("\nNew capacity = " +
20);
21
22 // truncate StringBuilder by setting Length property
23
24 Console.Write("\nNew length = " +
25 + "\nbuffer = ");
26
27 // use StringBuilder indexer
28 for (int i = 0; i < ; ++i)
29 Console.Write();
30
31 Console.WriteLine("\n");
32 } // end Main
33 } // end class StringBuilderFeatures

buffer = Hello, how are you?
Length = 19
Capacity = 19
New capacity = 75
New length = 10
buffer = Hello, how

Fig. 16.10 | StringBuilder size manipulation. (Part 2 of 2.)

StringBuilder buffer =
new StringBuilder("Hello, how are you?");

buffer.Length
buffer.Capacity

buffer.EnsureCapacity(75);

buffer.Capacity

buffer.Length = 10;

buffer.Length

buffer.Length
buffer[i]

16.12 Class StringBuilder 655

16.12 Append and AppendFormat Methods of Class
StringBuilder
Class StringBuilder provides 19 overloaded Append methods that allow various types of
values to be added to the end of a StringBuilder. The Framework Class Library provides
versions for each of the simple types and for character arrays, strings and objects. (Re-
member that method ToString produces a string representation of any object.) Each
method takes an argument, converts it to a string and appends it to the StringBuilder.
Figure 16.11 demonstrates the use of several Append methods.

1 // Fig. 16.11: StringBuilderAppend.cs
2 // Demonstrating StringBuilder Append methods.
3 using System;
4 using System.Text;
5
6 class StringBuilderAppend
7 {
8 public static void Main(string[] args)
9 {

10 object objectValue = "hello";
11 string stringValue = "good bye";
12 char[] characterArray = { 'a', 'b', 'c', 'd', 'e', 'f' };
13 bool booleanValue = true;
14 char characterValue = 'Z';
15 int integerValue = 7;
16 long longValue = 1000000;
17 float floatValue = 2.5F; // F suffix indicates that 2.5 is a float
18 double doubleValue = 33.333;
19 StringBuilder buffer = new StringBuilder();
20
21 // use method Append to append values to buffer
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

Fig. 16.11 | Append methods of StringBuilder. (Part 1 of 2.)

buffer.Append(objectValue);
buffer.Append(" ");
buffer.Append(stringValue);
buffer.Append(" ");
buffer.Append(characterArray);
buffer.Append(" ");
buffer.Append(characterArray, 0, 3);
buffer.Append(" ");
buffer.Append(booleanValue);
buffer.Append(" ");
buffer.Append(characterValue);
buffer.Append(" ");
buffer.Append(integerValue);
buffer.Append(" ");
buffer.Append(longValue);
buffer.Append(" ");
buffer.Append(floatValue);
buffer.Append(" ");
buffer.Append(doubleValue);

656 Chapter 16 Strings and Characters: A Deeper Look

Lines 22–40 use 10 different overloaded Append methods to attach the string repre-
sentations of objects created in lines 10–18 to the end of the StringBuilder.

Class StringBuilder also provides method AppendFormat, which converts a string
to a specified format, then appends it to the StringBuilder. The example in Fig. 16.12
demonstrates the use of this method.

42
43 } // end Main
44 } // end class StringBuilderAppend

buffer = hello good bye abcdef abc True Z 7 1000000 2.5 33.333

1 // Fig. 16.12: StringBuilderAppendFormat.cs
2 // Demonstrating method AppendFormat.
3 using System;
4 using System.Text;
5
6 class StringBuilderAppendFormat
7 {
8 public static void Main(string[] args)
9 {

10 StringBuilder buffer = new StringBuilder();
11
12
13
14
15
16
17
18
19
20
21 // append to buffer formatted string with argument
22
23
24 // formatted string
25
26
27
28
29 // append to buffer formatted string with argument
30
31
32 // display formatted strings
33 Console.WriteLine(buffer.ToString());
34 } // end Main
35 } // end class StringBuilderAppendFormat

Fig. 16.12 | StringBuilder’s AppendFormat method. (Part 1 of 2.)

Fig. 16.11 | Append methods of StringBuilder. (Part 2 of 2.)

Console.WriteLine("buffer = " + buffer.ToString() + "\n");

// formatted string
string string1 = "This {0} costs: {1:C}.\n";

// string1 argument array
object[] objectArray = new object[2];

objectArray[0] = "car";
objectArray[1] = 1234.56;

buffer.AppendFormat(string1, objectArray);

string string2 = "Number:{0:d3}.\n" +
"Number right aligned with spaces:{0, 4}.\n" +
"Number left aligned with spaces:{0, -4}.";

buffer.AppendFormat(string2, 5);

16.13 Class StringBuilder 657

Line 13 creates a string that contains formatting information. The information
enclosed in braces specifies how to format a specific piece of data. Format items have the
form {X[,Y][:FormatString]}, where X is the number of the argument to be formatted,
counting from zero. Y is an optional argument, which can be positive or negative, indi-
cating how many characters should be in the result. If the resulting string is less than the
number Y, it will be padded with spaces to make up for the difference. A positive integer
aligns the string to the right; a negative integer aligns it to the left. The optional Format-
String applies a particular format to the argument—currency, decimal or scientific,
among others. In this case, “{0}” means the first argument will be displayed. “{1:C}” spec-
ifies that the second argument will be formatted as a currency value.

Line 22 shows a version of AppendFormat that takes two parameters—a string spec-
ifying the format and an array of objects to serve as the arguments to the format string.
The argument referred to by “{0}” is in the object array at index 0.

Lines 25–27 define another string used for formatting. The first format “{0:d3}”,
specifies that the first argument will be formatted as a three-digit decimal, meaning that
any number having fewer than three digits will have leading zeros placed in front to make
up the difference. The next format, “{0, 4}”, specifies that the formatted string should
have four characters and be right aligned. The third format, “{0, -4}”, specifies that the
formatted string should be aligned to the left.

Line 30 uses a version of AppendFormat that takes two parameters—a string con-
taining a format and an object to which the format is applied. In this case, the object is the
number 5. The output of Fig. 16.12 displays the result of applying these two versions of
AppendFormat with their respective arguments.

16.13 Insert, Remove and Replace Methods of Class
StringBuilder
Class StringBuilder provides 18 overloaded Insert methods to allow various types of
data to be inserted at any position in a StringBuilder. The class provides versions for each
of the simple types and for character arrays, strings and objects. Each method takes its
second argument, converts it to a string and inserts the string into the StringBuilder
in front of the character in the position specified by the first argument. The index specified
by the first argument must be greater than or equal to 0 and less than the length of the
StringBuilder; otherwise, the program throws an ArgumentOutOfRangeException.

Class StringBuilder also provides method Remove for deleting any portion of a
StringBuilder. Method Remove takes two arguments—the index at which to begin dele-
tion and the number of characters to delete. The sum of the starting index and the number
of characters to be deleted must always be less than the length of the StringBuilder; oth-
erwise, the program throws an ArgumentOutOfRangeException. The Insert and Remove

methods are demonstrated in Fig. 16.13.

This car costs: $1,234.56.
Number:005.
Number right aligned with spaces: 5.
Number left aligned with spaces:5 .

Fig. 16.12 | StringBuilder’s AppendFormat method. (Part 2 of 2.)

658 Chapter 16 Strings and Characters: A Deeper Look

1 // Fig. 16.13: StringBuilderInsertRemove.cs
2 // Demonstrating methods Insert and Remove of the
3 // StringBuilder class.
4 using System;
5 using System.Text;
6
7 class StringBuilderInsertRemove
8 {
9 public static void Main(string[] args)

10 {
11 object objectValue = "hello";
12 string stringValue = "good bye";
13 char[] characterArray = { 'a', 'b', 'c', 'd', 'e', 'f' };
14 bool booleanValue = true;
15 char characterValue = 'K';
16 int integerValue = 7;
17 long longValue = 10000000;
18 float floatValue = 2.5F; // F suffix indicates that 2.5 is a float
19 double doubleValue = 33.333;
20 StringBuilder buffer = new StringBuilder();
21
22 // insert values into buffer
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42 Console.WriteLine("buffer after Inserts: \n" + buffer + "\n");
43
44
45
46
47 Console.WriteLine("buffer after Removes:\n" + buffer);
48 } // end Main
49 } // end class StringBuilderInsertRemove

buffer after Inserts:
33.333 2.5 10000000 7 K True abcdef good bye hello

Fig. 16.13 | StringBuilder text insertion and removal. (Part 1 of 2.)

buffer.Insert(0, objectValue);
buffer.Insert(0, " ");
buffer.Insert(0, stringValue);
buffer.Insert(0, " ");
buffer.Insert(0, characterArray);
buffer.Insert(0, " ");
buffer.Insert(0, booleanValue);
buffer.Insert(0, " ");
buffer.Insert(0, characterValue);
buffer.Insert(0, " ");
buffer.Insert(0, integerValue);
buffer.Insert(0, " ");
buffer.Insert(0, longValue);
buffer.Insert(0, " ");
buffer.Insert(0, floatValue);
buffer.Insert(0, " ");
buffer.Insert(0, doubleValue);
buffer.Insert(0, " ");

buffer.Remove(10, 1); // delete 2 in 2.5
buffer.Remove(4, 4); // delete .333 in 33.333

16.13 Class StringBuilder 659

Another useful method included with StringBuilder is Replace. Replace searches
for a specified string or character and substitutes another string or character in its place.
Figure 16.14 demonstrates this method.

Line 18 uses method Replace to replace all instances of "Jane" with the "Greg" in
builder1. Another overload of this method takes two characters as parameters and replaces
each occurrence of the first character with the second. Line 19 uses an overload of Replace
that takes four parameters, of which the first two can both be characters or both be strings
and the second two are ints. The method replaces all instances of the first character with
the second character (or the first string with the second), beginning at the index specified
by the first int and continuing for a count specified by the second int. Thus, in this case,

buffer after Removes:
33 .5 10000000 7 K True abcdef good bye hello

1 // Fig. 16.14: StringBuilderReplace.cs
2 // Demonstrating method Replace.
3 using System;
4 using System.Text;
5
6 class StringBuilderReplace
7 {
8 public static void Main(string[] args)
9 {

10 StringBuilder builder1 =
11 new StringBuilder("Happy Birthday Jane");
12 StringBuilder builder2 =
13 new StringBuilder("goodbye greg");
14
15 Console.WriteLine("Before replacements:\n" +
16 builder1.ToString() + "\n" + builder2.ToString());
17
18
19
20
21 Console.WriteLine("\nAfter replacements:\n" +
22 builder1.ToString() + "\n" + builder2.ToString());
23 } // end Main
24 } // end class StringBuilderReplace

Before Replacements:
Happy Birthday Jane
good bye greg

After replacements:
Happy Birthday Greg
Goodbye greg

Fig. 16.14 | StringBuilder text replacement.

Fig. 16.13 | StringBuilder text insertion and removal. (Part 2 of 2.)

builder1.Replace("Jane", "Greg");
builder2.Replace('g', 'G', 0, 5);

660 Chapter 16 Strings and Characters: A Deeper Look

Replace looks through only five characters, starting with the character at index 0. As the
output illustrates, this version of Replace replaces g with G in the word "good", but not in
"greg". This is because the gs in "greg" are not in the range indicated by the int argu-
ments (i.e., between indexes 0 and 4).

16.14 Char Methods
C# provides a concept called a struct (short for “structure”) that’s similar to a class. Al-
though structs and classes are comparable, structs represent value types. Like classes,
structs can have methods and properties, and can use the access modifiers public and
private. Also, struct members are accessed via the member access operator (.).

The simple types are actually aliases for struct types. For instance, an int is defined
by struct System.Int32, a long by System.Int64 and so on. All struct types derive
from class ValueType, which derives from object. Also, all struct types are implicitly
sealed, so they do not support virtual or abstract methods, and their members cannot
be declared protected or protected internal.

In the struct System.Char,2 which is the struct for characters, most methods are
static, take at least one character argument and perform either a test or a manipulation
on the character. We present several of these methods in the next example. Figure 16.15
demonstrates static methods that test characters to determine whether they’re of a spe-
cific character type and static methods that perform case conversions on characters.

2. Just as keyword string is an alias for class String, keyword char is an alias for struct Char. In this
text, we use the term Charwhen calling a staticmethod of struct Char and the term char elsewhere.

1 // Fig. 16.15: StaticCharMethods.cs
2 // Demonstrates static character-testing and case-conversion methods
3 // from Char struct
4 using System;
5
6 class StaticCharMethods
7 {
8 static void Main(string[] args)
9 {

10 Console.Write("Enter a character: ");
11 char character = Convert.ToChar(Console.ReadLine());
12
13 Console.WriteLine("is digit: {0}",);
14 Console.WriteLine("is letter: {0}",);
15 Console.WriteLine("is letter or digit: {0}",
16);
17 Console.WriteLine("is lower case: {0}",
18);
19 Console.WriteLine("is upper case: {0}",
20);
21 Console.WriteLine("to upper case: {0}",
22);
23 Console.WriteLine("to lower case: {0}",
24);

Fig. 16.15 | Char’s static character-testing and case-conversion methods. (Part 1 of 3.)

Char.IsDigit(character)
Char.IsLetter(character)

Char.IsLetterOrDigit(character)

Char.IsLower(character)

Char.IsUpper(character)

Char.ToUpper(character)

Char.ToLower(character)

16.14 Char Methods 661

25 Console.WriteLine("is punctuation: {0}",
26);
27 Console.WriteLine("is symbol: {0}",);
28 } // end Main
29 } // end class StaticCharMethods

Enter a character: A
is digit: False
is letter: True
is letter or digit: True
is lower case: False
is upper case: True
to upper case: A
to lower case: a
is punctuation: False
is symbol: False

Enter a character: 8
is digit: True
is letter: False
is letter or digit: True
is lower case: False
is upper case: False
to upper case: 8
to lower case: 8
is punctuation: False
is symbol: False

Enter a character: @
is digit: False
is letter: False
is letter or digit: False
is lower case: False
is upper case: False
to upper case: @
to lower case: @
is punctuation: True
is symbol: False

Enter a character: m
is digit: False
is letter: True
is letter or digit: True
is lower case: True
is upper case: False
to upper case: M
to lower case: m
is punctuation: False
is symbol: False

Fig. 16.15 | Char’s static character-testing and case-conversion methods. (Part 2 of 3.)

Char.IsPunctuation(character)
Char.IsSymbol(character)

662 Chapter 16 Strings and Characters: A Deeper Look

After the user enters a character, lines 13–27 analyze it. Line 13 uses Char method
IsDigit to determine whether character is defined as a digit. If so, the method returns
true; otherwise, it returns false (note again that bool values are output capitalized). Line
14 uses Char method IsLetter to determine whether character character is a letter. Line
16 uses Char method IsLetterOrDigit to determine whether character character is a
letter or a digit.

Line 18 uses Char method IsLower to determine whether character character is a
lowercase letter. Line 20 uses Char method IsUpper to determine whether character char-
acter is an uppercase letter. Line 22 uses Char method ToUpper to convert character char-
acter to its uppercase equivalent. The method returns the converted character if the
character has an uppercase equivalent; otherwise, the method returns its original argu-
ment. Line 24 uses Char method ToLower to convert character character to its lowercase
equivalent. The method returns the converted character if the character has a lowercase
equivalent; otherwise, the method returns its original argument.

Line 26 uses Charmethod IsPunctuation to determine whether character is a punc-
tuation mark, such as "!", ":" or ")". Line 27 uses Char method IsSymbol to determine
whether character character is a symbol, such as "+", "=" or "^".

Structure type Char also contains other methods not shown in this example. Many of
the staticmethods are similar—for instance, IsWhiteSpace is used to determine whether
a certain character is a whitespace character (e.g., newline, tab or space). The struct also
contains several public instance methods; many of these, such as methods ToString and
Equals, are methods that we have seen before in other classes. This group includes method
CompareTo, which is used to compare one character value with another.

16.15 (Online) Introduction to Regular Expressions
This online section is available via the book’s Companion Website at

In this section, we introduce regular expressions—specially formatted strings used to find
patterns in text. They can be used to ensure that data is in a particular format. For example,
a U.S. zip code must consist of five digits, or five digits followed by a dash followed by four
more digits. Compilers use regular expressions to validate program syntax. If the program
code does not match the regular expression, the compiler indicates that there’s a syntax er-
ror. We discuss classes Regex and Match from the System.Text.RegularExpressions

Enter a character: +
is digit: False
is letter: False
is letter or digit: False
is lower case: False
is upper case: False
to upper case: +
to lower case: +
is punctuation: False
is symbol: True

www.pearsonhighered.com/deitel

Fig. 16.15 | Char’s static character-testing and case-conversion methods. (Part 3 of 3.)

www.pearsonhighered.com/deitel

16.16 Wrap-Up 663

namespace as well as the symbols used to form regular expressions. We then demonstrate
how to find patterns in a string, match entire strings to patterns, replace characters in a
string that match a pattern and split strings at delimiters specified as a pattern in a regular
expression.

16.16 Wrap-Up
In this chapter, you learned about the Framework Class Library’s string- and character-pro-
cessing capabilities. We overviewed the fundamentals of characters and strings. You saw
how to determine the length of strings, copy strings, access the individual characters in
strings, search strings, obtain substrings from larger strings, compare strings, concatenate
strings, replace characters in strings and convert strings to uppercase or lowercase letters.

We showed how to use class StringBuilder to build strings dynamically. You learned
how to determine and specify the size of a StringBuilder object, and how to append,
insert, remove and replace characters in a StringBuilder object. We then introduced the
character-testing methods of type Char that enable a program to determine whether a char-
acter is a digit, a letter, a lowercase letter, an uppercase letter, a punctuation mark or a
symbol other than a punctuation mark, and the methods for converting a character to
uppercase or lowercase.

In the online Regex section, we discussed classes Regex, Match and MatchCollection
from namespace System.Text.RegularExpressions and the symbols that are used to form
regular expressions. You learned how to find patterns in a string and match entire strings
to patterns with Regex methods Match and Matches, how to replace characters in a string
with Regex method Replace and how to split strings at delimiters with Regex method
Split. In the next chapter, you’ll learn how to read data from and write data to files.

Summary
Section 16.2 Fundamentals of Characters and Strings
• Characters are the fundamental building blocks of C# program code. Every program is composed

of a sequence of characters that’s interpreted by the compiler as a series of instructions used to
accomplish a task.

• A string is a series of characters treated as a single unit. A string may include letters, digits and
the various special characters: +, -, *, /, $ and others.

Section 16.3 string Constructors
• Class string provides eight constructors.

• All strings are immutable—their character contents cannot be changed after they’re created.

Section 16.4 string Indexer, Length Property and CopyTo Method
• Property Length determines the number of characters in a string.

• The string indexer receives an integer argument as the position number and returns the character
at that position. The first element of a string is considered to be at position 0.

• Attempting to access a character that’s outside a string’s bounds results in an IndexOutOfRange-
Exception.

• Method CopyTo copies a specified number of characters from a string into a char array.

664 Chapter 16 Strings and Characters: A Deeper Look

Section 16.5 Comparing strings
• When the computer compares two strings, it uses word sorting rules that depend on the com-

puter’s currently selected culture.

• Method Equals and the overloaded equality operator (==) can each be used to compare the con-
tents of two strings.

• Method CompareTo returns 0 if the strings are equal, a negative number if the string that in-
vokes CompareTo is less than the string passed as an argument and a positive number if the
string that invokes CompareTo is greater than the string passed as an argument.

• string methods StartsWith and EndsWith determine whether a string starts or ends with the
characters specified as an argument, respectively.

Section 16.6 Locating Characters and Substrings in strings
• string method IndexOf locates the first occurrence of a character or a substring in a string.

Method LastIndexOf locates the last occurrence of a character or a substring in a string.

Section 16.7 Extracting Substrings from strings
• Class string provides two Substring methods to enable a new string to be created by copying

part of an existing string.

Section 16.8 Concatenating strings
• The static method Concat of class string concatenates two strings and returns a new string

containing the characters from both original strings.

Section 16.10 Class StringBuilder
• Once a string is created, its contents can never change. Class StringBuilder (namespace Sys-
tem.Text) is available for creating and manipulating strings that can change.

Section 16.11 Length and Capacity Properties, EnsureCapacity Method and In-
dexer of Class StringBuilder
• Class StringBuilder provides Length and Capacity properties to return, respectively, the num-

ber of characters currently in a StringBuilder and the number of characters that can be stored
in a StringBuilder without allocating more memory. These properties also can be used to in-
crease or decrease the length or the capacity of the StringBuilder.

• Method EnsureCapacity allows you to guarantee that a StringBuilder has a minimum capacity.

Section 16.12 Append and AppendFormat Methods of Class StringBuilder
• Class StringBuilder provides Append methods to allow various types of values to be added to the

end of a StringBuilder.

• Format items have the form {X[,Y][:FormatString]}. X is the number of the argument to be
formatted, counting from zero. Y is an optional positive or negative argument that indicates how
many characters should be in the result of formatting. If the resulting string has fewer characters
than this number, it will be padded with spaces. A positive integer means the string will be right
aligned; a negative one means the string will be left aligned. The optional FormatString indi-
cates other formatting to apply—currency, decimal or scientific, among others.

Section 16.13 Insert, Remove and Replace Methods of Class StringBuilder
• Class StringBuilder provides 18 overloaded Insert methods to allow various types of values to

be inserted at any position in a StringBuilder. Versions are provided for each of the simple types
and for character arrays, strings and Objects.

• Class StringBuilder also provides method Remove for deleting any portion of a StringBuilder.

Terminology 665

• StringBuilder method Replace searches for a specified string or character and substitutes an-
other in its place.

Section 16.14 Char Methods
• C# provides a concept called a struct (short for structure) that’s similar to a class.

• structs represent value types.

• structs can have methods and properties and can use the access modifiers public and private.

• struct members are accessed via the member-access operator (.).

• The simple types are actually aliases for struct types.

• All struct types derive from class ValueType, which in turn derives from object.

• All struct types are implicitly sealed, so they do not support virtual or abstract methods, and
their members cannot be declared protected or protected internal.

• Char is a struct that represents characters.

• Method Char.IsDigit determines whether a character is a defined Unicode digit.

• Method Char.IsLetter determines whether a character is a letter.

• Method Char.IsLetterOrDigit determines whether a character is a letter or a digit.

• Method Char.IsLower determines whether a character is a lowercase letter.

• Method Char.IsUpper determines whether a character is an uppercase letter.

• Method Char.ToUpper converts a lowercase character to its uppercase equivalent.

• Method Char.ToLower converts an uppercase character to its lowercase equivalent.

• Method Char.IsPunctuation determines whether a character is a punctuation mark.

• Method Char.IsSymbol determines whether a character is a symbol.

• Method Char.IsWhiteSpace determines whether a character is a whitespace character.

• Method Char.CompareTo compares two character values.

Terminology
@ verbatim string character
+ operator
+= concatenation operator
== equality operator
alphabetizing
Append method of class StringBuilder
AppendFormat method of class StringBuilder
Capacity property of StringBuilder
char array
Char struct
character
character constant
CompareTo method of class string
CompareTo method of struct Char
Concat method of class string
CopyTo method of class string
EndsWith method of class string
EnsureCapacity method of class StringBuilder

Equals method of class string
Equals method of struct Char

format string
immutable string
IndexOf method of class string
IndexOfAny method of class string
Insert method of class StringBuilder
IsDigit method of struct Char
IsLetter method of struct Char
IsLetterOrDigit method of struct Char
IsLower method of struct Char
IsPunctuation method of struct Char
IsSymbol method of struct Char
IsUpper method of struct Char
IsWhiteSpace method of struct Char
LastIndexOf method of class string
LastIndexOfAny method of class string
Length property of class string
Length property of class StringBuilder
Remove method of class StringBuilder
Replace method of class string
Replace method of class StringBuilder

666 Chapter 16 Strings and Characters: A Deeper Look

StartsWith method of class string
string class
string literal
string reference
StringBuilder class
struct keyword
Substring method of class string
System namespace
System.Text namespace
ToLower method of class string

ToLower method of struct Char
ToString method of class string
ToString method of StringBuilder
ToUpper method of class string
ToUpper method of struct Char
trailing whitespace characters
Trim method of class string
Unicode character set
ValueType class
verbatim string syntax

Self-Review Exercises
16.1 State whether each of the following is true or false. If false, explain why.

a) When strings are compared with ==, the result is true if the strings contain the same
values.

b) A string can be modified after it’s created.
c) StringBuildermethod EnsureCapacity sets the StringBuilder instance’s length to the

argument’s value.
d) Method Equals and the equality operator work the same for strings.
e) Method Trim removes all whitespace at the beginning and the end of a string.
f) It’s always better to use strings, rather than StringBuilders, because strings contain-

ing the same value will reference the same object.
g) string method ToUpper creates a new string with the first letter capitalized.

16.2 Fill in the blanks in each of the following statements:
a) To concatenate strings, use operator , StringBuilder method or

string method .
b) StringBuilder method first formats the specified string, then concatenates

it to the end of the StringBuilder.
c) If the arguments to a Substring method call are out of range, a(n) exception

is thrown.
d) A C in a format string means to output the number as .

Answers to Self-Review Exercises
16.1 a) True. b) False. strings are immutable; they cannot be modified after they’re created.
StringBuilder objects can be modified after they’re created. c) False. EnsureCapacity simply en-
sures that the current capacity is at least the value specified in the method call. d) True. e) True.
f) False. StringBuilder should be used if the string is to be modified. g) False. string method
ToUpper creates a new string with all of its letters capitalized.

16.2 a) +, Append, Concat. b) AppendFormat c) ArgumentOutOfRangeException. d) currency.

Exercises
16.3 (Comparing strings) Write an app that uses string method CompareTo to compare two
strings input by the user. Output whether the first string is less than, equal to or greater than the
second.

16.4 (Random Sentences and Story Writer) Write an app that uses random-number generation
to create sentences. Use four arrays of strings, called article, noun, verb and preposition. Create

Making a Difference Exercises 667

a sentence by selecting a word at random from each array in the following order: article, noun,
verb, preposition, article, noun. As each word is picked, concatenate it to the previous words in
the sentence. The words should be separated by spaces. When the sentence is output, it should start
with a capital letter and end with a period. The program should generate 10 sentences and output
them to a text box.

The arrays should be filled as follows: The article array should contain the articles "the",
"a", "one", "some" and "any"; the noun array should contain the nouns "boy", "girl", "dog",
"town" and "car"; the verb array should contain the past-tense verbs "drove", "jumped", "ran",
"walked" and "skipped"; and the preposition array should contain the prepositions "to", "from",
"over", "under" and "on".

16.5 (Pig Latin) Write an app that encodes English-language phrases into pig Latin. Pig Latin is
a form of coded language often used for amusement. Many variations exist in the methods used to
form pig Latin phrases. For simplicity, use the following algorithm:

To translate each English word into a pig Latin word, place the first letter of the English word
at the end of the word and add the letters “ay.” Thus, the word “jump” becomes “umpjay,” the word
“the” becomes “hetay” and the word “computer” becomes “omputercay.” Blanks between words
remain blanks. Assume the following: The English phrase consists of words separated by blanks,
there are no punctuation marks and all words have two or more letters. Enable the user to input a
sentence. Use techniques discussed in this chapter to divide the sentence into separate words.
Method GetPigLatin should translate a single word into pig Latin. Keep a running display of all
the converted sentences in a text box.

16.6 (All Possible Three-Letter Words from a Five-Letter Word) Write a program that reads a
five-letter word from the user and produces all possible three-letter combinations that can be derived
from the letters of the five-letter word. For example, the three-letter words produced from the word
“bathe” include the commonly used words “ate,” “bat,” “bet,” “tab,” “hat,” “the” and “tea,” and the
3-letter combinations “bth,” “eab,” etc.

16.7 (Capitalizing Words) Write a program that uses regular expressions to convert the first letter
of every word to uppercase. Have it do this for an arbitrary string input by the user.

Making a Difference Exercises
16.8 (Project: Cooking with Healthier Ingredients) Obesity in the United States is increasing at
an alarming rate. Check the map from the Centers for Disease Control and Prevention (CDC) at
www.cdc.gov/obesity/data/facts.html, which shows obesity trends in the United States over the
last 20 years. As obesity increases, so do occurrences of related problems (e.g., heart disease, high
blood pressure, high cholesterol, type 2 diabetes). Write a program that helps users choose healthier
ingredients when cooking, and helps those allergic to certain foods (e.g., nuts, gluten) find substi-
tutes. The program should read a recipe from the user and suggest healthier replacements for some
of the ingredients. For simplicity, your program should assume the recipe has no abbreviations for
measures such as teaspoons, cups, and tablespoons, and uses numerical digits for quantities (e.g., 1
egg, 2 cups) rather than spelling them out (one egg, two cups). Some common substitutions are
shown in Fig. 16.16. Your program should display a warning such as, “Always consult your physi-
cian before making significant changes to your diet.”

Your program should take into consideration that replacements are not always one-for-one.
For example, if a cake recipe calls for three eggs, it might reasonably use six egg whites instead.
Conversion data for measurements and substitutes can be obtained at websites such as:

chinesefood.about.com/od/recipeconversionfaqs/f/usmetricrecipes.htm
www.pioneerthinking.com/eggsub.html
www.gourmetsleuth.com/conversions.htm

www.cdc.gov/obesity/data/facts.html
www.pioneerthinking.com/eggsub.html
www.gourmetsleuth.com/conversions.htm

668 Chapter 16 Strings and Characters: A Deeper Look

Your program should consider the user’s health concerns, such as high cholesterol, high blood pres-
sure, weight loss, gluten allergy, and so on. For high cholesterol, the program should suggest substi-
tutes for eggs and dairy products; if the user wishes to lose weight, low-calorie substitutes for
ingredients such as sugar should be suggested.

16.9 (Project: Spam Scanner) Spam (or junk e-mail) costs U.S. organizations billions of dollars
a year in spam-prevention software, equipment, network resources, bandwidth, and lost productiv-
ity. Research online some of the most common spam e-mail messages and words, and check your
own junk e-mail folder. Create a list of 30 words and phrases commonly found in spam messages.
Write an app in which the user enters an e-mail message. Then, scan the message for each of the 30
keywords or phrases. For each occurrence of one of these within the message, add a point to the
message’s “spam score.” Next, rate the likelihood that the message is spam, based on the number of
points it received.

16.10 (Project: SMS Language) Short Message Service (SMS) is a communications service that al-
lows sending text messages of 160 or fewer characters between mobile phones. With the prolifera-
tion of mobile phone use worldwide, SMS is being used in many developing nations for political
purposes (e.g., voicing opinions and opposition), reporting news about natural disasters, and so on.
For example, check out comunica.org/radio2.0/archives/87. Since the length of SMS messages is
limited, SMS Language—abbreviations of common words and phrases in mobile text messages, e-
mails, instant messages, etc.—is often used. For example, “in my opinion” is “IMO” in SMS Lan-
guage. Research SMS Language online. Write a program in which the user can enter a message using
SMS Language, then the program should translate it into English (or your own language). Also pro-
vide a mechanism to translate text written in English (or your own language) into SMS Language.
One potential problem is that one SMS abbreviation could expand into a variety of phrases. For
example, IMO (as used above) could also stand for “International Maritime Organization,” “in
memory of,” etc.

Ingredient Substitution

1 cup sour cream 1 cup yogurt

1 cup milk 1/2 cup evaporated milk and 1/2 cup water

1 teaspoon lemon juice 1/2 teaspoon vinegar

1 cup sugar 1/2 cup honey, 1 cup molasses
or 1/4 cup agave nectar

1 cup butter 1 cup margarine or yogurt

1 cup flour 1 cup rye or rice flour

1 cup mayonnaise 1 cup cottage cheese
or 1/8 cup mayonnaise and 7/8 cup yogurt

1 egg 2 tablespoons cornstarch, arrowroot flour
or potato starch or 2 egg whites
or 1/2 of a large banana (mashed)

1 cup milk 1 cup soy milk

1/4 cup oil 1/4 cup applesauce

white bread whole-grain bread

1 cup sour cream 1 cup yogurt

Fig. 16.16 | Common ingredient substitutions.

17Files and Streams

I can only assume that a “Do
Not File” document is filed in a
“Do Not File” file.
—Senator Frank Church
Senate Intelligence Subcommittee
Hearing, 1975

Consciousness … does not
appear to itself chopped up in
bits. … A “river” or a “stream”
are the metaphors by which it is
most naturally described.
—William James

O b j e c t i v e s
In this chapter you’ll learn:

� To create, read, write and
update files.

� To use classes File and
Directory to obtain
information about files and
directories on your computer.

� To use LINQ to search
through directories.

� To become familiar with
sequential-access file
processing.

� To use classes FileStream,
StreamReader and
StreamWriter to read text
from and write text to files.

� To use classes FileStream
and BinaryFormatter to
read objects from and write
objects to files.

670 Chapter 17 Files and Streams

17.1 Introduction
Variables and arrays offer only temporary storage of data—the data is lost when a local vari-
able “goes out of scope” or when the program terminates. By contrast, files (and databases,
which we cover in Chapter 22) are used for long-term retention of large amounts of data,
even after the program that created the data terminates. Data maintained in files often is
called persistent data. Computers store files on secondary storage devices, such as mag-
netic disks, optical disks, flash memory and magnetic tapes. In this chapter, we explain
how to create, update and process data files in C# programs.

We begin with an overview of the data hierarchy from bits to files. Next, we overview
some of the Framework Class Library’s file-processing classes. We then present examples
that show how you can determine information about the files and directories on your com-
puter. The remainder of the chapter shows how to write to and read from text files that are
human readable and binary files that store entire objects in binary format.

17.2 Data Hierarchy
Ultimately, all data items that computers process are reduced to combinations of 0s and
1s. This occurs because it’s simple and economical to build electronic devices that can as-
sume two stable states—one state represents 0 and the other represents 1. It’s remarkable
that the impressive functions performed by computers involve only the most fundamental
manipulations of 0s and 1s.

Bits
The smallest data item that computers support is called a bit (short for “binary digit”—a
digit that can assume one of two values). Each bit can assume either the value 0 or the value
1. Computer circuitry performs various simple bit manipulations, such as examining the
value of a bit, setting the value of a bit and reversing a bit (from 1 to 0 or from 0 to 1).

Characters
Programming with data in the low-level form of bits is cumbersome. It’s preferable to pro-
gram with data in forms such as decimal digits (i.e., 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9), letters
(i.e., A–Z and a–z) and special symbols (i.e., $, @, %, &, *, (,), -, +, ", :, ?, / and many
others). Digits, letters and special symbols are referred to as characters. The set of all char-
acters used to write programs and represent data items on a particular computer is called

17.1 Introduction
17.2 Data Hierarchy
17.3 Files and Streams
17.4 Classes File and Directory
17.5 Creating a Sequential-Access Text File
17.6 Reading Data from a Sequential-

Access Text File

17.7 Case Study: Credit Inquiry Program
17.8 Serialization
17.9 Creating a Sequential-Access File

Using Object Serialization
17.10 Reading and Deserializing Data from

a Binary File
17.11 Wrap-Up

Summary | Terminology | Self-Review Exercises | Answers to Self-Review Exercises | Exercises |
Making a Difference Exercise

17.2 Data Hierarchy 671

that computer’s character set. Because computers can process only 0s and 1s, every char-
acter in a computer’s character set is represented as a pattern of 0s and 1s. Bytes are com-
posed of eight bits. C# uses the Unicode® character set (www.unicode.org). Programmers
create programs and data items with characters; computers manipulate and process these
characters as patterns of bits.

Fields
Just as characters are composed of bits, fields are composed of characters. A field is a group
of characters that conveys meaning. For example, a field consisting of uppercase and
lowercase letters can represent a person’s name.

Data items processed by computers form a data hierarchy (Fig. 17.1), in which data
items become larger and more complex in structure as we progress from bits to characters
to fields to larger data aggregates.

Records and Files
Typically, a record (which can be represented as a class) is composed of several related
fields. In a payroll system, for example, a record for a particular employee might include
the following fields:

1. Employee identification number

2. Name

Fig. 17.1 | Data hierarchy.

Tom Blue

Sally Black

Judy Green File

J u d y Field

Byte (ASCII character J)

Record

Iris Orange

Randy Red

01001010

1 Bit

Judy Green

www.unicode.org

672 Chapter 17 Files and Streams

3. Address

4. Hourly pay rate

5. Number of exemptions claimed

6. Year-to-date earnings

7. Amount of taxes withheld

In the preceding example, each field is associated with the same employee. A file is a
group of related records.1 A company’s payroll file normally contains one record for each
employee. A payroll file for a small company might contain only 22 records, whereas one
for a large company might contain 100,000. It’s not unusual for a company to have many
files, some containing millions, billions or even trillions of characters of information.

Record Key
To facilitate the retrieval of specific records from a file, at least one field in each record is
chosen as a record key, which identifies a record as belonging to a particular person or en-
tity and distinguishes that record from all others. For example, in a payroll record, the em-
ployee identification number normally would be the record key.

Sequential Files
There are many ways to organize records in a file. A common organization is called a se-
quential file, in which records typically are stored in order by a record-key field. In a payroll
file, records usually are placed in order by employee identification number. The first em-
ployee record in the file contains the lowest employee identification number, and subse-
quent records contain increasingly higher ones.

Databases
Most businesses use many different files to store data. For example, a company might have
payroll files, accounts-receivable files (listing money due from clients), accounts-payable
files (listing money due to suppliers), inventory files (listing facts about all the items han-
dled by the business) and many other files. Related data are often stored in a database. A
collection of programs designed to create and manage databases is called a database man-
agement system (DBMS). We discuss databases in Chapter 22.

17.3 Files and Streams
C# views each file as a sequential stream of bytes (Fig. 17.2). Each file ends either with an
end-of-file marker or at a specific byte number that’s recorded in a system-maintained ad-
ministrative data structure. When a file is opened, an object is created and a stream is asso-
ciated with the object. When a console app executes, the runtime environment creates three
stream objects that are accessible via properties Console.Out, Console.In and Console.Er-

ror, respectively. These objects use streams to facilitate communication between a program
and a particular file or device. Console.In refers to the standard input stream object, which

1. Generally, a file can contain arbitrary data in arbitrary formats. In some operating systems, a file is
viewed as nothing more than a collection of bytes, and any organization of the bytes in a file (such
as organizing the data into records) is a view created by the app programmer.

17.4 Classes File and Directory 673

enables a program to input data from the keyboard. Console.Out refers to the standard out-
put stream object, which enables a program to output data to the screen. Console.Error
refers to the standard error stream object, which enables a program to output error messages
to the screen. We’ve been using Console.Out and Console.In in our console apps, Console
methods Write and WriteLine use Console.Out to perform output, and Console methods
Read and ReadLine use Console.In to perform input.

There are many file-processing classes in the Framework Class Library. The
System.IO namespace includes stream classes such as StreamReader (for text input from
a file), StreamWriter (for text output to a file) and FileStream (for both input from and
output to a file). These stream classes inherit from abstract classes TextReader, Text-
Writer and Stream, respectively. Actually, properties Console.In and Console.Out are of
type TextReader and TextWriter, respectively. The system creates objects of TextReader
and TextWriter derived classes to initialize Console properties Console.In and Con-

sole.Out.
Abstract class Stream provides functionality for representing streams as bytes. Classes

FileStream, MemoryStream and BufferedStream (all from namespace System.IO) inherit
from class Stream. Class FileStream can be used to write data to and read data from files.
Class MemoryStream enables the transfer of data directly to and from memory—this is
much faster than reading from and writing to external devices. Class BufferedStream uses
buffering to transfer data to or from a stream. Buffering is an I/O performance-enhance-
ment technique, in which each output operation is directed to a region in memory, called
a buffer, that’s large enough to hold the data from many output operations. Then actual
transfer to the output device is performed in one large physical output operation each
time the buffer fills. The output operations directed to the output buffer in memory often
are called logical output operations. Buffering can also be used to speed input operations
by initially reading more data than is required into a buffer, so subsequent reads get data
from high-speed memory rather than a slower external device.

In this chapter, we use key stream classes to implement file-processing programs that
create and manipulate sequential-access files.

17.4 Classes File and Directory
Information is stored in files, which are organized in directories (also called folders). Classes
File and Directory enable programs to manipulate files and directories on disk. Class File
can determine information about files and can be used to open files for reading or writing.
We discuss techniques for writing to and reading from files in subsequent sections.

Figure 17.3 lists several of class File’s static methods for manipulating and deter-
mining information about files. We demonstrate several of these methods in Fig. 17.5.

Fig. 17.2 | C#’s view of an n-byte file.

0 1 2 3 4 5 6 7 8 9 ...

...

n-1

end-of-file marker

674 Chapter 17 Files and Streams

Class Directory provides capabilities for manipulating directories. Figure 17.4 lists
some of class Directory’s static methods for directory manipulation. Figure 17.5 dem-
onstrates several of these methods, as well. The DirectoryInfo object returned by method
CreateDirectory contains information about a directory. Much of the information con-
tained in class DirectoryInfo also can be accessed via the methods of class Directory.

static Method Description

AppendText Returns a StreamWriter that appends text to an existing file or creates a
file if one does not exist.

Copy Copies a file to a new file.
Create Creates a file and returns its associated FileStream.
CreateText Creates a text file and returns its associated StreamWriter.
Delete Deletes the specified file.
Exists Returns true if the specified file exists and false otherwise.
GetCreationTime Returns a DateTime object representing when the file was created.
GetLastAccessTime Returns a DateTime object representing when the file was last accessed.
GetLastWriteTime Returns a DateTime object representing when the file was last modified.
Move Moves the specified file to a specified location.
Open Returns a FileStream associated with the specified file and equipped

with the specified read/write permissions.
OpenRead Returns a read-only FileStream associated with the specified file.
OpenText Returns a StreamReader associated with the specified file.
OpenWrite Returns a write FileStream associated with the specified file.

Fig. 17.3 | File class static methods (partial list).

static Method Description

CreateDirectory Creates a directory and returns its associated DirectoryInfo object.
Delete Deletes the specified directory.
Exists Returns true if the specified directory exists and false otherwise.
GetDirectories Returns a string array containing the names of the subdirectories in

the specified directory.
GetFiles Returns a string array containing the names of the files in the speci-

fied directory.
GetCreationTime Returns a DateTime object representing when the directory was created.
GetLastAccessTime Returns a DateTime object representing when the directory was last

accessed.
GetLastWriteTime Returns a DateTime object representing when items were last written to

the directory.
Move Moves the specified directory to a specified location.

Fig. 17.4 | Directory class static methods.

17.4 Classes File and Directory 675

Demonstrating Classes File and Directory
.Class FileTestForm (Fig. 17.5) uses File and Directory methods to access file and direc-
tory information. The Form contains the inputTextBox, in which the user enters a file or di-
rectory name. For each key that the user presses while typing in the TextBox, the program
calls inputTextBox_KeyDown (lines 19–75). If the user presses the Enter key (line 22), this
method displays either the file’s or directory’s contents, depending on the text the user input.
(If the user does not press the Enter key, this method returns without displaying any con-
tent.) Line 28 uses File method Exists to determine whether the user-specified text is the
name of an existing file. If so, line 31 invokes private method GetInformation (lines 79–
97), which calls Filemethods GetCreationTime (line 88), GetLastWriteTime (line 92) and
GetLastAccessTime (line 96) to access file information. When method GetInformation re-
turns, line 38 instantiates a StreamReader for reading text from the file. The StreamReader
constructor takes as an argument a string containing the name and path of the file to open.
Line 40 calls StreamReader method ReadToEnd to read the entire contents of the file as a
string, then appends the string to outputTextBox. Once the file has been read, the using
block terminates and disposes of the corresponding object, which closes the file.

1 // Fig. 17.5: FileTestForm.cs
2 // Using classes File and Directory.
3 using System;
4 using System.Windows.Forms;
5 using System.IO;
6
7 namespace FileTest
8 {
9 // displays contents of files and directories

10 public partial class FileTestForm : Form
11 {
12 // parameterless constructor
13 public FileTestForm()
14 {
15 InitializeComponent();
16 } // end constructor
17
18 // invoked when user presses key
19 private void inputTextBox_KeyDown(object sender, KeyEventArgs e)
20 {
21 // determine whether user pressed Enter key
22 if (e.KeyCode == Keys.Enter)
23 {
24 // get user-specified file or directory
25 string fileName = inputTextBox.Text;
26
27 // determine whether fileName is a file
28 if ()
29 {
30 // get file's creation date, modification date, etc.
31 GetInformation(fileName);
32 StreamReader stream = null; // declare StreamReader
33

Fig. 17.5 | Using classes File and Directory. (Part 1 of 3.)

File.Exists(fileName)

676 Chapter 17 Files and Streams

34 // display file contents through StreamReader
35 try

36 {
37 // obtain reader and file contents
38 using (stream = new StreamReader(fileName))
39 {
40 outputTextBox.AppendText(stream.ReadToEnd());
41 } // end using
42 } // end try
43 catch (IOException)
44 {
45 MessageBox.Show("Error reading from file",
46 "File Error", MessageBoxButtons.OK,
47 MessageBoxIcon.Error);
48 } // end catch
49 } // end if
50 // determine whether fileName is a directory
51 else if (Directory.Exists(fileName))
52 {
53 // get directory's creation date,
54 // modification date, etc.
55 GetInformation(fileName);
56
57 // obtain directory list of specified directory
58
59
60
61 outputTextBox.AppendText("Directory contents:\n");
62
63 // output directoryList contents
64 foreach (var directory in directoryList)
65 outputTextBox.AppendText(directory + "\n");
66 } // end else if
67 else

68 {
69 // notify user that neither file nor directory exists
70 MessageBox.Show(inputTextBox.Text +
71 " does not exist", "File Error",
72 MessageBoxButtons.OK, MessageBoxIcon.Error);
73 } // end else
74 } // end if
75 } // end method inputTextBox_KeyDown
76
77 // get information on file or directory,
78 // and output it to outputTextBox
79 private void GetInformation(string fileName)
80 {
81 outputTextBox.Clear();
82
83 // output that file or directory exists
84 outputTextBox.AppendText(fileName + " exists\n");
85

Fig. 17.5 | Using classes File and Directory. (Part 2 of 3.)

string[] directoryList =
Directory.GetDirectories(fileName);

17.4 Classes File and Directory 677

If line 28 determines that the user-specified text is not a file, line 51 determines
whether it’s a directory using Directory method Exists. If the user specified an existing
directory, line 55 invokes method GetInformation to access the directory information.
Line 59 calls Directory method GetDirectories to obtain a string array containing the
names of the subdirectories in the specified directory. Lines 64–65 display each element
in the string array. Note that, if line 51 determines that the user-specified text is not a
directory name, lines 70–72 notify the user (via a MessageBox) that the name the user
entered does not exist as a file or directory.

Searching Directories with LINQ
We now consider another example that uses file- and directory-manipulation capabilities.
Class LINQToFileDirectoryForm (Fig. 17.6) uses LINQ with classes File, Path and

86 // output when file or directory was created
87 outputTextBox.AppendText("Created: " +
88 + "\n");
89
90 // output when file or directory was last modified
91 outputTextBox.AppendText("Last modified: " +
92 + "\n");
93
94 // output when file or directory was last accessed
95 outputTextBox.AppendText("Last accessed: " +
96 + "\n");
97 } // end method GetInformation
98 } // end class FileTestForm
99 } // end namespace FileTest

Fig. 17.5 | Using classes File and Directory. (Part 3 of 3.)

File.GetCreationTime(fileName)

File.GetLastWriteTime(fileName)

File.GetLastAccessTime(fileName)

b) Viewing all files in directory C:\Program Files\a) Viewing the contents of file "quotes.txt"

c) User gives invalid input d) Error message is displayed

678 Chapter 17 Files and Streams

Directory to report the number of files of each file type that exist in the specified directory
path. The program also serves as a “clean-up” utility—when it finds a file that has the .bak
file-name extension (i.e., a backup file), the program displays a MessageBox asking the user
whether that file should be removed, then responds appropriately to the user’s input. This
example also uses LINQ to Objects to help delete the backup files.

When the user clicks Search Directory, the program invokes searchButton_Click
(lines 25–65), which searches recursively through the directory path specified by the user.
If the user inputs text in the TextBox, line 29 calls Directorymethod Exists to determine
whether that text is a valid directory. If it’s not, lines 32–33 notify the user of the error.

1 // Fig. 17.6: LINQToFileDirectoryForm.cs
2 // Using LINQ to search directories and determine file types.
3 using System;
4 using System.Collections.Generic;
5 using System.Linq;
6 using System.Windows.Forms;
7 using System.IO;
8
9 namespace LINQToFileDirectory

10 {
11 public partial class LINQToFileDirectoryForm : Form
12 {
13 string currentDirectory; // directory to search
14
15 // store extensions found, and number of each extension found
16
17
18 // parameterless constructor
19 public LINQToFileDirectoryForm()
20 {
21 InitializeComponent();
22 } // end constructor
23
24 // handles the Search Directory Button's Click event
25 private void searchButton_Click(object sender, EventArgs e)
26 {
27 // check whether user specified path exists
28 if (pathTextBox.Text != string.Empty &&
29)
30 {
31 // show error if user does not specify valid directory
32 MessageBox.Show("Invalid Directory", "Error",
33 MessageBoxButtons.OK, MessageBoxIcon.Error);
34 } // end if
35 else

36 {
37 // use current directory if no directory is specified
38 if (pathTextBox.Text == string.Empty)
39 currentDirectory = ;

Fig. 17.6 | Using LINQ to search directories and determine file types. (Part 1 of 4.)

Dictionary<string, int> found = new Dictionary<string, int>();

!Directory.Exists(pathTextBox.Text)

Directory.GetCurrentDirectory()

17.4 Classes File and Directory 679

40 else

41 currentDirectory = pathTextBox.Text;
42
43 directoryTextBox.Text = currentDirectory; // show directory
44
45 // clear TextBoxes
46 pathTextBox.Clear();
47 resultsTextBox.Clear();
48
49 SearchDirectory(currentDirectory); // search the directory
50
51 // allow user to delete .bak files
52 CleanDirectory(currentDirectory);
53
54 // summarize and display the results
55 foreach (var current in)
56 {
57 // display the number of files with current extension
58 resultsTextBox.AppendText(string.Format(
59 "* Found {0} {1} files.\r\n",
60 , current));
61 } // end foreach
62
63
64 } // end else
65 } // end method searchButton_Click
66
67 // search directory using LINQ
68 private void SearchDirectory(string folder)
69 {
70 // files contained in the directory
71
72
73 // subdirectories in the directory
74
75
76 // find all file extensions in this directory
77 var extensions =
78
79
80
81 // count the number of files using each extension
82 foreach (var extension in extensions)
83 {
84
85 // count the number of files with the extension
86 var extensionCount =
87
88
89
90
91

Fig. 17.6 | Using LINQ to search directories and determine file types. (Part 2 of 4.)

found.Keys

found[current]

found.Clear(); // clear results for new search

string[] files = Directory.GetFiles(folder);

string[] directories = Directory.GetDirectories(folder);

(from file in files
select Path.GetExtension(file)).Distinct();

(from file in files
where Path.GetExtension(file) == extension
select file).Count();

680 Chapter 17 Files and Streams

92 // if the Dictionary already contains a key for the extension
93 if ()
94 // update the count
95 else

96 // add new count
97 } // end foreach
98
99 // recursive call to search subdirectories
100 foreach (var subdirectory in directories)
101
102 } // end method SearchDirectory
103
104 // allow user to delete backup files (.bak)
105 private void CleanDirectory(string folder)
106 {
107 // files contained in the directory
108
109
110 // subdirectories in the directory
111
112
113 // select all the backup files in this directory
114 var backupFiles =
115
116
117
118
119 // iterate over all backup files (.bak)
120 foreach (var backup in backupFiles)
121 {
122 DialogResult result = MessageBox.Show("Found backup file " +
123 Path.GetFileName(backup) + ". Delete?", "Delete Backup",
124 MessageBoxButtons.YesNo, MessageBoxIcon.Question);
125
126 // delete file if user clicked 'yes'
127 if (result == DialogResult.Yes)
128 {
129
130
131
132 // if there are no .bak files, delete key from Dictionary
133 if (found[".bak"] == 0)
134
135 } // end if
136 } // end foreach
137
138 // recursive call to clean subdirectories
139 foreach (var subdirectory in directories)
140
141 } // end method CleanDirectory
142 } // end class LINQToFileDirectoryForm
143 } // end namespace LINQToFileDirectory

Fig. 17.6 | Using LINQ to search directories and determine file types. (Part 3 of 4.)

found.ContainsKey(extension)
found[extension] += extensionCount;

found.Add(extension, extensionCount);

SearchDirectory(subdirectory);

string[] files = Directory.GetFiles(folder);

string[] directories = Directory.GetDirectories(folder);

from file in files
where Path.GetExtension(file) == ".bak"

select file;

File.Delete(backup); // delete backup file
--found[".bak"]; // decrement count in Dictionary

found.Remove(".bak");

CleanDirectory(subdirectory);

17.4 Classes File and Directory 681

Method SearchDirectory

Lines 38–41 get the current directory (if the user did not specify a path) or the specified
directory. Line 49 passes the directory name to recursive method SearchDirectory (lines
68–102). Line 71 calls Directory method GetFiles to get a string array containing file
names in the specified directory. Line 74 calls Directory method GetDirectories to get
a string array containing the subdirectory names in the specified directory.

Lines 78–79 use LINQ to get the Distinct file-name extensions in the files array.
Path method GetExtension obtains the extension for the specified file name. For each file-
name extension returned by the LINQ query, lines 82–97 determine the number of occur-
rences of that extension in the files array. The LINQ query at lines 87–89 compares each
file-name extension in the files array with the current extension being processed (line
89). All matches are included in the result. We then use LINQ method Count to determine
the total number of files that matched the current extension.

Class LINQToFileDirectoryForm uses a Dictionary (declared in line 16) to store each
file-name extension and the corresponding number of file names with that extension. A
Dictionary (namespace System.Collections.Generic) is a collection of key–value pairs,
in which each key has a corresponding value. Class Dictionary is a generic class like class
List (presented in Section 9.4). Line 16 indicates that the Dictionary found contains
pairs of strings and ints, which represent the file-name extensions and the number of
files with those extensions, respectively. Line 93 uses Dictionary method ContainsKey to
determine whether the specified file-name extension has been placed in the Dictionary
previously. If this method returns true, line 94 adds the extensionCount determined in
lines 88–90 to the current total for that extension that’s stored in the Dictionary. Other-
wise, line 96 uses Dictionary method Add to insert a new key–value pair into the Dic-
tionary for the new file-name extension and its extensionCount. Lines 100–101
recursively call SearchDirectory for each subdirectory in the current directory.

Method CleanDirectory

When method SearchDirectory returns, line 52 calls CleanDirectory (lines 105–141) to
search for all files with extension .bak. Lines 108 and 111 obtain the list of file names and

Fig. 17.6 | Using LINQ to search directories and determine file types. (Part 4 of 4.)

b) Dialog that appears to confirm deletion
of a .bak file

a) GUI after entering
a directory to search

and pressing
Search Directory

682 Chapter 17 Files and Streams

list of directory names in the current directory, respectively. The LINQ query in lines 115–
117 locates all file names in the current directory that have the .bak extension. Lines 120–
136 iterate through the results and ask the user whether each file should be deleted. If the
user clicks Yes in the dialog, line 129 uses File method Delete to remove the file from disk,
and line 130 subtracts 1 from the total number of .bak files. If the number of .bak files re-
maining is 0, line 134 uses Dictionarymethod Remove to delete the key–value pair for .bak
files from the Dictionary. Lines 139–140 recursively call CleanDirectory for each subdi-
rectory in the current directory. After each subdirectory has been checked for .bak files,
method CleanDirectory returns, and lines 55–61 display the summary of file-name exten-
sions and the number of files with each extension. Line 55 uses Dictionary property Keys

to get all the keys. Line 60 uses the Dictionary’s indexer to get the value for the current key.
Finally, line 63 uses Dictionary method Clear to delete the contents of the Dictionary.

17.5 Creating a Sequential-Access Text File
C# imposes no structure on files. Thus, the concept of a “record” does not exist in C# files.
This means that you must structure files to meet the requirements of your apps. The next
few examples use text and special characters to organize our own concept of a “record.”

Class BankUIForm
The following examples demonstrate file processing in a bank-account maintenance app.
These programs have similar user interfaces, so we created reusable class BankUIForm
(Fig. 17.7) to encapsulate a base-class GUI (see the screen capture in Fig. 17.7). Class
BankUIForm (part of the BankLibrary project with this chapter’s examples) contains four
Labels and four TextBoxes. Methods ClearTextBoxes (lines 28–40), SetTextBoxValues
(lines 43–64) and GetTextBoxValues (lines 67–78) clear, set the values of and get the val-
ues of the text in the TextBoxes, respectively.

1 // Fig. 17.7: BankUIForm.cs
2 // A reusable Windows Form for the examples in this chapter.
3 using System;
4 using System.Windows.Forms;
5
6 namespace BankLibrary
7 {
8 public partial class BankUIForm : Form
9 {

10 protected int TextBoxCount = 4; // number of TextBoxes on Form
11
12 // enumeration constants specify TextBox indices
13 public enum TextBoxIndices
14 {
15 ACCOUNT,
16 FIRST,
17 LAST,
18 BALANCE
19 } // end enum
20

Fig. 17.7 | Base class for GUIs in our file-processing apps. (Part 1 of 3.)

17.5 Creating a Sequential-Access Text File 683

21 // parameterless constructor
22 public BankUIForm()
23 {
24 InitializeComponent();
25 } // end constructor
26
27 // clear all TextBoxes
28 public void ClearTextBoxes()
29 {
30 // iterate through every Control on form
31 foreach (Control guiControl in Controls)
32 {
33 // determine whether Control is TextBox
34 if (guiControl is TextBox)
35 {
36 // clear TextBox
37 ((TextBox) guiControl).Clear();
38 } // end if
39 } // end for
40 } // end method ClearTextBoxes
41
42 // set text box values to string-array values
43 public void SetTextBoxValues(string[] values)
44 {
45 // determine whether string array has correct length
46 if (values.Length != TextBoxCount)
47 {
48 // throw exception if not correct length
49 throw (new ArgumentException("There must be " +
50 (TextBoxCount) + " strings in the array"));
51 } // end if
52 // set array values if array has correct length
53 else
54 {
55 // set array values to TextBox values
56 accountTextBox.Text =
57 values[(int) TextBoxIndices.ACCOUNT];
58 firstNameTextBox.Text =
59 values[(int) TextBoxIndices.FIRST];
60 lastNameTextBox.Text = values[(int) TextBoxIndices.LAST];
61 balanceTextBox.Text =
62 values[(int) TextBoxIndices.BALANCE];
63 } // end else
64 } // end method SetTextBoxValues
65
66 // return TextBox values as string array
67 public string[] GetTextBoxValues()
68 {
69 string[] values = new string[TextBoxCount];
70
71 // copy TextBox fields to string array
72 values[(int) TextBoxIndices.ACCOUNT] = accountTextBox.Text;
73 values[(int) TextBoxIndices.FIRST] = firstNameTextBox.Text;

Fig. 17.7 | Base class for GUIs in our file-processing apps. (Part 2 of 3.)

684 Chapter 17 Files and Streams

Using visual inheritance (Section 15.13), you can extend this class to create the GUIs for
several examples in this chapter. Recall that to reuse class BankUIForm, you must compile the
GUI into a class library, then add a reference to the new class library in each project that will
reuse it. This library (BankLibrary) is provided with the code for this chapter. You might
need to re-add the references to this library in our examples when you copy them to your
system, since the library most likely will reside in a different location on your system.

Class Record
Figure 17.8 contains class Record that Figs. 17.9, 17.11 and 17.12 use for maintaining the
information in each record that’s written to or read from a file. This class also belongs to
the BankLibrary DLL, so it’s located in the same project as class BankUIForm.

74 values[(int) TextBoxIndices.LAST] = lastNameTextBox.Text;
75 values[(int) TextBoxIndices.BALANCE] = balanceTextBox.Text;
76
77 return values;
78 } // end method GetTextBoxValues
79 } // end class BankUIForm
80 } // end namespace BankLibrary

1 // Fig. 17.8: Record.cs
2 // Class that represents a data record.
3
4 namespace BankLibrary
5 {
6 public class Record
7 {
8
9

10
11
12
13
14
15

Fig. 17.8 | Record for sequential-access file-processing apps. (Part 1 of 2.)

Fig. 17.7 | Base class for GUIs in our file-processing apps. (Part 3 of 3.)

// auto-implemented Account property
public int Account { get; set; }

// auto-implemented FirstName property
public string FirstName { get; set; }

// auto-implemented LastName property
public string LastName { get; set; }

17.5 Creating a Sequential-Access Text File 685

Class Record contains auto-implemented properties for instance variables Account,
FirstName, LastName and Balance (lines 9–18), which collectively represent all the infor-
mation for a record. The parameterless constructor (lines 21–24) sets these members by
calling the four-argument constructor with 0 for the account number, string.Empty for
the first and last name and 0.0M for the balance. The four-argument constructor (lines 27–
34) sets these members to the specified parameter values.

Using a Character Stream to Create an Output File
Class CreateFileForm (Fig. 17.9) uses instances of class Record to create a sequential-access
file that might be used in an accounts-receivable system—i.e., a program that organizes
data regarding money owed by a company’s credit clients. For each client, the program
obtains an account number and the client’s first name, last name and balance (i.e., the
amount of money that the client owes to the company for previously received goods and
services). The data obtained for each client constitutes a record for that client. In this app,
the account number is used as the record key—files are created and maintained in account-
number order. This program assumes that the user enters records in account-number or-
der. However, a comprehensive accounts-receivable system would provide a sorting capa-
bility, so the user could enter the records in any order.

16
17
18
19
20 // parameterless constructor sets members to default values
21 public Record()
22 : this(0, string.Empty, string.Empty, 0M)
23 {
24 } // end constructor
25
26 // overloaded constructor sets members to parameter values
27 public Record(int accountValue, string firstNameValue,
28 string lastNameValue, decimal balanceValue)
29 {
30 Account = accountValue;
31 FirstName = firstNameValue;
32 LastName = lastNameValue;
33 Balance = balanceValue;
34 } // end constructor
35 } // end class Record
36 } // end namespace BankLibrary

1 // Fig. 17.9: CreateFileForm.cs
2 // Creating a sequential-access file.
3 using System;
4 using System.Windows.Forms;
5 using System.IO;

Fig. 17.9 | Creating and writing to a sequential-access file. (Part 1 of 5.)

Fig. 17.8 | Record for sequential-access file-processing apps. (Part 2 of 2.)

// auto-implemented Balance property
public decimal Balance { get; set; }

686 Chapter 17 Files and Streams

6 using BankLibrary;
7
8 namespace CreateFile
9 {

10
11 {
12
13
14 // parameterless constructor
15 public CreateFileForm()
16 {
17 InitializeComponent();
18 } // end constructor
19
20 // event handler for Save Button
21 private void saveButton_Click(object sender, EventArgs e)
22 {
23 // create and show dialog box enabling user to save file
24 DialogResult result; // result of SaveFileDialog
25 string fileName; // name of file containing data
26
27
28
29
30
31
32
33
34 // ensure that user clicked "OK"
35 if (result == DialogResult.OK)
36 {
37 // show error if user specified invalid file
38 if (fileName == string.Empty)
39 MessageBox.Show("Invalid File Name", "Error",
40 MessageBoxButtons.OK, MessageBoxIcon.Error);
41 else

42 {
43 // save file via FileStream if user specified valid file
44 try

45 {
46 // open file with write access
47
48
49
50 // sets file to where data is written
51
52
53 // disable Save button and enable Enter button
54 saveButton.Enabled = false;
55 enterButton.Enabled = true;
56 } // end try
57 // handle exception if there's a problem opening the file

Fig. 17.9 | Creating and writing to a sequential-access file. (Part 2 of 5.)

public partial class CreateFileForm : BankUIForm

private StreamWriter fileWriter; // writes data to text file

using (SaveFileDialog fileChooser = new SaveFileDialog())
{

fileChooser.CheckFileExists = false; // let user create file
result = fileChooser.ShowDialog();
fileName = fileChooser.FileName; // name of file to save data

} // end using

FileStream output = new FileStream(fileName,
FileMode.OpenOrCreate, FileAccess.Write);

fileWriter = new StreamWriter(output);

17.5 Creating a Sequential-Access Text File 687

58 catch (IOException)
59 {
60 // notify user if file does not exist
61 MessageBox.Show("Error opening file", "Error",
62 MessageBoxButtons.OK, MessageBoxIcon.Error);
63 } // end catch
64 } // end else
65 } // end if
66 } // end method saveButton_Click
67
68 // handler for enterButton Click
69 private void enterButton_Click(object sender, EventArgs e)
70 {
71 // store TextBox values string array
72 string[] values = GetTextBoxValues();
73
74 // Record containing TextBox values to output
75 Record record = new Record();
76
77 // determine whether TextBox account field is empty
78 if (values[(int) TextBoxIndices.ACCOUNT] != string.Empty)
79 {
80 // store TextBox values in Record and output it
81 try

82 {
83 // get account-number value from TextBox
84 int accountNumber = Int32.Parse(
85 values[(int) TextBoxIndices.ACCOUNT]);
86
87 // determine whether accountNumber is valid
88 if (accountNumber > 0)
89 {
90 // store TextBox fields in Record
91 record.Account = accountNumber;
92 record.FirstName = values[(int)
93 TextBoxIndices.FIRST];
94 record.LastName = values[(int)
95 TextBoxIndices.LAST];
96 record.Balance = Decimal.Parse(
97 values[(int) TextBoxIndices.BALANCE]);
98
99 // write Record to file, fields separated by commas
100
101
102
103 } // end if
104 else

105 {
106 // notify user if invalid account number
107 MessageBox.Show("Invalid Account Number", "Error",
108 MessageBoxButtons.OK, MessageBoxIcon.Error);
109 } // end else
110 } // end try

Fig. 17.9 | Creating and writing to a sequential-access file. (Part 3 of 5.)

fileWriter.WriteLine(
record.Account + "," + record.FirstName + "," +
record.LastName + "," + record.Balance);

688 Chapter 17 Files and Streams

111 // notify user if error occurs during the output operation
112 catch (IOException)
113 {
114 MessageBox.Show("Error Writing to File", "Error",
115 MessageBoxButtons.OK, MessageBoxIcon.Error);
116 } // end catch
117 // notify user if error occurs regarding parameter format
118 catch (FormatException)
119 {
120 MessageBox.Show("Invalid Format", "Error",
121 MessageBoxButtons.OK, MessageBoxIcon.Error);
122 } // end catch
123 } // end if
124
125 ClearTextBoxes(); // clear TextBox values
126 } // end method enterButton_Click
127
128 // handler for exitButton Click
129 private void exitButton_Click(object sender, EventArgs e)
130 {
131 // determine whether file exists
132 if (fileWriter != null)
133 {
134 try

135 {
136 // close StreamWriter and underlying file
137
138 } // end try
139 // notify user of error closing file
140 catch (IOException)
141 {
142 MessageBox.Show("Cannot close file", "Error",
143 MessageBoxButtons.OK, MessageBoxIcon.Error);
144 } // end catch
145 } // end if
146
147 Application.Exit();
148 } // end method exitButton_Click
149 } // end class CreateFileForm
150 } // end namespace CreateFile

Fig. 17.9 | Creating and writing to a sequential-access file. (Part 4 of 5.)

fileWriter.Close();

a) BankUI graphical user
interface with three
additional controls

17.5 Creating a Sequential-Access Text File 689

Class CreateFileForm either creates or opens a file (depending on whether one
exists), then allows the user to write records to it. The using directive in line 6 enables us
to use the classes of the BankLibrary namespace; this namespace contains class BankUI-
Form, from which class CreateFileForm inherits (line 10). Class CreateFileForm’s GUI
enhances that of class BankUIForm with buttons Save As, Enter and Exit.

Method saveButton_Click

When the user clicks the Save As button, the program invokes the event handler
saveButton_Click (lines 21–66). Line 27 instantiates an object of class SaveFileDialog
(namespace System.Windows.Forms). By placing this object in a using statement (lines
27–32), we can ensure that the dialog’s Dispose method is called to release its resources as
soon as the program has retrieved user input from it. SaveFileDialog objects are used for
selecting files (see the second screen in Fig. 17.9). Line 29 indicates that the dialog should
not check if the file name specified by the user already exists (this is actually the default).

Fig. 17.9 | Creating and writing to a sequential-access file. (Part 5 of 5.)

Files and directories

b) Save File dialog

c) Account 100,
"Nancy Brown",

saved with a
balance of -25.54

690 Chapter 17 Files and Streams

Line 30 calls SaveFileDialog method ShowDialog to display the dialog. When displayed,
a SaveFileDialog prevents the user from interacting with any other window in the pro-
gram until the user closes the SaveFileDialog by clicking either Save or Cancel. Dialogs
that behave in this manner are called modal dialogs. The user selects the appropriate drive,
directory and file name, then clicks Save. Method ShowDialog returns a DialogResult
specifying which button (Save or Cancel) the user clicked to close the dialog. This is as-
signed to DialogResult variable result (line 30). Line 31 gets the file name from the di-
alog. Line 35 tests whether the user clicked OK by comparing this value to
DialogResult.OK. If the values are equal, method saveButton_Click continues.

You can open files to perform text manipulation by creating objects of class FileStream.
In this example, we want the file to be opened for output, so lines 47–48 create a FileStream
object. The FileStream constructor that we use receives three arguments—a string con-
taining the path and name of the file to open, a constant describing how to open the file and
a constant describing the file permissions. The constant FileMode.OpenOrCreate (line 48)
indicates that the FileStream object should open the file if it exists or create the file if it does
not exist. Note that the contents of an existing file are overwritten by the StreamWriter. To
preserve the original contents of a file, use FileMode.Append. There are other FileMode con-
stants describing how to open files; we introduce these constants as we use them in examples.
The constant FileAccess.Write indicates that the program can perform only write opera-
tions with the FileStream object. There are two other constants for the third constructor
parameter—FileAccess.Read for read-only access and FileAccess.ReadWrite for both
read and write access. Line 58 catches an IOException if there’s a problem opening the file
or creating the StreamWriter. If so, the program displays an error message (lines 61–62). If
no exception occurs, the file is open for writing.

Method enterButton_Click

After typing information into each TextBox, the user clicks Enter, which calls enter-
Button_Click (lines 69–126) to save the data from the TextBoxes into the user-specified
file. If the user entered a valid account number (i.e., an integer greater than zero), lines 91–
97 store the TextBox values in an object of type Record (created at line 75). If the user
entered invalid data in one of the TextBoxes (such as nonnumeric characters in the Balance
field), the program throws a FormatException. The catch block in lines 118–122 handles
such exceptions by notifying the user (via a MessageBox) of the improper format.

If the user entered valid data, lines 100–102 write the record to the file by invoking
method WriteLine of the StreamWriter object that was created at line 51. Method
WriteLine writes a sequence of characters to a file. The StreamWriter object is con-
structed with a FileStream argument that specifies the file to which the StreamWriter
will output text. Class StreamWriter (like most of the classes we discuss in this chapter)
belongs to the System.IO namespace.

Good Programming Practice 17.1
When opening files, use the FileAccess enumeration to control user access to these files.

Common Programming Error 17.1
Failure to open a file before attempting to use it in a program is a logic error.

17.6 Reading Data from a Sequential-Access Text File 691

Method exitButton_Click

When the user clicks Exit, exitButton_Click (lines 129–148) executes. Line 137 closes
the StreamWriter, which automatically closes the FileStream. Then, line 147 terminates
the program. Note that method Close is called in a try block. Method Close throws an
IOException if the file or stream cannot be closed properly. In this case, it’s important to
notify the user that the information in the file or stream might be corrupted.

Sample Data
To test the program, we entered information for the accounts shown in Fig. 17.10. The
program does not depict how the data records are stored in the file. To verify that the file
has been created successfully, we create a program in the next section to read and display
the file. Since this is a text file, you can actually open it in any text editor to see its contents.

17.6 Reading Data from a Sequential-Access Text File
The previous section demonstrated how to create a file for use in sequential-access apps.
In this section, we discuss how to read (or retrieve) data sequentially from a file.
. Class ReadSequentialAccessFileForm (Fig. 17.11) reads records from the file cre-
ated by the program in Fig. 17.9, then displays the contents of each record. Much of the
code in this example is similar to that of Fig. 17.9, so we discuss only the unique aspects
of the app.

Performance Tip 17.1
Close each file explicitly when the program no longer needs to use it. This can reduce re-
source usage in programs that continue executing long after they finish using a specific file.
The practice of explicitly closing files also improves program clarity.

Performance Tip 17.2
Releasing resources explicitly when they’re no longer needed makes them immediately
available for reuse by other programs, thus improving resource utilization.

Account number First name Last name Balance

100 Nancy Brown -25.54

200 Stacey Dunn 314.33

300 Doug Barker 0.00

400 Dave Smith 258.34

500 Sam Stone 34.98

Fig. 17.10 | Sample data for the program of Fig. 17.9.

1 // Fig. 17.11: ReadSequentialAccessFileForm.cs
2 // Reading a sequential-access file.
3 using System;

Fig. 17.11 | Reading sequential-access files. (Part 1 of 4.)

692 Chapter 17 Files and Streams

4 using System.Windows.Forms;
5 using System.IO;
6 using BankLibrary;
7
8 namespace ReadSequentialAccessFile
9 {

10 public partial class ReadSequentialAccessFileForm : BankUIForm
11 {
12
13
14 // parameterless constructor
15 public ReadSequentialAccessFileForm()
16 {
17 InitializeComponent();
18 } // end constructor
19
20 // invoked when user clicks the Open button
21 private void openButton_Click(object sender, EventArgs e)
22 {
23 // create and show dialog box enabling user to open file
24 DialogResult result; // result of OpenFileDialog
25 string fileName; // name of file containing data
26
27 using (OpenFileDialog fileChooser = new OpenFileDialog())
28 {
29
30
31 } // end using
32
33 // ensure that user clicked "OK"
34 if (result == DialogResult.OK)
35 {
36 ClearTextBoxes();
37
38 // show error if user specified invalid file
39 if (fileName == string.Empty)
40 MessageBox.Show("Invalid File Name", "Error",
41 MessageBoxButtons.OK, MessageBoxIcon.Error);
42 else

43 {
44 try

45 {
46 // create FileStream to obtain read access to file
47
48
49
50 // set file from where data is read
51
52
53 openButton.Enabled = false; // disable Open File button
54 nextButton.Enabled = true; // enable Next Record button
55 } // end try

Fig. 17.11 | Reading sequential-access files. (Part 2 of 4.)

private StreamReader fileReader; // reads data from a text file

result = fileChooser.ShowDialog();
fileName = fileChooser.FileName; // get specified name

FileStream input = new FileStream(
fileName, FileMode.Open, FileAccess.Read);

fileReader = new StreamReader(input);

17.6 Reading Data from a Sequential-Access Text File 693

56 catch (IOException)
57 {
58 MessageBox.Show("Error reading from file",
59 "File Error", MessageBoxButtons.OK,
60 MessageBoxIcon.Error);
61 } // end catch
62 } // end else
63 } // end if
64 } // end method openButton_Click
65
66 // invoked when user clicks Next button
67 private void nextButton_Click(object sender, EventArgs e)
68 {
69 try

70 {
71 // get next record available in file
72
73 string[] inputFields; // will store individual pieces of data
74
75 if (inputRecord != null)
76 {
77 inputFields = inputRecord.Split(',');
78
79 Record record = new Record(
80 Convert.ToInt32(inputFields[0]), inputFields[1],
81 inputFields[2],
82 Convert.ToDecimal(inputFields[3]));
83
84 // copy string-array values to TextBox values
85 SetTextBoxValues(inputFields);
86 } // end if
87 else

88 {
89 // close StreamReader and underlying file
90
91 openButton.Enabled = true; // enable Open File button
92 nextButton.Enabled = false; // disable Next Record button
93 ClearTextBoxes();
94
95 // notify user if no records in file
96 MessageBox.Show("No more records in file", string.Empty,
97 MessageBoxButtons.OK, MessageBoxIcon.Information);
98 } // end else
99 } // end try
100 catch (IOException)
101 {
102 MessageBox.Show("Error Reading from File", "Error",
103 MessageBoxButtons.OK, MessageBoxIcon.Error);
104 } // end catch
105 } // end method nextButton_Click
106 } // end class ReadSequentialAccessFileForm
107 } // end namespace ReadSequentialAccessFile

Fig. 17.11 | Reading sequential-access files. (Part 3 of 4.)

string inputRecord = fileReader.ReadLine();

fileReader.Close();

694 Chapter 17 Files and Streams

Fig. 17.11 | Reading sequential-access files. (Part 4 of 4.)

a) BankUI graphical user interface with an Open File button

b) OpenFileDialog window

c) Reading account 100

d) User is shown a messagebox
when all records have been read

17.7 Case Study: Credit Inquiry Program 695

Method openButton_Click

When the user clicks Open File, the program calls event handler openButton_Click (lines
21–64). Line 27 creates an OpenFileDialog, and line 29 calls its ShowDialogmethod to dis-
play the Open dialog (see the second screenshot in Fig. 17.11). The behavior and GUI for
the Save and Open dialog types are identical, except that Save is replaced by Open. If the user
selects a valid file name, lines 47–48 create a FileStream object and assign it to reference
input. We pass constant FileMode.Open as the second argument to the FileStream con-
structor to indicate that the FileStream should open the file if it exists or throw a FileNot-
FoundException if it does not. (In this example, the FileStream constructor will not throw
a FileNotFoundException, because the OpenFileDialog is configured to check that the file
exists.) In the last example (Fig. 17.9), we wrote text to the file using a FileStream object
with write-only access. In this example (Fig. 17.11), we specify read-only access to the file by
passing constant FileAccess.Read as the third argument to the FileStream constructor.
This FileStream object is used to create a StreamReader object in line 51. The FileStream
object specifies the file from which the StreamReader object will read text.

Method nextButton_Click

When the user clicks the Next Record button, the program calls event handler
nextButton_Click (lines 67–105), which reads the next record from the user-specified
file. (The user must click Next Record after opening the file to view the first record.) Line
72 calls StreamReader method ReadLine to read the next record. If an error occurs while
reading the file, an IOException is thrown (caught at line 100), and the user is notified
(lines 102–103). Otherwise, line 75 determines whether StreamReader method ReadLine
returned null (i.e., there’s no more text in the file). If not, line 77 uses method Split of
class string to separate the stream of characters that was read from the file into tokens
(strings) that represent the Record’s properties—the second argument indicates that the
tokens are delimited by commas in this file. These properties are then stored by construct-
ing a Record object using the properties as arguments (lines 79–82). Line 85 displays the
Record values in the TextBoxes. If ReadLine returns null, the program closes the Stream-
Reader object (line 90), automatically closing the FileStream object, then notifies the
user that there are no more records (lines 96–97).

17.7 Case Study: Credit Inquiry Program
To retrieve data sequentially from a file, programs normally start from the beginning of the
file, reading consecutively until the desired data is found. It sometimes is necessary to pro-
cess a file sequentially several times (from the beginning of the file) during the execution of
a program. A FileStream object can reposition its file-position pointer (which contains
the byte number of the next byte to be read from or written to the file) to any position in
the file. When a FileStream object is opened, its file-position pointer is set to byte position
0 (i.e., the beginning of the file)

We now present a program that builds on the concepts employed in Fig. 17.11. Class
CreditInquiryForm (Fig. 17.12) is a credit-inquiry program that enables a credit manager

Error-Prevention Tip 17.1
Open a file with the FileAccess.Read file-open mode if its contents should not be mod-
ified. This prevents unintentional modification of the contents.

696 Chapter 17 Files and Streams

to search for and display account information for those customers with credit balances
(i.e., customers to whom the company owes money), zero balances (i.e., customers who
do not owe the company money) and debit balances (i.e., customers who owe the com-
pany money for previously received goods and services). We use a RichTextBox in the pro-
gram to display the account information. RichTextBoxes provide more functionality than
regular TextBoxes—for example, RichTextBoxes offer method Find for searching indi-
vidual strings and method LoadFile for displaying file contents. Classes RichTextBox and
TextBox both inherit from abstract class System.Windows.Forms.TextBoxBase. In this
example, we chose a RichTextBox, because it displays multiple lines of text by default,
whereas a regular TextBox displays only one. Alternatively, we could have specified that a
TextBox object display multiple lines of text by setting its Multiline property to true.

The program displays buttons that enable a credit manager to obtain credit informa-
tion. The Open File button opens a file for gathering data. The Credit Balances button dis-
plays a list of accounts that have credit balances, the Debit Balances button displays a list
of accounts that have debit balances and the Zero Balances button displays a list of
accounts that have zero balances. The Done button exits the app.

1 // Fig. 17.12: CreditInquiryForm.cs
2 // Read a file sequentially and display contents based on
3 // account type specified by user (credit, debit or zero balances).
4 using System;
5 using System.Windows.Forms;
6 using System.IO;
7 using BankLibrary;
8
9 namespace CreditInquiry

10 {
11 public partial class CreditInquiryForm : Form
12 {
13
14
15
16 // name of file that stores credit, debit and zero balances
17 private string fileName;
18
19 // parameterless constructor
20 public CreditInquiryForm()
21 {
22 InitializeComponent();
23 } // end constructor
24
25 // invoked when user clicks Open File button
26 private void openButton_Click(object sender, EventArgs e)
27 {
28 // create dialog box enabling user to open file
29 DialogResult result;
30
31 using (OpenFileDialog fileChooser = new OpenFileDialog())
32 {

Fig. 17.12 | Credit-inquiry program. (Part 1 of 5.)

private FileStream input; // maintains the connection to the file
private StreamReader fileReader; // reads data from text file

17.7 Case Study: Credit Inquiry Program 697

33
34
35 } // end using
36
37 // exit event handler if user clicked Cancel
38 if (result == DialogResult.OK)
39 {
40 // show error if user specified invalid file
41 if (fileName == string.Empty)
42 MessageBox.Show("Invalid File Name", "Error",
43 MessageBoxButtons.OK, MessageBoxIcon.Error);
44 else

45 {
46 // create FileStream to obtain read access to file
47
48
49
50 // set file from where data is read
51
52
53 // enable all GUI buttons, except for Open File button
54 openButton.Enabled = false;
55 creditButton.Enabled = true;
56 debitButton.Enabled = true;
57 zeroButton.Enabled = true;
58 } // end else
59 } // end if
60 } // end method openButton_Click
61
62 // invoked when user clicks credit balances,
63 // debit balances or zero balances button
64 private void getBalances_Click(object sender, System.EventArgs e)
65 {
66 // convert sender explicitly to object of type button
67 Button senderButton = (Button) sender;
68
69 // get text from clicked Button, which stores account type
70 string accountType = senderButton.Text;
71
72 // read and display file information
73 try

74 {
75 // go back to the beginning of the file
76
77
78 displayTextBox.Text = "The accounts are:\r\n";
79
80 // traverse file until end of file
81 while (true)
82 {
83 string[] inputFields; // stores individual pieces of data
84 Record record; // store each Record as file is read
85 decimal balance; // store each Record's balance

Fig. 17.12 | Credit-inquiry program. (Part 2 of 5.)

result = fileChooser.ShowDialog();
fileName = fileChooser.FileName;

input = new FileStream(fileName,
FileMode.Open, FileAccess.Read);

fileReader = new StreamReader(input);

input.Seek(0, SeekOrigin.Begin);

698 Chapter 17 Files and Streams

86
87 // get next Record available in file
88
89
90 // when at the end of file, exit method
91 if (inputRecord == null)
92 return;
93
94 inputFields = inputRecord.Split(','); // parse input
95
96 // create Record from input
97 record = new Record(
98 Convert.ToInt32(inputFields[0]), inputFields[1],
99 inputFields[2], Convert.ToDecimal(inputFields[3]));
100
101 // store record's last field in balance
102 balance = record.Balance;
103
104 // determine whether to display balance
105 if (ShouldDisplay(balance, accountType))
106 {
107 // display record
108 string output = record.Account + "\t" +
109 record.FirstName + "\t" + record.LastName + "\t";
110
111 // display balance with correct monetary format
112 output += String.Format("{0:F}", balance) + "\r\n";
113
114 // copy output to screen
115 displayTextBox.AppendText(output);
116 } // end if
117 } // end while
118 } // end try
119 // handle exception when file cannot be read
120 catch (IOException)
121 {
122 MessageBox.Show("Cannot Read File", "Error",
123 MessageBoxButtons.OK, MessageBoxIcon.Error);
124 } // end catch
125 } // end method getBalances_Click
126
127 // determine whether to display given record
128 private bool ShouldDisplay(decimal balance, string accountType)
129 {
130 if (balance > 0M)
131 {
132 // display credit balances
133 if (accountType == "Credit Balances")
134 return true;
135 } // end if
136 else if (balance < 0M)
137 {

Fig. 17.12 | Credit-inquiry program. (Part 3 of 5.)

string inputRecord = fileReader.ReadLine();

17.7 Case Study: Credit Inquiry Program 699

138 // display debit balances
139 if (accountType == "Debit Balances")
140 return true;
141 } // end else if
142 else // balance == 0
143 {
144 // display zero balances
145 if (accountType == "Zero Balances")
146 return true;
147 } // end else
148
149 return false;
150 } // end method ShouldDisplay
151
152 // invoked when user clicks Done button
153 private void doneButton_Click(object sender, EventArgs e)
154 {
155 if (input != null)
156 {
157 // close file and StreamReader
158 try

159 {
160 // close StreamReader and underlying file
161
162 } // end try
163 // handle exception if FileStream does not exist
164 catch (IOException)
165 {
166 // notify user of error closing file
167 MessageBox.Show("Cannot close file", "Error",
168 MessageBoxButtons.OK, MessageBoxIcon.Error);
169 } // end catch
170 } // end if
171
172 Application.Exit();
173 } // end method doneButton_Click
174 } // end class CreditInquiryForm
175 } // end namespace CreditInquiry

Fig. 17.12 | Credit-inquiry program. (Part 4 of 5.)

fileReader.Close();

a) GUI when the app
first executes

700 Chapter 17 Files and Streams

When the user clicks the Open File button, the program calls the event handler
openButton_Click (lines 26–60). Line 31 creates an OpenFileDialog, and line 33 calls its

Fig. 17.12 | Credit-inquiry program. (Part 5 of 5.)

b) Opening the
clients.txt file

c) Displaying accounts with
credit balances

d) Displaying accounts with
debit balances

e) Displaying accounts with
zero balances

17.8 Serialization 701

ShowDialog method to display the Open dialog, in which the user selects the file to open.
Lines 47–48 create a FileStream object with read-only file access and assign it to reference
input. Line 51 creates a StreamReader object that we use to read text from the FileStream.

When the user clicks Credit Balances, Debit Balances or Zero Balances, the program
invokes method getBalances_Click (lines 64–125). Line 67 casts the sender parameter,
which is an object reference to the control that generated the event, to a Button object.
Line 70 extracts the Button object’s text, which the program uses to determine which type
of accounts to display. Line 76 uses FileStream method Seek to reset the file-position
pointer back to the beginning of the file. FileStream method Seek allows you to reset the
file-position pointer by specifying the number of bytes it should be offset from the file’s
beginning, end or current position. The part of the file you want to be offset from is chosen
using constants from the SeekOrigin enumeration. In this case, our stream is offset by 0
bytes from the file’s beginning (SeekOrigin.Begin). Lines 81–117 define a while loop
that uses private method ShouldDisplay (lines 128–150) to determine whether to dis-
play each record in the file. The while loop obtains each record by repeatedly calling
StreamReader method ReadLine (line 88) and splitting the text into tokens (line 94) that
are used to initialize object record (lines 97–99). Line 91 determines whether the file-posi-
tion pointer has reached the end of the file, in which case ReadLine returns null. If so, the
program returns from method getBalances_Click (line 92).

17.8 Serialization
Section 17.5 demonstrated how to write the individual fields of a Record object to a text file,
and Section 17.6 demonstrated how to read those fields from a file and place their values in
a Record object in memory. In the examples, Record was used to aggregate the information
for one record. When the instance variables for a Record were output to a disk file, certain
information was lost, such as the type of each value. For instance, if the value "3" is read from
a file, there’s no way to tell if the value came from an int, a string or a decimal. We have
only data, not type information, on disk. If the program that’s going to read this data
“knows” what object type the data corresponds to, then the data can be read directly into
objects of that type. For example, in Fig. 17.11, we know that we are inputting an int (the
account number), followed by two strings (the first and last name) and a decimal (the bal-
ance). We also know that these values are separated by commas, with only one record on each
line. So, we are able to parse the strings and convert the account number to an int and the
balance to a decimal. Sometimes it would be easier to read or write entire objects. C# pro-
vides such a mechanism, called object serialization. A serialized object is an object represent-
ed as a sequence of bytes that includes the object’s data, as well as information about the object’s
type and the types of data stored in the object. After a serialized object has been written to a file,
it can be read from the file and deserialized—that is, the type information and bytes that
represent the object and its data can be used to recreate the object in memory.

Class BinaryFormatter (namespace System.Runtime.Serialization.Formatters.

Binary) enables entire objects to be written to or read from a stream. BinaryFormatter
method Serialize writes an object’s representation to a file. BinaryFormatter method
Deserialize reads this representation from a file and reconstructs the original object. Both
methods throw a SerializationException if an error occurs during serialization or dese-
rialization. Both methods require a Stream object (e.g., the FileStream) as a parameter so
that the BinaryFormatter can access the correct stream.

702 Chapter 17 Files and Streams

In Sections 17.9–17.10, we create and manipulate sequential-access files using object
serialization. Object serialization is performed with byte-based streams, so the sequential
files created and manipulated will be binary files. Binary files are not human readable. For
this reason, we write a separate app that reads and displays serialized objects.

17.9 Creating a Sequential-Access File Using Object
Serialization
We begin by creating and writing serialized objects to a sequential-access file. In this section,
we reuse much of the code from Section 17.5, so we focus only on the new features.

Defining the RecordSerializable Class
Let’s modify class Record (Fig. 17.8) so that objects of this class can be serialized. Class
RecordSerializable (Fig. 17.13; part of the BankLibrary project) is marked with the
[Serializable] attribute (line 7), which indicates to the CLR that RecordSerializable
objects can be serialized. Classes that represent serializable types must include this attribute
in their declarations or must implement interface ISerializable.

1 // Fig. 17.13: RecordSerializable.cs
2 // Serializable class that represents a data record.
3 using System;
4
5 namespace BankLibrary
6 {
7
8 public class RecordSerializable
9 {

10 // automatic Account property
11 public int Account { get; set; }
12
13 // automatic FirstName property
14 public string FirstName { get; set; }
15
16 // automatic LastName property
17 public string LastName { get; set; }
18
19 // automatic Balance property
20 public decimal Balance { get; set; }
21
22 // default constructor sets members to default values
23 public RecordSerializable()
24 : this(0, string.Empty, string.Empty, 0M)
25 {
26 } // end constructor
27
28 // overloaded constructor sets members to parameter values
29 public RecordSerializable(int accountValue, string firstNameValue,
30 string lastNameValue, decimal balanceValue)
31 {
32 Account = accountValue;

Fig. 17.13 | RecordSerializable class for serializable objects. (Part 1 of 2.)

[Serializable]

17.9 Creating a Sequential-Access File Using Object Serialization 703

In a class that’s marked with the [Serializable] attribute or that implements inter-
face ISerializable, you must ensure that every instance variable of the class is also seri-
alizable. All simple-type variables and strings are serializable. For variables of reference
types, you must check the class declaration (and possibly its base classes) to ensure that the
type is serializable. By default, array objects are serializable. However, if the array contains
references to other objects, those objects may or may not be serializable.

Using a Serialization Stream to Create an Output File
Next, we’ll create a sequential-access file with serialization (Fig. 17.14). To test this pro-
gram, we used the sample data from Fig. 17.10 to create a file named clients.ser. Since
the sample screen captures are the same as Fig. 17.9, they are not shown here. Line 15 cre-
ates a BinaryFormatter for writing serialized objects. Lines 53–54 open the FileStream to
which this program writes the serialized objects. The string argument that’s passed to the
FileStream’s constructor represents the name and path of the file to be opened. This spec-
ifies the file to which the serialized objects will be written.

This program assumes that data is input correctly and in the proper record-number
order. Event handler enterButton_Click (lines 72–127) performs the write operation.
Line 78 creates a RecordSerializable object, which is assigned values in lines 94–100.
Line 103 calls method Serialize to write the RecordSerializable object to the output
file. Method Serialize takes the FileStream object as the first argument so that the
BinaryFormatter can write its second argument to the correct file. Only one statement is
required to write the entire object. If a problem occurs during serialization, a Serializa-
tionException occurs—we catch this exception in lines 113–117.

In the sample execution for the program in Fig. 17.14, we entered information for
five accounts—the same information shown in Fig. 17.10. The program does not show
how the data records actually appear in the file. Remember that we are now using binary
files, which are not human readable. To verify that the file was created successfully, the next
section presents a program to read the file’s contents.

33 FirstName = firstNameValue;
34 LastName = lastNameValue;
35 Balance = balanceValue;
36 } // end constructor
37 } // end class RecordSerializable
38 } // end namespace BankLibrary

1 // Fig. 17.14: CreateFileForm.cs
2 // Creating a sequential-access file using serialization.
3 using System;
4 using System.Windows.Forms;
5 using System.IO;
6
7
8 using BankLibrary;
9

Fig. 17.14 | Sequential file created using serialization. (Part 1 of 4.)

Fig. 17.13 | RecordSerializable class for serializable objects. (Part 2 of 2.)

using System.Runtime.Serialization.Formatters.Binary;
using System.Runtime.Serialization;

704 Chapter 17 Files and Streams

10 namespace CreateFile
11 {
12 public partial class CreateFileForm : BankUIForm
13 {
14 // object for serializing RecordSerializables in binary format
15
16 private FileStream output; // stream for writing to a file
17
18 // parameterless constructor
19 public CreateFileForm()
20 {
21 InitializeComponent();
22 } // end constructor
23
24 // handler for saveButton_Click
25 private void saveButton_Click(object sender, EventArgs e)
26 {
27 // create and show dialog box enabling user to save file
28 DialogResult result;
29 string fileName; // name of file to save data
30
31 using (SaveFileDialog fileChooser = new SaveFileDialog())
32 {
33 fileChooser.CheckFileExists = false; // let user create file
34
35 // retrieve the result of the dialog box
36 result = fileChooser.ShowDialog();
37 fileName = fileChooser.FileName; // get specified file name
38 } // end using
39
40 // ensure that user clicked "OK"
41 if (result == DialogResult.OK)
42 {
43 // show error if user specified invalid file
44 if (fileName == string.Empty)
45 MessageBox.Show("Invalid File Name", "Error",
46 MessageBoxButtons.OK, MessageBoxIcon.Error);
47 else

48 {
49 // save file via FileStream if user specified valid file
50 try

51 {
52 // open file with write access
53 output = new FileStream(fileName,
54 FileMode.OpenOrCreate, FileAccess.Write);
55
56 // disable Save button and enable Enter button
57 saveButton.Enabled = false;
58 enterButton.Enabled = true;
59 } // end try
60 // handle exception if there’s a problem opening the file
61 catch (IOException)
62 {

Fig. 17.14 | Sequential file created using serialization. (Part 2 of 4.)

private BinaryFormatter formatter = new BinaryFormatter();

17.9 Creating a Sequential-Access File Using Object Serialization 705

63 // notify user if file could not be opened
64 MessageBox.Show("Error opening file", "Error",
65 MessageBoxButtons.OK, MessageBoxIcon.Error);
66 } // end catch
67 } // end else
68 } // end if
69 } // end method saveButton_Click
70
71 // handler for enterButton Click
72 private void enterButton_Click(object sender, EventArgs e)
73 {
74 // store TextBox values string array
75 string[] values = GetTextBoxValues();
76
77 // RecordSerializable containing TextBox values to serialize
78
79
80 // determine whether TextBox account field is empty
81 if (values[(int) TextBoxIndices.ACCOUNT] != string.Empty)
82 {
83 // store TextBox values in RecordSerializable and serialize it
84 try

85 {
86 // get account-number value from TextBox
87 int accountNumber = Int32.Parse(
88 values[(int) TextBoxIndices.ACCOUNT]);
89
90 // determine whether accountNumber is valid
91 if (accountNumber > 0)
92 {
93 // store TextBox fields in RecordSerializable
94 record.Account = accountNumber;
95 record.FirstName = values[(int)
96 TextBoxIndices.FIRST];
97 record.LastName = values[(int)
98 TextBoxIndices.LAST];
99 record.Balance = Decimal.Parse(values[
100 (int) TextBoxIndices.BALANCE]);
101
102 // write Record to FileStream (serialize object)
103
104 } // end if
105 else

106 {
107 // notify user if invalid account number
108 MessageBox.Show("Invalid Account Number", "Error",
109 MessageBoxButtons.OK, MessageBoxIcon.Error);
110 } // end else
111 } // end try
112 // notify user if error occurs in serialization
113 catch ()
114 {

Fig. 17.14 | Sequential file created using serialization. (Part 3 of 4.)

RecordSerializable record = new RecordSerializable();

formatter.Serialize(output, record);

SerializationException

706 Chapter 17 Files and Streams

17.10 Reading and Deserializing Data from a Binary File
The preceding section showed how to create a sequential-access file using object serializa-
tion. In this section, we discuss how to read serialized objects sequentially from a file.

Figure 17.15 reads and displays the contents of the clients.ser file created by the pro-
gram in Fig. 17.14. The sample screen captures are identical to those of Fig. 17.11, so they
are not shown here. Line 15 creates the BinaryFormatter that will be used to read objects.
The program opens the file for input by creating a FileStream object (lines 49–50). The
name of the file to open is specified as the first argument to the FileStream constructor.

The program reads objects from a file in event handler nextButton_Click (lines 59–
92). We use method Deserialize (of the BinaryFormatter created in line 15) to read the
data (lines 65–66). Note that we cast the result of Deserialize to type RecordSerializ-

115 MessageBox.Show("Error Writing to File", "Error",
116 MessageBoxButtons.OK, MessageBoxIcon.Error);
117 } // end catch
118 // notify user if error occurs regarding parameter format
119 catch (FormatException)
120 {
121 MessageBox.Show("Invalid Format", "Error",
122 MessageBoxButtons.OK, MessageBoxIcon.Error);
123 } // end catch
124 } // end if
125
126 ClearTextBoxes(); // clear TextBox values
127 } // end method enterButton_Click
128
129 // handler for exitButton Click
130 private void exitButton_Click(object sender, EventArgs e)
131 {
132 // determine whether file exists
133 if (output != null)
134 {
135 // close file
136 try

137 {
138 output.Close(); // close FileStream
139 } // end try
140 // notify user of error closing file
141 catch (IOException)
142 {
143 MessageBox.Show("Cannot close file", "Error",
144 MessageBoxButtons.OK, MessageBoxIcon.Error);
145 } // end catch
146 } // end if
147
148 Application.Exit();
149 } // end method exitButton_Click
150 } // end class CreateFileForm
151 } // end namespace CreateFile

Fig. 17.14 | Sequential file created using serialization. (Part 4 of 4.)

17.10 Reading and Deserializing Data from a Binary File 707

able (line 66)—this cast is necessary, because Deserialize returns a reference of type
object and we need to access properties that belong to class RecordSerializable. If an
error occurs during deserialization or the end of the file is reached, a SerializationEx-
ception is thrown, and the FileStream object is closed (line 82).

1 // Fig. 17.15: ReadSequentialAccessFileForm.cs
2 // Reading a sequential-access file using deserialization.
3 using System;
4 using System.Windows.Forms;
5 using System.IO;
6 using System.Runtime.Serialization.Formatters.Binary;
7 using System.Runtime.Serialization;
8 using BankLibrary;
9

10 namespace ReadSequentialAccessFile
11 {
12 public partial class ReadSequentialAccessFileForm : BankUIForm
13 {
14 // object for deserializing RecordSerializable in binary format
15
16 private FileStream input; // stream for reading from a file
17
18 // parameterless constructor
19 public ReadSequentialAccessFileForm()
20 {
21 InitializeComponent();
22 } // end constructor
23
24 // invoked when user clicks the Open button
25 private void openButton_Click(object sender, EventArgs e)
26 {
27 // create and show dialog box enabling user to open file
28 DialogResult result; // result of OpenFileDialog
29 string fileName; // name of file containing data
30
31 using (OpenFileDialog fileChooser = new OpenFileDialog())
32 {
33 result = fileChooser.ShowDialog();
34 fileName = fileChooser.FileName; // get specified name
35 } // end using
36
37 // ensure that user clicked "OK"
38 if (result == DialogResult.OK)
39 {
40 ClearTextBoxes();
41
42 // show error if user specified invalid file
43 if (fileName == string.Empty)
44 MessageBox.Show("Invalid File Name", "Error",
45 MessageBoxButtons.OK, MessageBoxIcon.Error);
46 else

47 {

Fig. 17.15 | Sequential file read using deserialization. (Part 1 of 2.)

private BinaryFormatter reader = new BinaryFormatter();

708 Chapter 17 Files and Streams

17.11 Wrap-Up
In this chapter, you learned how to use file processing to manipulate persistent data. You
learned that data is stored in computers as 0s and 1s, and that combinations of these values

48 // create FileStream to obtain read access to file
49 input = new FileStream(
50 fileName, FileMode.Open, FileAccess.Read);
51
52 openButton.Enabled = false; // disable Open File button
53 nextButton.Enabled = true; // enable Next Record button
54 } // end else
55 } // end if
56 } // end method openButton_Click
57
58 // invoked when user clicks Next button
59 private void nextButton_Click(object sender, EventArgs e)
60 {
61 // deserialize RecordSerializable and store data in TextBoxes
62 try

63 {
64 // get next RecordSerializable available in file
65
66
67
68 // store RecordSerializable values in temporary string array
69 string[] values = new string[] {
70 record.Account.ToString(),
71 record.FirstName.ToString(),
72 record.LastName.ToString(),
73 record.Balance.ToString()
74 };
75
76 // copy string-array values to TextBox values
77 SetTextBoxValues(values);
78 } // end try
79 // handle exception when there are no RecordSerializables in file
80 catch ()
81 {
82 input.Close(); // close FileStream
83 openButton.Enabled = true; // enable Open File button
84 nextButton.Enabled = false; // disable Next Record button
85
86 ClearTextBoxes();
87
88 // notify user if no RecordSerializables in file
89 MessageBox.Show("No more records in file", string.Empty,
90 MessageBoxButtons.OK, MessageBoxIcon.Information);
91 } // end catch
92 } // end method nextButton_Click
93 } // end class ReadSequentialAccessFileForm
94 } // end namespace ReadSequentialAccessFile

Fig. 17.15 | Sequential file read using deserialization. (Part 2 of 2.)

RecordSerializable record =
(RecordSerializable) reader.Deserialize(input);

SerializationException

17.11 Summary 709

are used to form bytes, fields, records and eventually files. We overviewed several file-pro-
cessing classes from the System.IO namespace. You used class File to manipulate files, and
classes Directory and DirectoryInfo to manipulate directories. Next, you learned how
to use sequential-access file processing to manipulate records in text files. We then dis-
cussed the differences between text-file processing and object serialization, and used seri-
alization to store entire objects in and retrieve entire objects from files.

In Chapter 18, we begin our four chapter discussion of algorithms and data structures.
Chapter 18 presents various searching algorithms for locating items in arrays and sorting
algorithms for arranging the elements in arrays into ascending order. We also use Big O
notation to represent the worst-case runtime for an algorithm.

Summary
Section 17.1 Introduction
• Files are used for long-term retention of large amounts of data.

• Data stored in files often is called persistent data.

• Computers store files on secondary storage devices.

Section 17.2 Data Hierarchy
• All data items that computers process are reduced to combinations of 0s and 1s.

• The smallest data item that computers support is called a bit and can assume the value 0 or 1.

• Digits, letters and special symbols are referred to as characters. The set of all characters used to
write programs and represent data items on a particular computer is that computer’s character set.

• Bytes are composed of eight bits

• C# uses the Unicode character set.

• A field is a group of characters that conveys meaning. Typically, a record is composed of several
related fields.

• A file is a group of related records.

• At least one field in each record is chosen as a record key, which identifies a record as belonging
to a particular person or entity and distinguishes that record from all others.

• The most common type of file organization is a sequential file, in which records typically are
stored in order by record-key field.

Section 17.3 Files and Streams
• C# views each file as a sequential stream of bytes.

• Files are opened by creating an object that has a stream associated with it.

• Streams provide communication channels between files and programs.

• To perform file processing in C#, the System.IO namespace must be imported.

• Class Stream provides functionality for representing streams as bytes. This class is abstract, so
objects of this class cannot be instantiated.

• Classes FileStream, MemoryStream and BufferedStream inherit from class Stream.

• Class FileStream can be used to read data to and write data from sequential-access files.

• Class MemoryStream enables the transfer of data directly to and from memory—this is much faster
than other types of data transfer (e.g., to and from disk).

710 Chapter 17 Files and Streams

• Class BufferedStream uses buffering to transfer data to or from a stream. Buffering enhances I/O
performance by directing each output operation to a buffer that’s large enough to hold the data
from many outputs. Then the actual transfer to the output device is performed in one large physical
output operation each time the buffer fills. Buffering can also be used to speed input operations.

Section 17.4 Classes File and Directory

• Information on computers is stored in files, which are organized in directories. Classes File and
Directory enable programs to manipulate files and directories on disk.

• Class File provides static methods for determining information about files and can be used to
open files for reading or writing.

• Class Directory provides static methods for manipulating directories.

• The DirectoryInfo object returned by Directory method CreateDirectory contains informa-
tion about a directory. Much of the information contained in class DirectoryInfo also can be
accessed via the methods of class Directory.

• File method Exists determines whether a string is the name and path of an existing file.

• A StreamReader reads text from a file. Its constructor takes a string containing the name of the
file to open and its path. StreamReader method ReadToEnd reads the entire contents of a file.

• Directory method Exists determines whether a string is the name of an existing directory.

• Directory method GetDirectories obtains a string array containing the names of subdirecto-
ries in the specified directory.

• Directorymethod GetFiles returns a string array containing file names in the specified directory.

• Path method GetExtension obtains the extension for the specified file name.

• A Dictionary (namespace System.Collections.Generic) is a collection of key–value pairs, in
which each key has a corresponding value. Class Dictionary is a generic class like class List.

• Dictionary method ContainsKey determines whether the specified key exists in the Dictionary.

• Dictionary method Add inserts a key–value pair into a Dictionary.

• File method Delete removes the specified file from disk.

• Dictionary property Keys returns all the keys in a Dictionary.

• Dictionary method Clear deletes the contents of a Dictionary.

Section 17.5 Creating a Sequential-Access Text File
• C# imposes no structure on files. You must structure files to meet your app’s requirements.

• A SaveFileDialog is a modal dialog—the user must interact with the dialog to dismiss it.

• A StreamWriter’s constructor receives a FileStream that specifies the file in which to write text.

Section 17.6 Reading Data from a Sequential-Access Text File
• Data is stored in files so that it can be retrieved for processing when it’s needed.

• To retrieve data sequentially from a file, programs normally start from the beginning of the file,
reading consecutively until the desired data is found. It sometimes is necessary to process a file
sequentially several times during the execution of a program.

• An OpenFileDialog allows a user to select files to open. Method ShowDialog displays the dialog.

Section 17.7 Case Study: Credit Inquiry Program
• Stream method Seek moves the file-position pointer in a file. You specify the number of bytes it

should be offset from the file’s beginning, end or current position. The part of the file you want
to be offset from is chosen using constants from the SeekOrigin enumeration.

Terminology 711

Section 17.8 Serialization
• A serialized object is represented as a sequence of bytes that includes the object’s data, as well as

information about the object’s type and the types of data stored in the object.

• After a serialized object has been written to a file, it can be read from the file and deserialized
(recreated in memory).

• Class BinaryFormatter (namespace System.Runtime.Serialization.Formatters.Binary), which
supports the ISerializable interface, enables entire objects to be read from or written to a stream.

• BinaryFormatter methods Serialize and Deserialize write objects to and read objects from
streams, respectively.

• Both method Serialize and method Deserialize require a Stream object (e.g., the FileStream)
as a parameter so that the BinaryFormatter can access the correct file.

Section 17.9 Creating a Sequential-Access File Using Object Serialization
• Classes that are marked with the Serializable attribute or implement the ISerializable in-

terface indicate to the CLR that objects of the class can be serialized. Objects that we wish to
write to or read from a stream must include this attribute or implement the ISerializable
interface in their class definitions.

• In a serializable class, you must ensure that every instance variable of the class is also serializable.
By default, all simple-type variables are serializable. For reference-type variables, you must check
the declaration of the class (and possibly its superclasses) to ensure that the type is serializable.

Section 17.10 Reading and Deserializing Data from a Binary File
• Method Deserialize (of class BinaryFormatter) reads a serialized object from a stream and re-

forms the object in memory.

• Method Deserialize returns a reference of type object which must be cast to the appropriate
type to manipulate the object.

• If an error occurs during deserialization, a SerializationException is thrown.

Terminology
Add method of class Dictionary
binary digit (bit)
BinaryFormatter class
bit manipulation
buffer
BufferedStream class
buffering
Close method of class StreamWriter
closing a file
ContainsKey method of class Dictionary
Copy method of class File
Create method of class File
CreateDirectory method of class Directory
CreateText method of class File
data hierarchy
database
database management system (DBMS)
Delete method of class Directory

Delete method of class File
Deserialize method of class BinaryFormatter
deserialized object
Dictionary class
Directory class
DirectoryInfo class
end-of-file marker
Error property of class Console
Exists method of class Directory
field
file
File class
file-processing programs
FileAccess enumeration
FileNotFoundException class
file-position pointer
FileStream class
fixed-length records

712 Chapter 17 Files and Streams

GetCreationTime method of class Directory
GetCreationTime method of class File
GetDirectories method of class Directory
GetExtension method of class Path
GetFiles method of class Directory
GetLastAccessTime method of class Directory

GetLastAccessTime method of class File
GetLastWriteTime method of class Directory

GetLastWriteTime method of class File
In property of class Console
IOException

ISerializable interface
logical output operator
MemoryStream class
modal dialog
Move method of class Directory
Move method of class File
object serialization
Open method of class File
OpenFileDialog class
OpenRead method of class File
OpenText method of class File
OpenWrite method of class File
Out property of class Console
Path class
persistent data
physical output operation
Read method of class Console

ReadLine method of class Console
ReadLine method of class StreamReader
record
record key
SaveFileDialog class
Seek method of class Stream
SeekOrigin enumeration
sequential-access file
Serializable attribute
SerializationException

Serialize method of class BinaryFormatter

ShowDialog method of class SaveFileDialog

standard error stream object
standard input stream object
standard output stream object
Stream class
stream of bytes
StreamReader class
StreamWriter class
System.IO namespace
System.Runtime.Serialization.

Formatters.Binary namespace
TextReader class
TextWriter class
transaction-processing system
Write method of class StreamWriter
WriteLine method of class StreamWriter

Self-Review Exercises
17.1 State whether each of the following is true or false. If false, explain why.

a) You cannot instantiate objects of type Stream.
b) Typically, a sequential file stores records in order by the record-key field.
c) Class StreamReader inherits from class Stream.
d) Any class can be serialized to a file.
e) Method Seek of class FileStream always seeks relative to the beginning of a file.
f) Classes StreamReader and StreamWriter are used with sequential-access files.

17.2 Fill in the blanks in each of the following statements:
a) Ultimately, all data items processed by a computer are reduced to combinations of

and .
b) The smallest data item a computer can process is called a(n) .
c) A(n) is a group of related records.
d) Digits, letters and special symbols are collectively referred to as .
e) The namespace contains the BinaryFormatter class.
f) StreamReader method reads a line of text from a file.
g) StreamWriter method writes a line of text to a file.
h) Method Serialize of class BinaryFormatter takes a(n) and a(n) as

arguments.
i) The namespace contains most of C#’s file-processing classes.

Answers to Self-Review Exercises 713

Answers to Self-Review Exercises
17.1 a) True. b) True. c) False. Class StreamReader inherits from class TextReader. d) False.
Only classes that implement interface ISerializable or are declared with the Serializable attri-
bute can be serialized. e) False. It seeks relative to the SeekOrigin enumeration member that’s passed
as one of the arguments. f) True.

17.2 a) 0s, 1s. b) bit. c) file. d) characters. e) System.Runtime.Serialization.Formatters.Binary.
f) ReadLine. g) WriteLine. h) Stream, object. i) System.IO.

Exercises
17.3 (File of Student Grades) Create a program that stores student grades in a text file. The file
should contain the name, ID number, class taken and grade of every student. Allow the user to load
a grade file and display its contents in a read-only TextBox. The entries should be displayed in the
following format:

LastName, FirstName: ID# Class Grade

We list some sample data below:

Jones, Bob: 1 "Introduction to Computer Science" "A-"
Johnson, Sarah: 2 "Data Structures" "B+"
Smith, Sam: 3 "Data Structures" "C"

17.4 (Serializing and Deserializing) Modify the previous program to use objects of a class that
can be serialized to and deserialized from a file.

17.5 (Extending StreamReader and StreamWriter) Extend classes StreamReader and Stream-

Writer. Make the class that derives from StreamReader have methods ReadInteger, ReadBoolean
and ReadString. Make the class that derives from StreamWriter have methods WriteInteger,
WriteBoolean and WriteString. Think about how to design the writing methods so that the reading
methods will be able to read what was written. Design WriteInteger and WriteBoolean to write
strings of uniform size so that ReadInteger and ReadBoolean can read those values accurately.
Make sure ReadString and WriteString use the same character(s) to separate strings.

17.6 (Reading and Writing Account Information) Create a program that combines the ideas of
Fig. 17.9 and Fig. 17.11 to allow a user to write records to and read records from a file. Add an extra
field of type bool to the record to indicate whether the account has overdraft protection.

17.7 (Telephone-Number Word Generator) Standard telephone keypads contain the digits zero
through nine. The numbers two through nine each have three letters associated with them
(Fig. 17.16). Many people find it difficult to memorize phone numbers, so they use the correspon-
dence between digits and letters to develop seven-letter words that correspond to their phone num-
bers. For example, a person whose telephone number is 686-2377 might use the correspondence
indicated in Fig. 17.16 to develop the seven-letter word “NUMBERS.” Every seven-letter word cor-
responds to exactly one seven-digit telephone number. A restaurant wishing to increase its takeout
business could surely do so with the number 825-3688 (i.e., “TAKEOUT”).

Every seven-letter phone number corresponds to many different seven-letter words. Unfortu-
nately, most of these words represent unrecognizable juxtapositions of letters. It’s possible, however,
that the owner of a barbershop would be pleased to know that the shop’s telephone number, 424-
7288, corresponds to “HAIRCUT.” The owner of a liquor store would no doubt be delighted to
find that the store’s number, 233-7226, corresponds to “BEERCAN.” A veterinarian with the
phone number 738-2273 would be pleased to know that the number corresponds to the letters
“PETCARE.” An automotive dealership would be pleased to know that its phone number, 639-
2277, corresponds to “NEWCARS.”

714 Chapter 17 Files and Streams

Write a GUI program that, given a seven-digit number, uses a StreamWriter object to write to
a file every possible seven-letter word combination corresponding to that number. There are 2,187
(37) such combinations. Avoid phone numbers with the digits 0 and 1.

17.8 (Student Poll) Figure 8.8 contains an array of survey responses that’s hard-coded into the
program. Suppose we wish to process survey results that are stored in a file. First, create a Windows
Form that prompts the user for survey responses and outputs each response to a file. Use Stream-
Writer to create a file called numbers.txt. Each integer should be written using method Write. Then
add a TextBox that will output the frequency of survey responses. You should modify the code in
Fig. 8.8 to read the survey responses from numbers.txt. The responses should be read from the file
by using a StreamReader. Class string’s Split method should be used to split the input string into
separate responses, then each response should be converted to an integer. The program should con-
tinue to read responses until it reaches the end of file. The results should be output to the TextBox.

Making a Difference Exercise
17.9 (Phishing Scanner) Phishing is a form of identity theft in which, in an e-mail, a sender pos-
ing as a trustworthy source attempts to acquire private information, such as your user names, pass-
words, credit-card numbers and social security number. Phishing e-mails claiming to be from
popular banks, credit-card companies, auction sites, social networks and online payment services
may look quite legitimate. These fraudulent messages often provide links to spoofed (fake) websites
where you’re asked to enter sensitive information.

Visit sites like Security Extra (www.securityextra.com/), www.snopes.com and other websites
to find lists of the top phishing scams. Also check out the Anti-Phishing Working Group
(www.antiphishing.org/), and the FBI’s Cyber Investigations website (www.fbi.gov/cyberinvest/
cyberhome.htm) to find information about the latest scams and how to protect yourself.

Create a list of 30 words, phrases and company names commonly found in phishing messages.
Assign a point value to each based on your estimate of its likeliness to be in a phishing message
(e.g., one point if it’s somewhat likely, two points if moderately likely, or three points if highly
likely). Write a program that scans a file of text for these terms and phrases. For each occurrence of
a keyword or phrase within the text file, add the assigned point value to the total points for that
word or phrase. For each keyword or phrase found, output one line with the word or phrase, the
number of occurrences and the point total. Then show the point total for the entire message. Does
your program assign a high point total to some actual phishing e-mails you’ve received? Does it
assign a high point total to some legitimate e-mails you’ve received? [Note: If you search online for
“sample phishing emails,” you’ll find many examples of text that you can test with this program.]

Digit Letter Digit Letter

2 A B C 6 M N O

3 D E F 7 P R S

4 G H I 8 T U V

5 J K L 9 W X Y Z

Fig. 17.16 | Letters that correspond to the
numbers on a telephone keypad .

www.securityextra.com/
www.snopes.com
www.fbi.gov/cyberinvest/cyberhome.htm
www.fbi.gov/cyberinvest/cyberhome.htm
www.antiphishing.org/

18Searching and Sorting

With sobs and tears
he sorted out
Those of the largest size …
—Lewis Carroll

Attempt the end, and never
stand to doubt;
Nothing’s so hard, but search
will find it out.
—Robert Herrick

It is an immutable law in
business that words are words,
explanations are explanations,
promises are promises — but
only performance is reality.
—Harold S. Green

O b j e c t i v e s
In this chapter you’ll:

� Search for a given value in an
array using the linear search
and binary search algorithms.

� Sort arrays using the
selection and insertion sort
algorithms.

� Sort arrays using the recursive
merge sort algorithm.

� Determine the efficiency of
searching and sorting
algorithms in terms of Big O.

716 Chapter 18 Searching and Sorting

18.1 Introduction
Searching data involves determining whether a value (referred to as the search key) is pres-
ent in the data and, if so, finding the value’s location. Two popular search algorithms are
the simple linear search and the faster, but more complex, binary search. Sorting places data
in order, based on one or more sort keys. A list of names could be sorted alphabetically,
bank accounts could be sorted by account number, employee payroll records could be
sorted by social security number and so on. This chapter introduces two simple sorting
algorithms, the selection sort and the insertion sort, along with the more efficient, but more
complex, merge sort. Figure 18.1 summarizes the searching and sorting algorithms dis-
cussed in this book.

18.1 Introduction
18.2 Searching Algorithms

18.2.1 Linear Search
18.2.2 Binary Search

18.3 Sorting Algorithms
18.3.1 Selection Sort
18.3.2 Insertion Sort
18.3.3 Merge Sort

18.4 Summary of the Efficiency of
Searching and Sorting Algorithms

18.5 Wrap-Up

Summary | Terminology | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

Chapter Algorithm Location

Searching Algorithms:

18 Linear Search Section 18.2.1

Binary Search Section 18.2.2

Recursive Linear Search Exercise 18.8

Recursive Binary Search Exercise 18.9

21 BinarySearch method of class Array Fig. 21.3

Contains method of classes List<T> and Stack<T> Fig. 21.4

ContainsKey method of class Dictionary<K, T> Fig. 21.7

Sorting Algorithms:

18 Selection Sort Section 18.3.1

Insertion Sort Section 18.3.2

Recursive Merge Sort Section 18.3.3

Bubble Sort Exercises 18.5–18.6

Bucket Sort Exercise 18.7

Recursive Quicksort Exercise 18.10

18, 21 Sort method of classes Array and List<T> Figs. 18.4, 21.3–21.4

Fig. 18.1 | Searching and sorting capabilities in this text.

18.2 Searching Algorithms 717

18.2 Searching Algorithms
Looking up a phone number, accessing a website and checking the definition of a word in
a dictionary all involve searching large amounts of data. The next two sections discuss two
common search algorithms—one that is easy to program yet relatively inefficient and one
that is relatively efficient but more complex to program.

18.2.1 Linear Search
The linear search algorithm searches each element in an array sequentially. If the search
key does not match an element in the array, the algorithm tests each element and, when
the end of the array is reached, informs the user that the search key is not present. If the
search key is in the array, the algorithm tests each element until it finds one that matches
the search key and returns the index of that element.

As an example, consider an array containing the following values

and a method that is searching for 51. Using the linear search algorithm, the method first
checks whether 34 matches the search key. It does not, so the algorithm checks whether
56 matches the search key. The method continues moving through the array sequentially,
testing 2, then 10, then 77. When the method tests 51, which matches the search key, the
method returns the index 5, which is the location of 51 in the array. If, after checking every
array element, the method determines that the search key does not match any element in
the array, the method returns -1. If there are duplicate values in the array, linear search
returns the index of the first element in the array that matches the search key.

Figure 18.2 declares class LinearArray. This class has a private instance variable
data (an array of ints), and a static Random object named generator to fill the array with
randomly generated ints. When an object of class LinearArray is instantiated, the con-
structor (lines 12–19) creates and initializes the array data with random ints in the range
10–99.

34 56 2 10 77 51 93 30 5 52

1 // Fig. 18.2: LinearArray.cs
2 // Class that contains an array of random integers and a method
3 // that searches that array sequentially.
4 using System;
5
6 public class LinearArray
7 {
8 private int[] data; // array of values
9 private static Random generator = new Random();

10
11 // create array of given size and fill with random integers
12 public LinearArray(int size)
13 {
14 data = new int[size]; // create space for array
15

Fig. 18.2 | Class that contains an array of random integers and a method that searches that
array sequentially. (Part 1 of 2.)

718 Chapter 18 Searching and Sorting

Lines 22–30 perform the linear search. The search key is passed to parameter
searchKey. Lines 25–27 loop through the elements in the array. Line 26 compares each
element in the array with searchKey. If the values are equal, line 27 returns the index of
the element. If the loop ends without finding the value, line 29 returns -1. Lines 33–43
declare method ToString, which returns a string representation of the array.

Figure 18.3 creates LinearArray object searchArray containing an array of 10 ints
(line 13) and allows the user to search the array for specific elements. Lines 17–18 prompt
the user for the search key and store it in searchInt. Lines 21–37 loop until the user enters
the sentinel value -1. The array holds ints from 10–99 (line 18 of Fig. 18.2). Line 24 calls
the LinearSearch method to determine whether searchInt is in the array. If searchInt
is found, LinearSearch returns the position of the element, which the method outputs in
lines 27–29. If searchInt is not in the array, LinearSearch returns -1, and the method
notifies the user (lines 31–32). Lines 35–36 retrieve the next integer from the user.

Efficiency of Linear Search
Searching algorithms all accomplish the same goal—finding an element that matches a
given search key, if such an element exists. Many things, however, differentiate search
algorithms from one another. The major difference is the amount of effort required to

16 // fill array with random ints in range 10-99
17 for (int i = 0; i < size; ++i)
18 data[i] = generator.Next(10, 100);
19 } // end LinearArray constructor
20
21
22
23
24
25
26
27
28
29
30
31
32 // method to output values in array
33 public override string ToString()
34 {
35 string temporary = string.Empty;
36
37 // iterate through array
38 foreach (int element in data)
39 temporary += element + " ";
40
41 temporary += "\n"; // add newline character
42 return temporary;
43 } // end method ToString
44 } // end class LinearArray

Fig. 18.2 | Class that contains an array of random integers and a method that searches that
array sequentially. (Part 2 of 2.)

// perform a linear search on the data
public int LinearSearch(int searchKey)
{

// loop through array sequentially
for (int index = 0; index < data.Length; ++index)

if (data[index] == searchKey)
return index; // return index of integer

return -1; // integer was not found
} // end method LinearSearch

18.2 Searching Algorithms 719

1 // Fig. 18.3: LinearSearchTest.cs
2 // Sequentially search an array for an item.
3 using System;
4
5 public class LinearSearchTest
6 {
7 public static void Main(string[] args)
8 {
9 int searchInt; // search key

10 int position; // location of search key in array
11
12 // create array and output it
13 LinearArray searchArray = new LinearArray(10);
14 Console.WriteLine(searchArray); // display array
15
16 // input first int from user
17 Console.Write("Please enter an integer value (-1 to quit): ");
18 searchInt = Convert.ToInt32(Console.ReadLine());
19
20 // repeatedly input an integer; -1 terminates the app
21 while (searchInt != -1)
22 {
23 // perform linear search
24 position = searchArray.LinearSearch(searchInt);
25
26 if (position != -1) // integer was found
27 Console.WriteLine(
28 "The integer {0} was found in position {1}.\n",
29 searchInt, position);
30 else // integer was not found
31 Console.WriteLine("The integer {0} was not found.\n",
32 searchInt);
33
34 // input next int from user
35 Console.Write("Please enter an integer value (-1 to quit): ");
36 searchInt = Convert.ToInt32(Console.ReadLine());
37 } // end while
38 } // end Main
39 } // end class LinearSearchTest

64 90 84 62 28 68 55 27 78 73

Please enter an integer value (-1 to quit): 78
The integer 78 was found in position 8.

Please enter an integer value (-1 to quit): 64
The integer 64 was found in position 0.

Please enter an integer value (-1 to quit): 65
The integer 65 was not found.

Please enter an integer value (-1 to quit): -1

Fig. 18.3 | Sequentially search an array for an item.

720 Chapter 18 Searching and Sorting

complete the search. One way to describe this effort is with Big O notation, which is a
measure of the worst-case runtime for an algorithm—that is, how hard an algorithm may
have to work to solve a problem. For searching and sorting algorithms, this is particularly
dependent on how many elements there are in the data set and the algorithm used.

Constant Runtime
Suppose an algorithm is designed to test whether the first element of an array is equal to
the second element. If the array has 10 elements, this algorithm requires one comparison.
If the array has 1,000 elements, this algorithm still requires one comparison. In fact, this
algorithm is completely independent of the number of elements in the array, and is thus
said to have a constant runtime, which is represented in Big O notation as O(1). An algo-
rithm that is O(1) does not necessarily require only one comparison. O(1) just means that
the number of comparisons is constant—it does not grow as the size of the array increases. An
algorithm that tests whether the first element of an array is equal to any of the next three
elements is still O(1), even though it requires three comparisons.

Linear Runtime
An algorithm that tests whether the first element of an array is equal to any of the other
elements of the array will require at most n – 1 comparisons, where n is the number of
elements in the array. If the array has 10 elements, this algorithm requires up to nine com-
parisons. If the array has 1,000 elements, this algorithm requires up to 999 comparisons.
As n grows larger, the n part of the expression dominates, and subtracting one becomes in-
consequential. Big O is designed to highlight these dominant terms and ignore terms that
become unimportant as n grows. For this reason, an algorithm that requires a total of n –
1 comparisons (such as the one we described earlier) is said to be O(n). An O(n) algorithm

is referred to as having a linear runtime. O(n) is often pronounced “on the order of n” or
more simply “order n.”

Quadratic Runtime
Now suppose you have an algorithm that tests whether any element of an array is dupli-
cated elsewhere in the array. The first element must be compared with every other element
in the array. The second element must be compared with every other element except the
first (it was already compared to the first). The third element must be compared with every
other element except the first two. In the end, this algorithm will end up making (n – 1)
+ (n – 2) + … + 2 + 1 or n2/2 – n/2 comparisons. As n increases, the n2 term dominates
and the n term becomes inconsequential. Again, Big O notation highlights the n2 term,
leaving n2/2. But as we’ll soon see, constant factors are omitted in Big O notation.

Big O is concerned with how an algorithm’s runtime grows in relation to the number
of items processed. Suppose an algorithm requires n2 comparisons. With four elements,
the algorithm will require 16 comparisons; with eight elements, the algorithm will require
64 comparisons. With this algorithm, doubling the number of elements quadruples the
number of comparisons. Consider a similar algorithm requiring n2/2 comparisons. With
four elements, the algorithm will require eight comparisons; with eight elements, 32 com-
parisons. Again, doubling the number of elements quadruples the number of comparisons.
Both of these algorithms grow as the square of n, so Big O ignores the constant, and both
algorithms are considered to be O(n2), referred to as quadratic runtime and pronounced
“on the order of n-squared” or more simply “order n-squared.”

18.2 Searching Algorithms 721

When n is small, O(n2) algorithms (running on today’s billions-of-operations-per-
second personal computers) will not noticeably affect performance. But as n grows, you’ll
start to notice the performance degradation. An O(n2) algorithm running on a million-ele-
ment array would require a trillion “operations” (where each could actually require several
machine instructions to execute). This could require many minutes to execute. A billion-
element array would require a quintillion operations, a number so large that the algorithm
could take decades! O(n2) algorithms are easy to write, as you’ll see shortly. You’ll also see
algorithms with more favorable Big O measures. These efficient algorithms often take more
cleverness and effort to create, but their superior performance can be well worth the extra
effort, especially as n gets large.

Linear Search Runtime
The linear search algorithm runs in O(n) time. The worst case in this algorithm is that ev-
ery element must be checked to determine whether the search item exists in the array. If
the size of the array is doubled, the number of comparisons that the algorithm must per-
form is also doubled. Linear search can provide outstanding performance if the element
matching the search key happens to be at or near the front of the array. But we seek algo-
rithms that perform well, on average, across all searches, including those where the ele-
ment matching the search key is near the end of the array.

Linear search is the easiest search algorithm to program, but it can be slow compared
to other search algorithms. If an app needs to perform many searches on large arrays, it
may be better to implement a different, more efficient algorithm, such as the binary search,
which we present in the next section.

18.2.2 Binary Search
The binary search algorithm is more efficient than the linear search algorithm, but it re-
quires that the array first be sorted. The first iteration of this algorithm tests the middle
element in the array. If this matches the search key, the algorithm ends. Assuming the array
is sorted in ascending order, if the search key is less than the middle element, the search
key cannot match any element in the second half of the array and the algorithm continues
with only the first half of the array (i.e., the first element up to, but not including, the mid-
dle element). If the search key is greater than the middle element, the search key cannot
match any element in the first half of the array, and the algorithm continues with only the
second half of the array (i.e., the element after the middle element through the last ele-
ment). Each iteration tests the middle value of the remaining portion of the array, called
a subarray. A subarray can have no elements, or it can encompass the entire array. If the
search key does not match the element, the algorithm eliminates half of the remaining el-
ements. The algorithm ends by either finding an element that matches the search key or
reducing the subarray to zero size.

As an example, consider the sorted 15-element array

Performance Tip 18.1
Sometimes the simplest algorithms perform poorly. Their virtue is that they’re easy to pro-
gram, test and debug. Sometimes more complex algorithms are required to realize maxi-
mum performance.

2 3 5 10 27 30 34 51 56 65 77 81 82 93 99

722 Chapter 18 Searching and Sorting

and a search key of 65. An app implementing the binary search algorithm would first check
whether 51 is the search key (because 51 is the middle element of the array). The search key
(65) is larger than 51, so 51 is “discarded” (i.e., eliminated from consideration) along with
the first half of the array (all elements smaller than 51.) Next, the algorithm checks whether
81 (the middle element of the remainder of the array) matches the search key. The search
key (65) is smaller than 81, so 81 is discarded along with the elements larger than 81. After
just two tests, the algorithm has narrowed the number of values to check to three (56, 65 and
77). The algorithm then checks 65 (which indeed matches the search key) and returns the
index of the array element containing 65. This algorithm required just three comparisons to
determine whether the search key matched an element of the array. Using a linear search al-
gorithm would have required 10 comparisons. [Note: In this example, we have chosen to use
an array with 15 elements so that there will always be an obvious middle element in the array.
With an even number of elements, the middle of the array lies between two elements. We
implement the algorithm to choose the higher of the two elements.]

Implementing Binary Search
Figure 18.4 declares class BinaryArray. This class is similar to LinearArray—it has a pri-
vate instance variable data (an array of ints), a static Random object named generator to
fill the array with randomly generated ints, a constructor, a search method (BinarySearch),
a RemainingElements method (which creates a string containing the elements not yet
searched) and a ToStringmethod. Lines 12–21 declare the constructor. After initializing the
array with random ints from 10–99 (lines 17–18), line 20 calls method Array.Sort on the
array data. Method Sort is a static method of class Array that sorts the elements in an ar-
ray in ascending order. Recall that the binary search algorithm works only on sorted arrays.

1 // Fig. 18.4: BinaryArray.cs
2 // Class that contains an array of random integers and a method
3 // that uses binary search to find an integer.
4 using System;
5
6 public class BinaryArray
7 {
8 private int[] data; // array of values
9 private static Random generator = new Random();

10
11 // create array of given size and fill with random integers
12 public BinaryArray(int size)
13 {
14 data = new int[size]; // create space for array
15
16 // fill array with random ints in range 10-99
17 for (int i = 0; i < size; ++i)
18 data[i] = generator.Next(10, 100);
19
20
21 } // end BinaryArray constructor
22

Fig. 18.4 | Class that contains an array of random integers and a method that uses binary search
to find an integer. (Part 1 of 3.)

Array.Sort(data);

18.2 Searching Algorithms 723

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58 // method to output certain values in array
59 public string RemainingElements(int low, int high)
60 {
61 string temporary = string.Empty;
62
63 // output spaces for alignment
64 for (int i = 0; i < low; ++i)
65 temporary += " ";
66
67 // output elements left in array
68 for (int i = low; i <= high; ++i)
69 temporary += data[i] + " ";
70
71 temporary += "\n";
72 return temporary;
73 } // end method RemainingElements

Fig. 18.4 | Class that contains an array of random integers and a method that uses binary search
to find an integer. (Part 2 of 3.)

// perform a binary search on the data
public int BinarySearch(int searchElement)
{

int low = 0; // low end of the search area
int high = data.Length - 1; // high end of the search area
int middle = (low + high + 1) / 2; // middle element
int location = -1; // return value; -1 if not found

do // loop to search for element
{

// display remaining elements of array
Console.Write(RemainingElements(low, high));

// output spaces for alignment
for (int i = 0; i < middle; ++i)

Console.Write(" ");

Console.WriteLine(" * "); // indicate current middle

// if the element is found at the middle
if (searchElement == data[middle])

location = middle; // location is the current middle

// middle element is too high
else if (searchElement < data[middle])

high = middle - 1; // eliminate the higher half
else // middle element is too low

low = middle + 1; // eliminate the lower half

middle = (low + high + 1) / 2; // recalculate the middle
} while ((low <= high) && (location == -1));

return location; // return location of search key
} // end method BinarySearch

724 Chapter 18 Searching and Sorting

Lines 24–56 declare method BinarySearch. The search key is passed into parameter
searchElement (line 24). Lines 26–28 calculate the low end index, high end index and
middle index of the portion of the array that the app is currently searching. At the begin-
ning of the method, the low end is 0, the high end is the length of the array minus 1 and
the middle is the average of these two values. Line 29 initializes the location of the ele-
ment to -1—the value that will be returned if the element is not found. Lines 31–53 loop
until low is greater than high (this occurs when the element is not found) or location
does not equal -1 (indicating that the search key was found). Line 43 tests whether the
value in the middle element is equal to searchElement. If this is true, line 44 assigns
middle to location. Then the loop terminates, and location is returned to the caller.
Each iteration of the loop tests a single value (line 43) and eliminates half of the remaining
values in the array (line 48 or 50).

Lines 22–40 of Fig. 18.5 loop until the user enters -1. For each other number the user
enters, the app performs a binary search to determine whether the number matches an ele-
ment in the array. The first line of output from this app is the array of ints, in increasing
order. When the user instructs the app to search for 72, the app first tests the middle ele-
ment (indicated by * in the sample output of Fig. 18.5), which is 52. The search key is
greater than 52, so the app eliminates from consideration the first half of the array and tests
the middle element from the second half. The search key is smaller than 82, so the app
eliminates from consideration the second half of the subarray, leaving only three elements.
Finally, the app checks 72 (which matches the search key) and returns the index 9.

74
75 // method to output values in array
76 public override string ToString()
77 {
78
79 } // end method ToString
80 } // end class BinaryArray

1 // Fig. 18.5: BinarySearchTest.cs
2 // Using binary search to locate an item in an array.
3 using System;
4
5 public class BinarySearchTest
6 {
7 public static void Main(string[] args)
8 {
9 int searchInt; // search key

10 int position; // location of search key in array
11
12 // create array and output it
13

Fig. 18.5 | Using binary search to locate an item in an array. (Part 1 of 2.)

Fig. 18.4 | Class that contains an array of random integers and a method that uses binary search
to find an integer. (Part 3 of 3.)

return RemainingElements(0, data.Length - 1);

BinaryArray searchArray = new BinaryArray(15);

18.2 Searching Algorithms 725

14 Console.WriteLine(searchArray);
15
16 // prompt and input first int from user
17 Console.Write("Please enter an integer value (-1 to quit): ");
18 searchInt = Convert.ToInt32(Console.ReadLine());
19 Console.WriteLine();
20
21 // repeatedly input an integer; -1 terminates the app
22 while (searchInt != -1)
23 {
24 // use binary search to try to find integer
25
26
27 // return value of -1 indicates integer was not found
28 if (position == -1)
29 Console.WriteLine("The integer {0} was not found.\n",
30 searchInt);
31 else

32 Console.WriteLine(
33 "The integer {0} was found in position {1}.\n",
34 searchInt, position);
35
36 // prompt and input next int from user
37 Console.Write("Please enter an integer value (-1 to quit): ");
38 searchInt = Convert.ToInt32(Console.ReadLine());
39 Console.WriteLine();
40 } // end while
41 } // end Main
42 } // end class BinarySearchTest

12 17 22 25 30 39 40 52 56 72 76 82 84 91 93

Please enter an integer value (-1 to quit): 72

12 17 22 25 30 39 40 52 56 72 76 82 84 91 93
*
56 72 76 82 84 91 93

*
56 72 76

*
The integer 72 was found in position 9.

Please enter an integer value (-1 to quit): 13

12 17 22 25 30 39 40 52 56 72 76 82 84 91 93
*

12 17 22 25 30 39 40
*

12 17 22
*

12
*
The integer 13 was not found.

Please enter an integer value (-1 to quit): -1

Fig. 18.5 | Using binary search to locate an item in an array. (Part 2 of 2.)

position = searchArray.BinarySearch(searchInt);

726 Chapter 18 Searching and Sorting

Efficiency of Binary Search
In the worst-case scenario, searching a sorted array of 1,023 elements will take only 10 com-
parisons when using a binary search. Repeatedly dividing 1,023 by 2 (because after each
comparison, we are able to eliminate half of the array) and rounding down (because we also
remove the middle element) yields the values 511, 255, 127, 63, 31, 15, 7, 3, 1 and 0. The
number 1023 (210 – 1) is divided by 2 only 10 times to get the value 0, which indicates that
there are no more elements to test. Dividing by 2 is equivalent to one comparison in the bi-
nary search algorithm. Thus, an array of 1,048,575 (220 – 1) elements takes a maximum of
20 comparisons to find the key, and an array of one billion elements (which is less than 230

– 1) takes a maximum of 30 comparisons to find the key. This is a tremendous improvement
in performance over the linear search. For a one-billion-element array, this is a difference be-
tween an average of 500 million comparisons for the linear search and a maximum of only
30 comparisons for the binary search! The maximum number of comparisons needed for the
binary search of any sorted array is the exponent of the first power of 2 greater than the num-
ber of elements in the array, which is represented as log2 n. All logarithms grow at roughly
the same rate, so in Big O notation the base can be omitted. This results in a big O of O(log
n) for a binary search, which is also known as logarithmic runtime.

18.3 Sorting Algorithms
Sorting data (i.e., placing the data in some particular order, such as ascending or descending)
is one of the most important computing applications. A bank sorts all checks by account
number so that it can prepare individual bank statements at the end of each month. Tele-
phone companies sort their lists of accounts by last name and, further, by first name to
make it easy to find phone numbers. Virtually every organization must sort some data—
often, massive amounts of it. Sorting data is an intriguing, compute-intensive problem
that has attracted substantial research efforts.

It’s important to understand about sorting that the end result—the sorted array—will
be the same no matter which (correct) algorithm you use to sort the array. The choice of
algorithm affects only the runtime and memory use of the app. The rest of the chapter intro-
duces three common sorting algorithms. The first two—selection sort and insertion sort—
are simple to program, but inefficient. The last—merge sort—is much faster than selection
sort and insertion sort but more difficult to program. We focus on sorting arrays of simple-
type data, namely ints. It’s possible to sort arrays of objects as well—we discuss this in
Chapter 21, Collections.

18.3.1 Selection Sort
Selection sort is a simple, but inefficient, sorting algorithm. The first iteration of the algo-
rithm selects the smallest element in the array and swaps it with the first element. The sec-
ond iteration selects the second-smallest element (which is the smallest of the remaining
elements) and swaps it with the second element. The algorithm continues until the last it-
eration selects the second-largest element and, if necessary, swaps it with the second-to-last el-
ement, leaving the largest element in the last position. After the ith iteration, the smallest i
elements of the array will be sorted in increasing order in the first i positions of the array.

As an example, consider the array

34 56 4 10 77 51 93 30 5 52

18.3 Sorting Algorithms 727

An app that implements selection sort first determines the smallest element (4) of this ar-
ray, which is contained in index 2 (i.e., position 3). The app swaps 4 with 34, resulting in

The app then determines the smallest value of the remaining elements (all elements except
4), which is 5, contained in index 8. The app swaps 5 with 56, resulting in

On the third iteration, the app determines the next smallest value (10) and swaps it with
34.

The process continues until the array is fully sorted.

After the first iteration, the smallest element is in the first position. After the second iter-
ation, the two smallest elements are in order in the first two positions. After the third it-
eration, the three smallest elements are in order in the first three positions.

Figure 18.6 declares class SelectionSort, which has an instance variable data (an
array of ints) and a static Random object generator to generate random integers to fill
the array. When an object of class SelectionSort is instantiated, the constructor (lines
12–19) creates and initializes array data with random ints in the range 10–99.

4 56 34 10 77 51 93 30 5 52

4 5 34 10 77 51 93 30 56 52

4 5 10 34 77 51 93 30 56 52

4 5 10 30 34 51 52 56 77 93

1 // Fig. 18.6: SelectionSort.cs
2 // Class that creates an array filled with random integers.
3 // Provides a method to sort the array with selection sort.
4 using System;
5
6 public class SelectionSort
7 {
8 private int[] data; // array of values
9 private static Random generator = new Random();

10
11 // create array of given size and fill with random integers
12 public SelectionSort(int size)
13 {
14 data = new int[size]; // create space for array
15
16 // fill array with random ints in range 10-99
17 for (int i = 0; i < size; ++i)
18 data[i] = generator.Next(10, 100);
19 } // end SelectionSort constructor
20
21
22
23
24

Fig. 18.6 | Class that creates an array filled with random integers. Provides a method to sort the
array with selection sort. (Part 1 of 3.)

// sort array using selection sort
public void Sort()
{

int smallest; // index of smallest element

728 Chapter 18 Searching and Sorting

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49 // display a pass of the algorithm
50 public void PrintPass(int pass, int index)
51 {
52 Console.Write("after pass {0}: ", pass);
53
54 // output elements through the selected item
55 for (int i = 0; i < index; ++i)
56 Console.Write(data[i] + " ");
57
58 Console.Write(data[index] + "* "); // indicate swap
59
60 // finish outputting array
61 for (int i = index + 1; i < data.Length; ++i)
62 Console.Write(data[i] + " ");
63
64 Console.Write("\n "); // for alignment
65
66 // indicate amount of array that is sorted
67 for(int j = 0; j < pass; ++j)
68 Console.Write("-- ");
69 Console.WriteLine("\n"); // skip a line in output
70 } // end method PrintPass
71
72 // method to output values in array
73 public override string ToString()
74 {
75 string temporary = string.Empty;

Fig. 18.6 | Class that creates an array filled with random integers. Provides a method to sort the
array with selection sort. (Part 2 of 3.)

// loop over data.Length - 1 elements
for (int i = 0; i < data.Length - 1; ++i)
{

smallest = i; // first index of remaining array

// loop to find index of smallest element
for (int index = i + 1; index < data.Length; ++index)

if (data[index] < data[smallest])
smallest = index;

Swap(i, smallest); // swap smallest element into position
PrintPass(i + 1, smallest); // output pass of algorithm

} // end outer for
} // end method Sort

// helper method to swap values in two elements
public void Swap(int first, int second)
{

int temporary = data[first]; // store first in temporary
data[first] = data[second]; // replace first with second
data[second] = temporary; // put temporary in second

} // end method Swap

18.3 Sorting Algorithms 729

Lines 22–39 declare the Sort method. Line 24 declares variable smallest, which will
store the index of the smallest element in the remaining array. Lines 27–38 loop
data.Length - 1 times. Line 29 initializes the index of the smallest element to the current
item. Lines 32–34 loop over the remaining elements in the array. For each of these ele-
ments, line 33 compares its value to the value of the smallest element. If the current ele-
ment is smaller than the smallest element, line 34 assigns the current element’s index to
smallest. When this loop finishes, smallest will contain the index of the smallest ele-
ment in the remaining array. Line 36 calls method Swap (lines 42–47) to place the smallest
remaining element in the next spot in the array.

Line 10 of Fig. 18.7 creates a SelectionSort object with 10 elements. Line 13
implicitly calls method ToString to output the unsorted object. Line 15 calls method Sort
(Fig. 18.6, lines 22–39), which sorts the elements using selection sort. Then lines 17–18
output the sorted object. The output uses dashes to indicate the portion of the array that
is sorted after each pass (Fig. 18.6, lines 67–68). An asterisk is placed next to the position
of the element that was swapped with the smallest element on that pass. On each pass, the
element next to the asterisk and the element above the rightmost set of dashes were the
two values that were swapped.

76
77 // iterate through array
78 foreach (int element in data)
79 temporary += element + " ";
80
81 temporary += "\n"; // add newline character
82 return temporary;
83 } // end method ToString
84 } // end class SelectionSort

1 // Fig. 18.7: SelectionSortTest.cs
2 // Testing the selection sort class.
3 using System;
4
5 public class SelectionSortTest
6 {
7 public static void Main(string[] args)
8 {
9 // create object to perform selection sort

10
11
12 Console.WriteLine("Unsorted array:");
13 Console.WriteLine(sortArray); // display unsorted array
14
15 sortArray.Sort(); // sort array
16

Fig. 18.7 | Testing the selection sort class. (Part 1 of 2.)

Fig. 18.6 | Class that creates an array filled with random integers. Provides a method to sort the
array with selection sort. (Part 3 of 3.)

SelectionSort sortArray = new SelectionSort(10);

730 Chapter 18 Searching and Sorting

Efficiency of Selection Sort
The selection sort algorithm runs in O(n2) time. Method Sort in lines 22–39 of Fig. 18.6,
which implements the selection sort algorithm, contains nested for loops. The outer for
loop (lines 27–38) iterates over the first n – 1 elements in the array, swapping the smallest
remaining element to its sorted position. The inner for loop (lines 32–34) iterates over each
element in the remaining array, searching for the smallest. This loop executes n – 1 times
during the first iteration of the outer loop, n – 2 times during the second iteration, then n
– 3, …, 3, 2, 1. This inner loop will iterate a total of n(n – 1) / 2 or (n2 – n)/2. In Big O
notation, smaller terms drop out and constants are ignored, leaving a final Big O of O(n2).

18.3.2 Insertion Sort
Insertion sort is another simple, but inefficient, sorting algorithm. Its first iteration takes
the second element in the array and, if it’s less than the first, swaps them. The second it-
eration looks at the third element and inserts it in the correct position with respect to the
first two elements (moving them as necessary), so all three elements are in order. At the ith
iteration of this algorithm, the first i elements in the original array will be sorted.

17 Console.WriteLine("Sorted array:");
18 Console.WriteLine(sortArray); // display sorted array
19 } // end Main
20 } // end class SelectionSortTest

Unsorted array:
86 97 83 45 19 31 86 13 57 61

after pass 1: 13 97 83 45 19 31 86 86* 57 61
--

after pass 2: 13 19 83 45 97* 31 86 86 57 61
-- --

after pass 3: 13 19 31 45 97 83* 86 86 57 61
-- -- --

after pass 4: 13 19 31 45* 97 83 86 86 57 61
-- -- -- --

after pass 5: 13 19 31 45 57 83 86 86 97* 61
-- -- -- -- --

after pass 6: 13 19 31 45 57 61 86 86 97 83*
-- -- -- -- -- --

after pass 7: 13 19 31 45 57 61 83 86 97 86*
-- -- -- -- -- -- --

after pass 8: 13 19 31 45 57 61 83 86* 97 86
-- -- -- -- -- -- -- --

after pass 9: 13 19 31 45 57 61 83 86 86 97*
-- -- -- -- -- -- -- -- --

Sorted array:
13 19 31 45 57 61 83 86 86 97

Fig. 18.7 | Testing the selection sort class. (Part 2 of 2.)

18.3 Sorting Algorithms 731

Consider as an example the following array, which is identical to the array we used in
the discussions of selection sort and merge sort.

An app that implements the insertion sort algorithm first looks at the first two elements
of the array, 34 and 56. These are already in order, so the app continues (if they were out
of order, it would swap them).

In the next iteration, the app looks at the third value, 4. This value is less than 56, so
the app stores 4 in a temporary variable and moves 56 one element to the right. The app
then checks and determines that 4 is less than 34, so it moves 34 one element to the right.
The app has now reached the beginning of the array, so it places 4 in the zeroth position.
The array now is

In the next iteration, the app stores the value 10 in a temporary variable. Then the app
compares 10 to 56 and moves 56 one element to the right because it’s larger than 10. The
app then compares 10 to 34, moving 34 one element to the right. When the app compares
10 to 4, it observes that 10 is larger than 4 and places 10 in element 1. The array now is

Using this algorithm, at the ith iteration, the original array’s first i elements are sorted, but
they may not be in their final locations—smaller values may be located later in the array.

Figure 18.8 declares the InsertionSort class. Lines 22–46 declare the Sort method.
Line 24 declares variable insert, which holds the element to be inserted while the other
elements are moved. Lines 27–45 loop through data.Length - 1 items in the array. In
each iteration, line 30 stores in variable insert the value of the element that will be
inserted in the sorted portion of the array. Line 33 declares and initializes variable
moveItem, which keeps track of where to insert the element. Lines 36–41 loop to locate
the correct position to insert the element. The loop will terminate either when the app
reaches the front of the array or when it reaches an element that is less than the value to be
inserted. Line 39 moves an element to the right, and line 40 decrements the position at
which to insert the next element. After the loop ends, line 43 inserts the element in place.
Figure 18.9 is the same as Fig. 18.7 except that it creates and uses an InsertionSort

object. The output of this app uses dashes to indicate the portion of the array that is sorted
after each pass (lines 66–67 of Fig. 18.8). An asterisk is placed next to the element that was
inserted in place on that pass.

34 56 4 10 77 51 93 30 5 52

4 34 56 10 77 51 93 30 5 52

4 10 34 56 77 51 93 30 5 52

1 // Fig. 18.8: InsertionSort.cs
2 // Class that creates an array filled with random integers.
3 // Provides a method to sort the array with insertion sort.
4 using System;
5
6 public class InsertionSort
7 {

Fig. 18.8 | Class that creates an array filled with random integers. Provides a method to sort the
array with insertion sort. (Part 1 of 3.)

732 Chapter 18 Searching and Sorting

8 private int[] data; // array of values
9 private static Random generator = new Random();

10
11 // create array of given size and fill with random integers
12 public InsertionSort(int size)
13 {
14 data = new int[size]; // create space for array
15
16 // fill array with random ints in range 10-99
17 for (int i = 0; i < size; ++i)
18 data[i] = generator.Next(10, 100);
19 } // end InsertionSort constructor
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48 // display a pass of the algorithm
49 public void PrintPass(int pass, int index)
50 {
51 Console.Write("after pass {0}: ", pass);
52
53 // output elements till swapped item
54 for (int i = 0; i < index; ++i)
55 Console.Write(data[i] + " ");
56
57 Console.Write(data[index] + "* "); // indicate swap
58

Fig. 18.8 | Class that creates an array filled with random integers. Provides a method to sort the
array with insertion sort. (Part 2 of 3.)

// sort array using insertion sort
public void Sort()
{

int insert; // temporary variable to hold element to insert

// loop over data.Length - 1 elements
for (int next = 1; next < data.Length; ++next)
{

// store value in current element
insert = data[next];

// initialize location to place element
int moveItem = next;

// search for place to put current element
while (moveItem > 0 && data[moveItem - 1] > insert)
{

// shift element right one slot
data[moveItem] = data[moveItem - 1];
moveItem--;

} // end while

data[moveItem] = insert; // place inserted element
PrintPass(next, moveItem); // output pass of algorithm

} // end for
} // end method Sort

18.3 Sorting Algorithms 733

59 // finish outputting array
60 for (int i = index + 1; i < data.Length; ++i)
61 Console.Write(data[i] + " ");
62
63 Console.Write("\n "); // for alignment
64
65 // indicate amount of array that is sorted
66 for(int i = 0; i <= pass; ++i)
67 Console.Write("-- ");
68 Console.WriteLine("\n"); // skip a line in output
69 } // end method PrintPass
70
71 // method to output values in array
72 public override string ToString()
73 {
74 string temporary = string.Empty;
75
76 // iterate through array
77 foreach (int element in data)
78 temporary += element + " ";
79
80 temporary += "\n"; // add newline character
81 return temporary;
82 } // end method ToString
83 } // end class InsertionSort

1 // Fig. 18.9: InsertionSortTest.cs
2 // Testing the insertion sort class.
3 using System;
4
5 public class InsertionSortTest
6 {
7 public static void Main(string[] args)
8 {
9 // create object to perform insertion sort

10 InsertionSort sortArray = new InsertionSort(10);
11
12 Console.WriteLine("Unsorted array:");
13 Console.WriteLine(sortArray); // display unsorted array
14
15 sortArray.Sort(); // sort array
16
17 Console.WriteLine("Sorted array:");
18 Console.WriteLine(sortArray); // display sorted array
19 } // end Main
20 } // end class InsertionSortTest

Fig. 18.9 | Testing the insertion sort class. (Part 1 of 2.)

Fig. 18.8 | Class that creates an array filled with random integers. Provides a method to sort the
array with insertion sort. (Part 3 of 3.)

734 Chapter 18 Searching and Sorting

Efficiency of Insertion Sort
The insertion sort algorithm also runs in O(n2) time. Like selection sort, the implementa-
tion of insertion sort (lines 22–46 of Fig. 18.8) contains nested loops. The for loop (lines
27–45) iterates data.Length - 1 times, inserting an element in the appropriate position in
the elements sorted so far. For the purposes of this app, data.Length - 1 is equivalent to
n – 1 (as data.Length is the size of the array). The while loop (lines 36–41) iterates over
the preceding elements in the array. In the worst case, this while loop will require n – 1
comparisons. Each individual loop runs in O(n) time. In Big O notation, nested loops mean
that you must multiply the number of iterations of each loop. For each iteration of an outer
loop, there will be a certain number of iterations of the inner loop. In this algorithm, for
each O(n) iterations of the outer loop, there will be O(n) iterations of the inner loop. Mul-
tiplying these values results in a Big O of O(n2).

18.3.3 Merge Sort
Merge sort is an efficient sorting algorithm but is conceptually more complex than selection
sort and insertion sort. The merge sort algorithm sorts an array by splitting it into two

Unsorted array:
12 27 36 28 33 92 11 93 59 62

after pass 1: 12 27* 36 28 33 92 11 93 59 62
-- --

after pass 2: 12 27 36* 28 33 92 11 93 59 62
-- -- --

after pass 3: 12 27 28* 36 33 92 11 93 59 62
-- -- -- --

after pass 4: 12 27 28 33* 36 92 11 93 59 62
-- -- -- -- --

after pass 5: 12 27 28 33 36 92* 11 93 59 62
-- -- -- -- -- --

after pass 6: 11* 12 27 28 33 36 92 93 59 62
-- -- -- -- -- -- --

after pass 7: 11 12 27 28 33 36 92 93* 59 62
-- -- -- -- -- -- -- --

after pass 8: 11 12 27 28 33 36 59* 92 93 62
-- -- -- -- -- -- -- -- --

after pass 9: 11 12 27 28 33 36 59 62* 92 93
-- -- -- -- -- -- -- -- -- --

Sorted array:
11 12 27 28 33 36 59 62 92 93

Fig. 18.9 | Testing the insertion sort class. (Part 2 of 2.)

18.3 Sorting Algorithms 735

equal-sized subarrays, sorting each subarray and merging them in one larger array. With an
odd number of elements, the algorithm creates the two subarrays such that one has one
more element than the other.

The implementation of merge sort in this example is recursive. The base case is an
array with one element. A one-element array is, of course, sorted, so merge sort immedi-
ately returns when it’s called with a one-element array. The recursion step splits an array in
two approximately equal-length pieces, recursively sorts them and merges the two sorted
arrays in one larger, sorted array.

Suppose the algorithm has already merged smaller arrays to create sorted arrays A:

and B:

Merge sort combines these two arrays in one larger, sorted array. The smallest element in
A is 4 (located in the zeroth element of A). The smallest element in B is 5 (located in the
zeroth element of B). In order to determine the smallest element in the larger array, the
algorithm compares 4 and 5. The value from A is smaller, so 4 becomes the first element
in the merged array. The algorithm continues by comparing 10 (the second element in A)
to 5 (the first element in B). The value from B is smaller, so 5 becomes the second element
in the larger array. The algorithm continues by comparing 10 to 30, with 10 becoming
the third element in the array, and so on.

Lines 22–25 of Fig. 18.10 declare the Sort method. Line 24 calls method SortArray
with 0 and data.Length - 1 as the arguments—these are the beginning and ending indices
of the array to be sorted. These values tell method SortArray to operate on the entire array.

4 10 34 56 77

5 30 51 52 93

1 // Fig. 18.10: MergeSort.cs
2 // Class that creates an array filled with random integers.
3 // Provides a method to sort the array with merge sort.
4 using System;
5
6 public class MergeSort
7 {
8 private int[] data; // array of values
9 private static Random generator = new Random();

10
11 // create array of given size and fill with random integers
12 public MergeSort(int size)
13 {
14 data = new int[size]; // create space for array
15
16 // fill array with random ints in range 10-99
17 for (int i = 0; i < size; ++i)
18 data[i] = generator.Next(10, 100);
19 } // end MergeSort constructor
20

Fig. 18.10 | Class that creates an array filled with random integers. Provides a method to sort
the array with merge sort. (Part 1 of 3.)

736 Chapter 18 Searching and Sorting

21 // calls recursive SortArray method to begin merge sorting
22
23
24
25
26
27 // splits array, sorts subarrays and merges subarrays into sorted array
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

Fig. 18.10 | Class that creates an array filled with random integers. Provides a method to sort
the array with merge sort. (Part 2 of 3.)

public void Sort()
{

SortArray(0, data.Length - 1); // sort entire array
} // end method Sort

private void SortArray(int low, int high)
{

// test base case; size of array equals 1
if ((high - low) >= 1) // if not base case
{

int middle1 = (low + high) / 2; // calculate middle of array
int middle2 = middle1 + 1; // calculate next element over

// output split step
Console.WriteLine("split: " + Subarray(low, high));
Console.WriteLine(" " + Subarray(low, middle1));
Console.WriteLine(" " + Subarray(middle2, high));
Console.WriteLine();

// split array in half; sort each half (recursive calls)
SortArray(low, middle1); // first half of array
SortArray(middle2, high); // second half of array

// merge two sorted arrays after split calls return
Merge(low, middle1, middle2, high);

} // end if
} // end method SortArray

// merge two sorted subarrays into one sorted subarray
private void Merge(int left, int middle1, int middle2, int right)
{

int leftIndex = left; // index into left subarray
int rightIndex = middle2; // index into right subarray
int combinedIndex = left; // index into temporary working array
int[] combined = new int[data.Length]; // working array

// output two subarrays before merging
Console.WriteLine("merge: " + Subarray(left, middle1));
Console.WriteLine(" " + Subarray(middle2, right));

// merge arrays until reaching end of either
while (leftIndex <= middle1 && rightIndex <= right)
{

// place smaller of two current elements into result
// and move to next space in arrays
if (data[leftIndex] <= data[rightIndex])

combined[combinedIndex++] = data[leftIndex++];
else

combined[combinedIndex++] = data[rightIndex++];
} // end while

18.3 Sorting Algorithms 737

Method SortArray is declared in lines 28–49. Line 31 tests the base case. If the size
of the array is 1, the array is already sorted, so the method simply returns immediately. If
the size of the array is greater than 1, the method splits the array in two, recursively calls
method SortArray to sort the two subarrays and merges them. Line 43 recursively calls
method SortArray on the first half of the array, and line 44 recursively calls method Sort-
Array on the second half of the array. When these two method calls return, each half of

73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93 // method to output certain values in array
94 public string Subarray(int low, int high)
95 {
96 string temporary = string.Empty;
97
98 // output spaces for alignment
99 for (int i = 0; i < low; ++i)
100 temporary += " ";
101
102 // output elements left in array
103 for (int i = low; i <= high; ++i)
104 temporary += " " + data[i];
105
106 return temporary;
107 } // end method Subarray
108
109 // method to output values in array
110 public override string ToString()
111 {
112 return Subarray(0, data.Length - 1);
113 } // end method ToString
114 } // end class MergeSort

Fig. 18.10 | Class that creates an array filled with random integers. Provides a method to sort
the array with merge sort. (Part 3 of 3.)

// if left array is empty
if (leftIndex == middle2)

// copy in rest of right array
while (rightIndex <= right)

combined[combinedIndex++] = data[rightIndex++];
else // right array is empty

// copy in rest of left array
while (leftIndex <= middle1)

combined[combinedIndex++] = data[leftIndex++];

// copy values back into original array
for (int i = left; i <= right; ++i)

data[i] = combined[i];

// output merged array
Console.WriteLine(" " + Subarray(left, right));
Console.WriteLine();

} // end method Merge

738 Chapter 18 Searching and Sorting

the array has been sorted. Line 47 calls method Merge (lines 52–91) on the two halves of
the array to combine the two sorted arrays in one larger sorted array.

Lines 64–72 in method Merge loop until the app reaches the end of either subarray.
Line 68 tests which element at the beginning of the arrays is smaller. If the element in the
left array is smaller or equal, line 69 places it in position in the combined array. If the ele-
ment in the right array is smaller, line 71 places it in position in the combined array. When
the while loop has completed (line 72), one entire subarray is placed in the combined array,
but the other subarray still contains data. Line 75 tests whether the left array has reached
the end. If so, lines 77–78 fill the combined array with the remaining elements of the right
array. If the left array has not reached the end, then the right array has, and lines 81–82 fill
the combined array with the remaining elements of the left array. Finally, lines 85–86 copy
the combined array into the original array. Figure 18.11 creates and uses a MergeSort

object. The output from this app displays the splits and merges performed by merge sort,
showing the progress of the sort at each step of the algorithm.

1 // Fig. 18.11: MergeSortTest.cs
2 // Testing the merge sort class.
3 using System;
4
5 public class MergeSortTest
6 {
7 public static void Main(string[] args)
8 {
9 // create object to perform merge sort

10 MergeSort sortArray = new MergeSort(10);
11
12 // display unsorted array
13 Console.WriteLine("Unsorted: {0}\n\n", sortArray);
14
15 sortArray.Sort(); // sort array
16
17 // display sorted array
18 Console.WriteLine("Sorted: {0}", sortArray);
19 } // end Main
20 } // end class MergeSortTest

Unsorted: 36 38 81 93 85 72 31 11 33 74

split: 36 38 81 93 85 72 31 11 33 74
36 38 81 93 85

72 31 11 33 74

split: 36 38 81 93 85
36 38 81

93 85

split: 36 38 81
36 38

81

Fig. 18.11 | Testing the merge sort class. (Part 1 of 2.)

18.3 Sorting Algorithms 739

split: 36 38
36

38

merge: 36
38

36 38

merge: 36 38
81

36 38 81

split: 93 85
93

85

merge: 93
85

85 93

merge: 36 38 81
85 93

36 38 81 85 93

split: 72 31 11 33 74
72 31 11

33 74

split: 72 31 11
72 31

11

split: 72 31
72

31

merge: 72
31

31 72

merge: 31 72
11

11 31 72

split: 33 74
33

74

merge: 33
74

33 74

merge: 11 31 72
33 74

11 31 33 72 74

merge: 36 38 81 85 93
11 31 33 72 74

11 31 33 36 38 72 74 81 85 93

Sorted: 11 31 33 36 38 72 74 81 85 93

Fig. 18.11 | Testing the merge sort class. (Part 2 of 2.)

740 Chapter 18 Searching and Sorting

Efficiency of Merge Sort
Merge sort is a far more efficient algorithm than either insertion sort or selection sort when
sorting large sets of data. Consider the first (nonrecursive) call to method SortArray. This re-
sults in two recursive calls to method SortArray with subarrays each approximately half the
size of the original array, and a single call to method Merge. This call to method Merge re-
quires, at worst, n – 1 comparisons to fill the original array, which is O(n). (Recall that each
element in the array can be chosen by comparing one element from each of the subarrays.)
The two calls to method SortArray result in four more recursive calls to SortArray, each
with a subarray approximately a quarter the size of the original array, along with two calls to
method Merge. These two calls to method Merge each require, at worst, n/2 – 1 comparisons
for a total number of comparisons of (n/2 – 1) + (n/2 – 1) = n – 2, which is O(n). This pro-
cess continues, each call to SortArray generating two additional calls to method SortArray
and a call to Merge, until the algorithm has split the array into one-element subarrays. At each
level, O(n) comparisons are required to merge the subarrays. Each level splits the size of the
arrays in half, so doubling the size of the array requires only one more level. Quadrupling the
size of the array requires only two more levels. This pattern is logarithmic and results in log2
n levels. This results in a total efficiency of O(n log n).

18.4 Summary of the Efficiency of Searching and Sorting
Algorithms
Figure 18.12 summarizes many of the searching and sorting algorithms covered in this
book and lists the Big O of each. Figure 18.13 lists the Big O expressions covered in this
chapter, along with a number of values for n to highlight the differences in the growth rates.

Algorithm Location Big O

Searching Algorithms:
Linear Search Section 18.2.1 O(n)
Binary Search Section 18.2.2 O(log n)
Recursive Linear Search Exercise 18.8 O(n)
Recursive Binary Search Exercise 18.9 O(log n)

Sorting Algorithms:
Selection Sort Section 18.3.1 O(n2)
Insertion Sort Section 18.3.2 O(n2)
Merge Sort Section 18.3.3 O(n log n)
Bubble Sort Exercises 18.5–18.6 O(n2)

Fig. 18.12 | Searching and sorting algorithms with Big O values.

n = O(log n) O(n) O(n log n) O(n2)

1 0 1 0 1

Fig. 18.13 | Number of comparisons for common Big O notations. (Part 1 of 2.)

18.5 Wrap-Up 741

18.5 Wrap-Up
In this chapter, you learned how to search for items in arrays and how to sort arrays so that
their elements are arranged in order. We discussed linear search and binary search, and se-
lection sort, insertion sort and merge sort. You learned that linear search can operate on
any set of data, but that binary search requires the data to be sorted first. You also learned
that the simplest searching and sorting algorithms can exhibit poor performance. We in-
troduced Big O notation—a measure of the efficiency of algorithms—and used it to com-
pare the efficiency of the algorithms we discussed. In the next chapter, you’ll learn about
dynamic data structures that can grow or shrink at execution time.

2 1 2 2 4
3 1 3 3 9
4 1 4 4 16
5 1 5 5 25
10 1 10 10 100
100 2 100 200 10000
1,000 3 1000 3000 106

1,000,000 6 1000000 6000000 1012

1,000,000,000 9 1000000000 9000000000 1018

n = O(log n) O(n) O(n log n) O(n2)

Fig. 18.13 | Number of comparisons for common Big O notations. (Part 2 of 2.)

Summary
Section 18.1 Introduction
• Searching involves determining if a search key is present in the data and, if so, finding its location.

• Sorting involves arranging data in order.

Section 18.2.1 Linear Search
• The linear search algorithm searches each element in an array sequentially until it finds the ele-

ment that matches the search key. If the search key is not in the array, the algorithm tests each
element in the array, and when the end of the array is reached, informs the user that the search
key is not present, usually by means of a sentinel value.

• One way to describe the efficiency of an algorithm is with Big O notation (O), which indicates
how hard an algorithm may have to work to solve a problem.

• In searching and sorting algorithms, Big O is dependent on how many elements are in the data.

• An O(n) algorithm is referred to as having a linear runtime.

• Big O is designed to highlight dominant factors and ignore terms that become unimportant with
high n values. Big O notation is concerned with the growth rate of algorithm runtimes, so con-
stants are ignored.

• The linear search algorithm runs in O(n) time.

742 Chapter 18 Searching and Sorting

• The worst case in linear search is that every element must be checked to determine whether the
search item exists. This occurs if the search key is the last element in the array or is not present.

Section 18.2.2 Binary Search
• The binary search algorithm is more efficient than the linear search algorithm, but it requires that

the array be sorted.

• The first iteration of binary search tests the middle array element. If this is the search key, the algo-
rithm returns its location. If the search key is less than the middle element, the search continues
with the first half of the array. If the search key is greater than the middle element, the search con-
tinues with the second half of the array. Each iteration of binary search tests the middle value of the
remaining array and, if the element is not found, eliminates half of the remaining elements.

• Binary search is a more efficient searching algorithm than linear search because with each com-
parison it eliminates from consideration half of the elements in the array.

• Binary search runs in O(log n) time, because each step removes half of the remaining elements.

Section 18.3.1 Selection Sort
• The selection sort is a simple, but inefficient, sorting algorithm.

• The first iteration of the selection sort selects the smallest element in the array and swaps it with
the first element. The second iteration selects the second-smallest element (which is the smallest
remaining element) and swaps it with the second element. Selection sort continues until the larg-
est element is in the last position. After the ith iteration of selection sort, the smallest i elements
of the whole array are sorted into the first i positions.

• The selection sort algorithm runs in O(n2) time.

Section 18.3.2 Insertion Sort
• The first iteration of insertion sort takes the second element in the array and, if it’s less than the

first, swaps them. The second iteration looks at the third element and inserts it in the correct po-
sition with respect to the first two. After the ith iteration of insertion sort, the first i elements in
the original array are sorted.

• The insertion sort algorithm runs in O(n2) time.

Section 18.3.3 Merge Sort
• Merge sort is a sorting algorithm that is faster, but more complex to implement, than selection

sort and insertion sort.

• The merge sort algorithm sorts an array by splitting it into two equal-sized subarrays, sorting each
recursively and merging them into one larger array.

• Merge sort’s base case is an array with one element. A one-element array is already sorted.

• Merge sort performs the merge by looking at the first element in each array, which is also the
smallest. Merge sort takes the smallest of these and places it in the first element of the larger array.
If there are still elements in the subarray, merge sort looks at the second element in that subarray
(which is now the smallest element remaining) and compares it to the first element in the other
subarray. Merge sort continues this process until the larger array is filled.

• In the worst case, the first call to merge sort has to make O(n) comparisons to fill the n slots in
the final array.

• The merging portion of the merge sort algorithm is performed on two subarrays, each of approx-
imately size n/2. Creating each of these subarrays requires n/2 – 1 comparisons for each subarray,
or O(n) comparisons total. This pattern continues as each level works on twice as many arrays,
but each is half the size of the previous array. Similar to binary search, this halving results in log
n levels for a total efficiency of O(n log n).

Terminology 743

Terminology
Big O notation
binary search
constant runtime
efficiency of algorithms
insertion sort
linear runtime
linear search
logarithmic runtime
merge sort
O(1)
O(log n)
O(n log n)

O(n)
O(n2)
search key
quadratic runtime
search key
searching
selection sort
sort key
Sort method of class Array
sorting
swapping values

Self-Review Exercises
18.1 Fill in the blanks in each of the following statements:

a) A selection sort app would take approximately times as long to run on a
128-element array as on a 32-element array.

b) The efficiency of merge sort is .

18.2 What key aspect of both the binary search and the merge sort accounts for the logarithmic
portion of their respective Big Os?

18.3 In what sense is the insertion sort superior to the merge sort? In what sense is the merge sort
superior to the insertion sort?

18.4 In the text, we say that after the merge sort splits the array into two subarrays, it then sorts
these two subarrays and merges them. Why might someone be puzzled by our statement that “it
then sorts these two subarrays”?

Answers to Self-Review Exercises
18.1 a) 16, because an O(n2) algorithm takes 16 times as long to sort four times as much infor-
mation. b) O(n log n).

18.2 Both of these algorithms incorporate “halving”—somehow reducing something by half.
The binary search eliminates from consideration one half of the array after each comparison. The
merge sort splits the array in half each time it’s called.

18.3 The insertion sort is easier to understand and to program than the merge sort. The merge
sort is far more efficient (O(n log n)) than the insertion sort (O(n2)).

18.4 In a sense, it does not really sort these two subarrays. It simply keeps splitting the original
array in half until it provides a one-element subarray, which is, of course, sorted. It then builds up
the original two subarrays by merging these one-element arrays to form larger subarrays, which are
then merged until the whole array has been sorted.

Exercises
18.5 (Bubble Sort) Implement the bubble sort—another simple, yet inefficient, sorting technique.
It’s called bubble sort or sinking sort because smaller values gradually “bubble” their way to the top of
the array (i.e., toward the first element) like air bubbles rising in water, while the larger values sink to
the bottom (end) of the array. The technique uses nested loops to make several passes through the array.
Each pass compares successive overlapping pairs of elements (i.e., elements 0 and 1, 1 and 2, 2 and 3,

744 Chapter 18 Searching and Sorting

etc.). If a pair is in increasing order (or the values are equal), the bubble sort leaves the values as they
are. If a pair is in decreasing order, the bubble sort swaps their values in the array.

The first pass compares the first two elements of the array and swaps them if necessary. It then
compares the second and third elements. The end of this pass compares the last two elements in
the array and swaps them if necessary. After one pass, the largest element will be in the last posi-
tion. After two passes, the largest two elements will be in the last two positions. Explain why bub-
ble sort is an O(n2) algorithm.

18.6 (Enhanced Bubble Sort) Make the following simple modifications to improve the perfor-
mance of the bubble sort you developed in Exercise 18.5:

a) After the first pass, the largest number is guaranteed to be in the highest-numbered el-
ement of the array (for an array being sorted in ascending order); after the second pass,
the two highest numbers are “in place”; and so on. Instead of making nine comparisons
on every pass of a 10-element array, modify the bubble sort to make eight comparisons
on the second pass, seven on the third pass and so on.

b) The data in the array may already be in the proper order or near-proper order, so why
make nine passes of a 10-element array if fewer will suffice? Modify the sort to check at
the end of each pass whether any swaps have been made. If none have been made, the
data must already be in the proper order, so the app should terminate. If swaps have
been made, at least one more pass is needed.

18.7 (Bucket Sort) A bucket sort begins with a one-dimensional array of positive integers to be
sorted and a two-dimensional array of integers with rows indexed from 0 to 9 and columns indexed
from 0 to n – 1, where n is the number of values to be sorted. Each row of the two-dimensional array
is referred to as a bucket. Write a class named BucketSort containing a method called Sort that op-
erates as follows:

a) Place each value of the one-dimensional array into a row of the bucket array, based on
the value’s “ones” (rightmost) digit. For example, 97 is placed in row 7, 3 is placed in
row 3 and 100 is placed in row 0. This procedure is called a distribution pass.

b) Loop through the bucket array row by row, and copy the values back to the original ar-
ray. This procedure is called a gathering pass. The new order of the preceding values in
the one-dimensional array is 100, 3 and 97.

c) Repeat this process for each subsequent digit position (tens, hundreds, thousands, etc.).

On the second (tens digit) pass, 100 is placed in row 0, 3 is placed in row 0 (because 3 has no tens
digit) and 97 is placed in row 9. After the gathering pass, the order of the values in the one-dimen-
sional array is 100, 3 and 97. On the third (hundreds digit) pass, 100 is placed in row 1, 3 is placed
in row 0 and 97 is placed in row 0 (after the 3). After the last gathering pass, the original array is in
sorted order.

The two-dimensional array of buckets is 10 times the length of the integer array being sorted.
This sorting technique provides better performance than a bubble sort, but requires much more
memory—the bubble sort requires space for only one additional element of data. This comparison
is an example of the space/time trade-off: The bucket sort uses more memory than the bubble sort,
but performs better. This version of the bucket sort requires copying all the data back to the origi-
nal array on each pass. Another possibility is to create a second two-dimensional bucket array and
repeatedly swap the data between the two bucket arrays.

18.8 (Recursive Linear Search) Modify Fig. 18.2 to use recursive method RecursiveLin-

earSearch to perform a linear search of the array. The method should receive the search key and
starting index as arguments. If the search key is found, return its index in the array; otherwise, return
–1. Each call to the recursive method should check one index in the array.

18.9 (Recursive Binary Search) Modify Fig. 18.4 to use recursive method RecursiveBinary-

Search to perform a binary search of the array. The method should receive the search key, starting

Exercises 745

index and ending index as arguments. If the search key is found, return its index in the array. If the
search key is not found, return –1.

18.10 (Quicksort) The recursive sorting technique called quicksort uses the following basic algo-
rithm for a one-dimensional array of values:

a) Partitioning Step: Take the first element of the unsorted array and determine its final lo-
cation in the sorted array (i.e., all values to the left of the element in the array are less
than the element, and all values to the right of the element in the array are greater than
the element—we show how to do this below). We now have one element in its proper
location and two unsorted subarrays.

b) Recursive Step: Perform Step a on each unsorted subarray.

Each time Step a is performed on a subarray, another element is placed in its final location in the
sorted array, and two unsorted subarrays are created. When a subarray consists of one element, that
element is in its final location (because a one-element array is already sorted).

The basic algorithm seems simple enough, but how do we determine the final position of the
first element of each subarray? As an example, consider the following set of values (the element in
bold is the partitioning element—it will be placed in its final location in the sorted array):

37 2 6 4 89 8 10 12 68 45

a) Starting from the rightmost element of the array, compare each element with 37 until
an element less than 37 is found, then swap 37 and that element. The first element less
than 37 is 12, so 37 and 12 are swapped. The new array is

12 2 6 4 89 8 10 37 68 45

Element 12 is in italics to indicate that it was just swapped with 37.
b) Starting from the left of the array, but beginning with the element after 12, compare

each element with 37 until an element greater than 37 is found—then swap 37 and that
element. The first element greater than 37 is 89, so 37 and 89 are swapped. The new
array is

12 2 6 4 37 8 10 89 68 45

c) Starting from the right, but beginning with the element before 89, compare each ele-
ment with 37 until an element less than 37 is found—then swap 37 and that element.
The first element less than 37 is 10, so 37 and 10 are swapped. The new array is

12 2 6 4 10 8 37 89 68 45

d) Starting from the left, but beginning with the element after 10, compare each element
with 37 until an element greater than 37 is found—then swap 37 and that element.
There are no more elements greater than 37, so when we compare 37 with itself, we
know that 37 has been placed in its final location of the sorted array. Every value to the
left of 37 is smaller than it, and every value to the right of 37 is larger than it.

Once the partition has been applied on the previous array, there are two unsorted subarrays. The
subarray with values less than 37 contains 12, 2, 6, 4, 10 and 8. The subarray with values greater
than 37 contains 89, 68 and 45. The sort continues recursively, with both subarrays being parti-
tioned in the same manner as the original array.

Based on the preceding discussion, write recursive method QuickSortHelper to sort a one-
dimensional integer array. The method should receive as arguments a starting index and an ending
index in the original array being sorted.

19 Data Structures

Much that I bound,
I could not free;
Much that I freed
returned to me.
—Lee Wilson Dodd

There is always room at the top.
—Daniel Webster

I think that I shall never see
A poem lovely as a tree.
—Joyce Kilmer

O b j e c t i v e s
In this chapter you’ll:

� Form linked data structures
using references, self-
referential classes and
recursion.

� Learn how boxing and
unboxing enable simple-type
values to be used where
objects are expected in a
program.

� Create and manipulate
dynamic data structures,
such as linked lists, queues,
stacks and binary trees.

� Learn various important
applications of linked data
structures.

� Create reusable data
structures with classes,
inheritance and composition.

19.1 Introduction 747

19.1 Introduction
This chapter continues our four-chapter treatment of algorithms and data structures. Most
of the data structures that we have studied thus far have had fixed sizes, such as one- and
two-dimensional arrays. Previously, we also introduced the dynamically resizable List<T>
collection (Chapter 9). This chapter enhances our discussion of dynamic data structures
that grow and shrink at execution time. Linked lists are collections of data items “lined up
in a row” or “chained together”—users can make insertions and deletions anywhere in a
linked list. Stacks are important in compilers and operating systems; insertions and dele-
tions are made at only one end—its top. Queues represent waiting lines; insertions are
made at the back (also referred to as the tail) of a queue, and deletions are made from the
front (also referred to as the head) of a queue. Binary trees facilitate high-speed searching
and sorting of data, efficient elimination of duplicate data items, representation of file-sys-
tem directories and compilation of expressions into machine language. These data struc-
tures have many other interesting applications as well.

We’ll discuss each of these major types of data structures and implement programs
that create and manipulate them. We use classes, inheritance and composition to create
and package these data structures for reusability and maintainability. In Chapter 20, we
introduce generics, which allow you to declare data structures that can be automatically
adapted to contain data of any type. In Chapter 21, we discuss C#’s predefined collection
classes that implement various data structures.

The chapter examples are practical programs that will be useful in more advanced
courses and in industrial applications. The programs focus on reference manipulation.
The exercises offer a rich collection of useful applications.

19.2 Simple-Type structs, Boxing and Unboxing
The data structures we discuss in this chapter store object references. However, as you’ll
soon see, we’re able to store both simple- and reference-type values in these data structures.
This section discusses the mechanisms that enable simple-type values to be manipulated
as objects.

Simple-Type structs
Each simple type (see Appendix B, Simple Types) has a corresponding struct in
namespace System that defines the simple type. These structs are called Boolean, Byte,
SByte, Char, Decimal, Double, Single, Int16, UInt16 Int32, UInt32, Int64 and UInt64.
Types declared with keyword struct are value types.

19.1 Introduction
19.2 Simple-Type structs, Boxing and

Unboxing
19.3 Self-Referential Classes
19.4 Linked Lists
19.5 Stacks

19.6 Queues
19.7 Trees

19.7.1 Binary Search Tree of Integer Values
19.7.2 Binary Search Tree of IComparable

Objects
19.8 Wrap-Up

Summary | Terminology | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

748 Chapter 19 Data Structures

Simple types are actually aliases for their corresponding structs, so a variable of a
simple type can be declared using either the keyword for that simple type or the struct
name—e.g., int and Int32 are interchangeable. The methods related to a simple type are
located in the corresponding struct (e.g., method Parse, which converts a string to an
int value, is located in struct Int32). Refer to the documentation for the corresponding
struct type to see the methods available for manipulating values of that type.

Boxing and Unboxing Conversions
Simple types and other structs inherit from class ValueType in namespace System. Class
ValueType inherits from class object. Thus, any simple-type value can be assigned to an ob-
ject variable; this is referred to as a boxing conversion and enables simple types to be used
anywhere objects are expected. In a boxing conversion, the simple-type value is copied into
an object so that the simple-type value can be manipulated as an object. Boxing conversions
can be performed either explicitly or implicitly as shown in the following statements:

After executing the preceding code, both object1 and object2 refer to two different ob-
jects that contain a copy of the integer value in int variable i.

An unboxing conversion can be used to explicitly convert an object reference to a
simple value, as shown in the following statement:

Explicitly attempting to unbox an object reference that does not refer to the correct sim-
ple value type causes an InvalidCastException.

In Chapters 20 and 21, we discuss C#’s generics and generic collections where you’ll see
that you can create data structures of specific value types so that do not need boxing and
unboxing conversions.

19.3 Self-Referential Classes
A self-referential class contains a reference member that refers to an object of the same
class type. For example, the class declaration in Fig. 19.1 defines the shell of a self-referen-
tial class named Node. This type has two properties—int Data and Node reference Next.
Next references an object of type Node, an object of the same type as the one being declared
here—hence, the term “self-referential class.” Next is referred to as a link (i.e., Next can be
used to “tie” an object of type Node to another object of the same type).

int i = 5; // create an int value
object object1 = (object) i; // explicitly box the int value
object object2 = i; // implicitly box the int value

int int1 = (int) object1; // explicitly unbox the int value

1 // Fig. 19.1: Fig19_01.cs
2 // Self-referential Node class declaration.
3 class Node
4 {
5 public int Data { get; set; } // store integer data
6
7

Fig. 19.1 | Self-referential Node class declaration. (Part 1 of 2.)

public Node Next { get; set; } // store reference to next Node

19.4 Linked Lists 749

Self-referential objects can be linked together to form useful data structures, such as
lists, queues, stacks and trees. Figure 19.2 illustrates two self-referential objects linked
together to form a linked list. A backslash (representing a null reference) is placed in the
link member of the second self-referential object to indicate that the link does not refer to
another object. The backslash is for illustration purposes; it does not correspond to the
backslash character in C#. A null link normally indicates the end of a data structure.

Creating and maintaining dynamic data structures requires dynamic memory alloca-
tion—a program’s ability to obtain more memory space at execution time to hold new
nodes and to release space no longer needed. As you learned in Section 10.8, C# programs
do not explicitly release dynamically allocated memory—rather, the CLR performs auto-
matic garbage collection.

The new operator is essential to dynamic memory allocation. Operator new takes as an
operand the type of the object being dynamically allocated and returns a reference to an
object of that type. For example, the statement

allocates the appropriate amount of memory to store a Node, initializes it and stores a ref-
erence to this object in nodeToAdd. If no memory is available, new throws an OutOfMemo-

ryException. The constructor argument 10 specifies the Node object’s data.
The following sections discuss lists, stacks, queues and trees. These data structures are

created and maintained with dynamic memory allocation and self-referential classes.

19.4 Linked Lists
A linked list is a linear collection (i.e., a sequence) of self-referential class objects, called
nodes, connected by reference links—hence, the term “linked” list. A program accesses a

8 public Node(int dataValue)
9 {

10 Data = dataValue;
11 } // end constructor
12 } // end class node

Common Programming Error 19.1
Not setting the link in the last node of a list to null is a logic error.

Fig. 19.2 | Self-referential class objects linked together.

Node nodeToAdd = new Node(10);

Fig. 19.1 | Self-referential Node class declaration. (Part 2 of 2.)

15 10

750 Chapter 19 Data Structures

linked list via a reference to the first node of the list. Each subsequent node is accessed via
the link-reference member stored in the previous node. By convention, the link reference
in the last node of a list is set to null to mark the end of the list. Data is stored in a linked
list dynamically—that is, each node is created as necessary. A node can contain data of any
type, including references to objects of other classes. Stacks and queues are also linear data
structures—in fact, they may be viewed as constrained versions of linked lists. Trees are
nonlinear data structures.

Lists of data can be stored in arrays, but linked lists provide several advantages. A
linked list is appropriate when the number of data elements to be represented in the data
structure is unpredictable. Unlike a linked list, the size of a conventional C# array cannot
be altered, because the array size is fixed at creation time. Conventional arrays can become
full, but linked lists become full only when the system has insufficient memory to satisfy
dynamic memory allocation requests.

Programmers can maintain linked lists in sorted order simply by inserting each new
element at the proper point in the list (locating the proper insertion point does take time).
They do not need to move existing list elements.

Normally linked-list nodes are not stored contiguously in memory. Rather, the nodes
are logically contiguous. Figure 19.3 illustrates a linked list with several nodes.

Performance Tip 19.1
An array can be declared to contain more elements than the number of items expected,
possibly wasting memory. Linked lists provide better memory utilization in these situa-
tions, because they can grow and shrink at execution time.

Performance Tip 19.2
The elements of an array are stored contiguously in memory to allow immediate access to
any array element—the address of any element can be calculated directly from its index.
Linked lists do not afford such immediate access to their elements—an element can be ac-
cessed only by traversing the list from the front.

Fig. 19.3 | Linked list graphical representation.

Performance Tip 19.3
Using linked data structures and dynamic memory allocation (instead of arrays) for data
structures that grow and shrink at execution time can save memory. Keep in mind, how-
ever, that reference links occupy space, and dynamic memory allocation incurs the over-
head of method calls.

H D Q

firstNode lastNode

...

19.4 Linked Lists 751

Linked-List Implementation
Figures 19.4–19.5 use an object of our List class to manipulate a list of miscellaneous object
types. Class ListTest’s Mainmethod (Fig. 19.5) creates a list of objects, inserts objects at the
beginning of the list using List method InsertAtFront, inserts objects at the end of the list
using Listmethod InsertAtBack, deletes objects from the front of the list using Listmeth-
od RemoveFromFront and deletes objects from the end of the list using Listmethod Remove-
FromBack. After each insert and delete operation, the program invokes Listmethod Display
to output the current list contents. If an attempt is made to remove an item from an empty
list, an EmptyListException occurs. A detailed discussion of the program follows.

The program consists of four classes—ListNode (Fig. 19.4, lines 8–30), List (lines
33–147), EmptyListException (lines 150–172) and ListTest (Fig. 19.5). The classes in
Fig. 19.4 create a linked-list library (defined in namespace LinkedListLibrary) that can
be reused throughout this chapter. You should place the code of Fig. 19.4 in its own class
library project, as we described in Section 15.13.

Performance Tip 19.4
Insertion and deletion in a sorted array can be time consuming—all the elements follow-
ing the inserted or deleted element must be shifted appropriately.

1 // Fig. 19.4: LinkedListLibrary.cs
2 // ListNode, List and EmptyListException class declarations.
3 using System;
4
5
6 {
7 // class to represent one node in a list
8 class ListNode
9 {

10 // automatic read-only property Data
11
12
13 // automatic property Next
14
15
16 // constructor to create ListNode that refers to dataValue
17 // and is last node in list
18 public ListNode(object dataValue)
19 : this(dataValue, null)
20 {
21 } // end default constructor
22
23 // constructor to create ListNode that refers to dataValue
24 // and refers to next ListNode in List
25 public ListNode(object dataValue, ListNode nextNode)
26 {
27 Data = dataValue;
28 Next = nextNode;
29 } // end constructor
30 } // end class ListNode

Fig. 19.4 | ListNode, List and EmptyListException class declarations. (Part 1 of 4.)

namespace LinkedListLibrary

public object Data { get; private set; }

public ListNode Next { get; set; }

752 Chapter 19 Data Structures

31
32 // class List declaration
33 public class List
34 {
35
36
37
38
39 // construct empty List with specified name
40 public List(string listName)
41 {
42 name = listName;
43 firstNode = lastNode = null;
44 } // end constructor
45
46 // construct empty List with "list" as its name
47 public List()
48 : this("list")
49 {
50 } // end default constructor
51
52 // Insert object at front of List. If List is empty,
53 // firstNode and lastNode will refer to same object.
54 // Otherwise, firstNode refers to new node.
55 public void InsertAtFront(object insertItem)
56 {
57 if (IsEmpty())
58
59 else

60
61 } // end method InsertAtFront
62
63 // Insert object at end of List. If List is empty,
64 // firstNode and lastNode will refer to same object.
65 // Otherwise, lastNode's Next property refers to new node.
66 public void InsertAtBack(object insertItem)
67 {
68 if (IsEmpty())
69
70 else

71
72 } // end method InsertAtBack
73
74 // remove first node from List
75 public object RemoveFromFront()
76 {
77
78
79
80
81

Fig. 19.4 | ListNode, List and EmptyListException class declarations. (Part 2 of 4.)

private ListNode firstNode;
private ListNode lastNode;
private string name; // string like "list" to display

firstNode = lastNode = new ListNode(insertItem);

firstNode = new ListNode(insertItem, firstNode);

firstNode = lastNode = new ListNode(insertItem);

lastNode = lastNode.Next = new ListNode(insertItem);

if (IsEmpty())
throw new EmptyListException(name);

object removeItem = firstNode.Data; // retrieve data

19.4 Linked Lists 753

82 // reset firstNode and lastNode references
83 if (firstNode == lastNode)
84
85 else

86
87
88 return removeItem; // return removed data
89 } // end method RemoveFromFront
90
91 // remove last node from List
92 public object RemoveFromBack()
93 {
94
95
96
97
98
99 // reset firstNode and lastNode references
100 if (firstNode == lastNode)
101
102 else

103 {
104
105
106 // loop while current.Next is not lastNode
107
108
109
110 // current is new lastNode
111
112
113 } // end else
114
115 return removeItem; // return removed data
116 } // end method RemoveFromBack
117
118 // return true if List is empty
119 public bool IsEmpty()
120 {
121
122 } // end method IsEmpty
123
124 // output List contents
125 public void Display()
126 {
127 if (IsEmpty())
128 {
129 Console.WriteLine("Empty " + name);
130 } // end if
131 else

132 {
133 Console.Write("The " + name + " is: ");

Fig. 19.4 | ListNode, List and EmptyListException class declarations. (Part 3 of 4.)

firstNode = lastNode = null;

firstNode = firstNode.Next;

if (IsEmpty())
throw new EmptyListException(name);

object removeItem = lastNode.Data; // retrieve data

firstNode = lastNode = null;

ListNode current = firstNode;

while (current.Next != lastNode)
current = current.Next; // move to next node

lastNode = current;
current.Next = null;

return firstNode == null;

754 Chapter 19 Data Structures

Class ListNode
Encapsulated in each List object is a linked list of ListNode objects. Class ListNode
(Fig. 19.4, lines 8–30) contains two properties—Data and Next. Data can refer to any ob-
ject. [Note: Typically, a data structure will contain data of only one type, or data of any
type derived from one base type.] In this example, we use data of various types derived
from object to demonstrate that our List class can store data of any type. Next stores a
reference to the next ListNode object in the linked list. The ListNode constructors (lines
18–21 and 25–29) enable us to initialize a ListNode that will be placed at the end of a
List or before a specific ListNode in a List, respectively.

134
135 ListNode current = firstNode;
136
137 // output current node data while not at end of list
138 while (current != null)
139 {
140 Console.Write(current.Data + " ");
141 current = current.Next;
142 } // end while
143
144 Console.WriteLine("\n");
145 } // end else
146 } // end method Display
147 } // end class List
148
149 // class EmptyListException declaration
150 public class EmptyListException : Exception
151 {
152 // parameterless constructor
153 public EmptyListException()
154 : base("The list is empty")
155 {
156 // empty constructor
157 } // end EmptyListException constructor
158
159 // one-parameter constructor
160 public EmptyListException(string name)
161 : base("The " + name + " is empty")
162 {
163 // empty constructor
164 } // end EmptyListException constructor
165
166 // two-parameter constructor
167 public EmptyListException(string exception, Exception inner)
168 : base(exception, inner)
169 {
170 // empty constructor
171 } // end EmptyListException constructor
172 } // end class EmptyListException
173 } // end namespace LinkedListLibrary

Fig. 19.4 | ListNode, List and EmptyListException class declarations. (Part 4 of 4.)

19.4 Linked Lists 755

Class List
Class List (lines 33–147) contains private instance variables firstNode (a reference to
the first ListNode in a List) and lastNode (a reference to the last ListNode in a List).
The constructors (lines 40–44 and 47–50) initialize both references to null and enable us
to specify the List’s name for output purposes. InsertAtFront (lines 55–61), InsertAt-
Back (lines 66–72), RemoveFromFront (lines 75–89) and RemoveFromBack (lines 92–116)
are the primary methods of class List. Method IsEmpty (lines 119–122) is a predicate
method that determines whether the list is empty (i.e., the reference to the first node of
the list is null). Predicate methods typically test a condition and do not modify the object
on which they’re called. If the list is empty, method IsEmpty returns true; otherwise, it
returns false. Method Display (lines 125–146) displays the list’s contents. A detailed dis-
cussion of class List’s methods follows Fig. 19.5.

Class EmptyListException
Class EmptyListException (lines 150–172) defines an exception class that we use to indi-
cate illegal operations on an empty List.

Class ListTest
Class ListTest (Fig. 19.5) uses the linked-list library to create and manipulate a linked
list. [Note: In the project containing Fig. 19.5, you must add a reference to the class library
containing the classes in Fig. 19.4. If you use our existing example, you may need to up-
date this reference.] Line 11 creates a new List object and assigns it to variable list. Lines
14–17 create data to add to the list. Lines 20–27 use List insertion methods to insert these
values and use List method Display to output the contents of list after each insertion.
The values of the simple-type variables are implicitly boxed in lines 20, 22 and 24 where
object references are expected. The code inside the try block (lines 33–50) removes ob-
jects via List deletion methods, outputs each removed object and outputs list after every
deletion. If there’s an attempt to remove an object from an empty list, the catch at lines
51–54 catches the EmptyListException and displays an error message.

1 // Fig. 19.5: ListTest.cs
2 // Testing class List.
3 using System;
4
5
6 // class to test List class functionality
7 class ListTest
8 {
9 public static void Main(string[] args)

10 {
11
12
13 // create data to store in List
14 bool aBoolean = true;
15 char aCharacter = '$';
16 int anInteger = 34567;
17 string aString = "hello";
18

Fig. 19.5 | Testing class List. (Part 1 of 3.)

using LinkedListLibrary;

List list = new List(); // create List container

756 Chapter 19 Data Structures

19
20
21
22
23
24
25
26
27
28
29 // use List remove methods
30 object removedObject;
31
32 // remove data from list and display after each removal
33 try

34 {
35
36 Console.WriteLine(removedObject + " removed");
37
38
39
40 Console.WriteLine(removedObject + " removed");
41
42
43
44 Console.WriteLine(removedObject + " removed");
45
46
47
48 Console.WriteLine(removedObject + " removed");
49
50 } // end try
51 catch (EmptyListException emptyListException)
52 {
53 Console.Error.WriteLine("\n" + emptyListException);
54 } // end catch
55 } // end Main
56 } // end class ListTest

The list is: True

The list is: $ True

The list is: $ True 34567

The list is: $ True 34567 hello

$ removed
The list is: True 34567 hello

True removed
The list is: 34567 hello

Fig. 19.5 | Testing class List. (Part 2 of 3.)

// use List insert methods
list.InsertAtFront(aBoolean);
list.Display();
list.InsertAtFront(aCharacter);
list.Display();
list.InsertAtBack(anInteger);
list.Display();
list.InsertAtBack(aString);
list.Display();

removedObject = list.RemoveFromFront();

list.Display();

removedObject = list.RemoveFromFront();

list.Display();

removedObject = list.RemoveFromBack();

list.Display();

removedObject = list.RemoveFromBack();

list.Display();

19.4 Linked Lists 757

Method InsertAtFront

Over the next several pages, we discuss each of the methods of class List in detail. Method
InsertAtFront (Fig. 19.4, lines 55–61) places a new node at the front of the list. The
method consists of three steps:

1. Call IsEmpty to determine whether the list is empty (line 57).

2. If the list is empty, set both firstNode and lastNode to refer to a new ListNode

initialized with insertItem (line 58). The ListNode constructor at lines 18–21
calls the ListNode constructor at lines 25–29, which sets property Data to refer
to the object passed as the first argument and sets the Next property’s reference
to null.

3. If the list is not empty, the new node is “linked” into the list by setting firstNode
to refer to a new ListNode object initialized with insertItem and firstNode (line
60). When the ListNode constructor (lines 25–29) executes, it sets property Data
to refer to the object passed as the first argument and performs the insertion by
setting the Next reference to the ListNode passed as the second argument.

In Fig. 19.6, part (a) shows a list and a new node during the InsertAtFront operation
before the new node is linked into the list. The dashed lines and arrows in part (b) illustrate
Step 3 of the InsertAtFront operation, which enables the node containing 12 to become
the new list front.

hello removed
The list is: 34567

34567 removed
Empty list

Fig. 19.6 | InsertAtFront operation.

Fig. 19.5 | Testing class List. (Part 3 of 3.)

7 11

firstNode(a)

(b)

12

new ListNode

7 11

firstNode

12

new ListNode

758 Chapter 19 Data Structures

Method InsertAtBack

Method InsertAtBack (Fig. 19.4, lines 66–72) places a new node at the back of the list.
The method consists of three steps:

1. Call IsEmpty to determine whether the list is empty (line 68).

2. If the list is empty, set both firstNode and lastNode to refer to a new ListNode

initialized with insertItem (lines 68–69). The ListNode constructor at lines 18–
21 calls the ListNode constructor at lines 25–29, which sets property Data to re-
fer to the object passed as the first argument and sets the Next reference to null.

3. If the list is not empty, link the new node into the list by setting lastNode and
lastNode.Next to refer to a new ListNode object initialized with insertItem

(line 71). When the ListNode constructor (lines 18–21) executes, it calls the con-
structor at lines 25–29, which sets property Data to refer to the object passed as
an argument and sets the Next reference to null.

In Fig. 19.7, part (a) shows a list and a new node during the InsertAtBack operation
before the new node has been linked into the list. The dashed lines and arrows in part (b)
illustrate Step 3 of method InsertAtBack, which enables a new node to be added to the
end of a list that is not empty.

Method RemoveFromFront

Method RemoveFromFront (Fig. 19.4, lines 75–89) removes the front node of the list and
returns a reference to the removed data. The method throws an EmptyListException (line
78) if the programmer tries to remove a node from an empty list. Otherwise, the method

Performance Tip 19.5
After locating the insertion point for a new item in a sorted linked list, inserting an ele-
ment in the list is fast—only two references have to be modified. All existing nodes remain
at their current locations in memory.

Fig. 19.7 | InsertAtBack operation.

12 7 11 5

(a) firstNode lastNode new ListNode

12 7 11 5

(b) firstNode lastNode new ListNode

19.4 Linked Lists 759

returns a reference to the removed data. After determining that a List is not empty, the
method consists of four steps to remove the first node:

1. Assign firstNode.Data (the data being removed from the list) to variable re-
moveItem (line 80).

2. If the objects to which firstNode and lastNode refer are the same object, the list
has only one element, so the method sets firstNode and lastNode to null (line
84) to remove the node from the list (leaving the list empty).

3. If the list has more than one node, the method leaves reference lastNode as is and
assigns firstNode.Next to firstNode (line 86). Thus, firstNode references the
node that was previously the second node in the List.

4. Return the removeItem reference (line 88).

In Fig. 19.8, part (a) illustrates a list before a removal operation. The dashed lines and
arrows in part (b) show the reference manipulations.

Method RemoveFromBack

Method RemoveFromBack (Fig. 19.4, lines 92–116) removes the last node of a list and re-
turns a reference to the removed data. The method throws an EmptyListException (line
95) if the program attempts to remove a node from an empty list. The method consists of
several steps:

1. Assign lastNode.Data (the data being removed from the list) to variable re-
moveItem (line 97).

2. If firstNode and lastNode refer to the same object (line 100), the list has only
one element, so the method sets firstNode and lastNode to null (line 101) to
remove that node from the list (leaving the list empty).

3. If the list has more than one node, create ListNode variable current and assign
it firstNode (line 104).

Fig. 19.8 | RemoveFromFront operation.

12 7 11 5

(a) firstNode lastNode

12 7 11 5

(b) firstNode lastNode

760 Chapter 19 Data Structures

4. Now “walk the list” with current until it references the node before the last node.
The while loop (lines 107–108) assigns current.Next to current as long as cur-
rent.Next is not equal to lastNode.

5. After locating the second-to-last node, assign current to lastNode (line 111) to
update which node is last in the list.

6. Set current.Next to null (line 112) to remove the last node from the list and
terminate the list at the current node.

7. Return the removeItem reference (line 115).

In Fig. 19.9, part (a) illustrates a list before a removal operation. The dashed lines and
arrows in part (b) show the reference manipulations.

Method Display

Method Display (Fig. 19.4, lines 125–146) first determines whether the list is empty (line
127). If so, Display displays a string consisting of the string "Empty " and the list’s name,
then returns control to the calling method. Otherwise, Display outputs the data in the
list. The method writes a string consisting of the string "The ", the list’s name and the
string " is: ". Then line 135 creates ListNode variable current and initializes it with
firstNode. While current is not null, there are more items in the list. Therefore, the
method displays current.Data (line 140), then assigns current.Next to current (line
141) to move to the next node in the list.

Linear and Circular Singly Linked and Doubly Linked Lists
The kind of linked list we have been discussing is a singly linked list—it begins with a ref-
erence to the first node, and each node contains a reference to the next node “in sequence.”
This list terminates with a node whose reference member has the value null. A singly
linked list may be traversed in only one direction.

A circular, singly linked list (Fig. 19.10) begins with a reference to the first node, and
each node contains a reference to the next node. The “last node” does not contain a null

Fig. 19.9 | RemoveFromBack operation.

current

12 7 11 5

(a) firstNode lastNode

12 7 11 5

(b) firstNode current lastNode

19.4 Linked Lists 761

reference; rather, the reference in the last node points back to the first node, thus closing
the “circle.”

A doubly linked list (Fig. 19.11) allows traversals both forward and backward. Such a
list is often implemented with two “start references”—one that refers to the first element of
the list to allow front-to-back traversal of the list and one that refers to the last element to
allow back-to-front traversal. Each node has both a forward reference to the next node in the
list and a backward reference to the previous node. If your list contains an alphabetized tele-
phone directory, for example, a search for someone whose name begins with a letter near
the front of the alphabet might begin from the front of the list. A search for someone whose
name begins with a letter near the end of the alphabet might begin from the back.

In a circular, doubly linked list (Fig. 19.12), the forward reference of the last node
refers to the first node, and the backward reference of the first node refers to the last node,
thus closing the “circle.”

Fig. 19.10 | Circular, singly linked list.

Fig. 19.11 | Doubly linked list.

Fig. 19.12 | Circular, doubly linked list.

12 7 11 5

firstNode

12 7 11 5

firstNode lastNode

12 7 11 5

firstNode lastNode

762 Chapter 19 Data Structures

19.5 Stacks
A stack may be viewed as a constrained version of a linked list—it receives new nodes and
releases nodes only at the top. For this reason, a stack is referred to as a last-in, first-out
(LIFO) data structure.

The primary operations to manipulate a stack are push and pop. Operation push adds
a new node to the top of the stack. Operation pop removes a node from the top of the
stack and returns the data item from the popped node.

Stacks have many interesting applications. For example, when a program calls a
method, the called method must know how to return to its caller, so the return address is
pushed onto the method-call stack. If a series of method calls occurs, the successive return
values are pushed onto the stack in last-in, first-out order so that each method can return
to its caller. Stacks support recursive method calls in the same manner that they do con-
ventional nonrecursive method calls.

The System.Collections namespace contains class Stack for implementing and
manipulating stacks that can grow and shrink during program execution.

In our next example, we take advantage of the close relationship between lists and
stacks to implement a stack class by reusing a list class. We demonstrate two different
forms of reusability. First, we implement the stack class by inheriting from class List of
Fig. 19.4. Then we implement an identically performing stack class through composition
by including a List object as a private member of a stack class.

Stack Class That Inherits from List

The code in Fig. 19.13 creates a stack class by inheriting from class List of Fig. 19.4 (line
8 of Fig. 19.13). We want the stack to have methods Push, Pop, IsEmpty and Display.
Essentially, these are the methods InsertAtFront, RemoveFromFront, IsEmpty and Dis-

play of class List. Of course, class List contains other methods (such as InsertAtBack
and RemoveFromBack) that we would rather not make accessible through the public inter-
face of the stack. It’s important to remember though that all methods in the public inter-
face of class List are also public methods of the derived class StackInheritance

(Fig. 19.13).

1 // Fig. 19.13: StackInheritanceLibrary.cs
2 // Implementing a stack by inheriting from class List.
3 using LinkedListLibrary;
4
5 namespace StackInheritanceLibrary
6 {
7 // class StackInheritance inherits class List's capabilities
8
9 {

10 // pass name "stack" to List constructor
11 public StackInheritance()
12
13 {
14 } // end constructor
15

Fig. 19.13 | Implementing a stack by inheriting from class List. (Part 1 of 2.)

public class StackInheritance : List

: base("stack")

19.5 Stacks 763

The implementation of each StackInheritance method calls the appropriate List
method—method Push calls InsertAtFront, method Pop calls RemoveFromFront. Class
StackInheritance does not define methods IsEmpty and Display, because StackInher-
itance inherits these methods from class List into StackInheritance’s public interface.
Class StackInheritance uses namespace LinkedListLibrary (Fig. 19.4); thus, the class
library that defines StackInheritance must have a reference to the LinkedListLibrary
class library.

StackInheritanceTest’s Main method (Fig. 19.14) uses class StackInheritance to
create a stack of objects called stack (line 12). Lines 15–18 define four values that will
be pushed onto the stack and popped off it. The program pushes onto the stack (lines 21,
23, 25 and 27) a bool containing true, a char containing '$', an int containing 34567
and a string containing "hello". An infinite while loop (lines 33–38) pops the elements
from the stack. When the stack is empty, method Pop throws an EmptyListException,
and the program displays the exception’s stack trace, which shows the program-execution
stack at the time the exception occurred. The program uses method Display (inherited by
StackInheritance from class List) to output the contents of the stack after each opera-
tion. Class StackInheritanceTest uses namespace LinkedListLibrary (Fig. 19.4) and
namespace StackInheritanceLibrary (Fig. 19.13); thus, the solution for class StackIn-
heritanceTest must have references to both class libraries.

16 // place dataValue at top of stack by inserting
17 // dataValue at front of linked list
18 public void Push(object dataValue)
19 {
20
21 } // end method Push
22
23 // remove item from top of stack by removing
24 // item at front of linked list
25 public object Pop()
26 {
27
28 } // end method Pop
29 } // end class StackInheritance
30 } // end namespace StackInheritanceLibrary

1 // Fig. 19.14: StackInheritanceTest.cs
2 // Testing class StackInheritance.
3 using System;
4 using StackInheritanceLibrary;
5 using LinkedListLibrary;
6
7 // demonstrate functionality of class StackInheritance
8 class StackInheritanceTest
9 {

Fig. 19.14 | Testing class StackInheritance. (Part 1 of 3.)

Fig. 19.13 | Implementing a stack by inheriting from class List. (Part 2 of 2.)

InsertAtFront(dataValue);

return RemoveFromFront();

764 Chapter 19 Data Structures

10 public static void Main(string[] args)
11 {
12 StackInheritance stack = new StackInheritance();
13
14 // create objects to store in the stack
15 bool aBoolean = true;
16 char aCharacter = '$';
17 int anInteger = 34567;
18 string aString = "hello";
19
20
21
22
23
24
25
26
27
28
29
30 // remove items from stack
31 try

32 {
33 while (true)
34 {
35
36 Console.WriteLine(removedObject + " popped");
37 stack.Display();
38 } // end while
39 } // end try
40 catch ()
41 {
42 // if exception occurs, write stack trace
43 Console.Error.WriteLine();
44 } // end catch
45 } // end Main
46 } // end class StackInheritanceTest

The stack is: True

The stack is: $ True

The stack is: 34567 $ True

The stack is: hello 34567 $ True

hello popped
The stack is: 34567 $ True

34567 popped
The stack is: $ True

$ popped
The stack is: True

Fig. 19.14 | Testing class StackInheritance. (Part 2 of 3.)

// use method Push to add items to stack
stack.Push(aBoolean);
stack.Display();
stack.Push(aCharacter);
stack.Display();
stack.Push(anInteger);
stack.Display();
stack.Push(aString);
stack.Display();

object removedObject = stack.Pop();

EmptyListException emptyListException

emptyListException.StackTrace

19.5 Stacks 765

Stack Class That Contains a Reference to a List

Another way to implement a stack class is by reusing a list class through composition. The
class in Fig. 19.15 uses a private object of class List (line 10) in the declaration of class
StackComposition. Composition enables us to hide the methods of class List that should
not be in our stack’s public interface by providing public interface methods only to the
required Listmethods. This class implements each stack method by delegating its work to
an appropriate List method. StackComposition’s methods call List methods Insert-
AtFront, RemoveFromFront, IsEmpty and Display. In this example, we do not show class
StackCompositionTest, because the only difference in this example is that we change the
name of the stack class from StackInheritance to StackComposition.

True popped
Empty stack

at LinkedListLibrary.List.
in C:\examples\ch21\Fig21_04\LinkedListLibrary\
LinkedListLibrary\LinkedListLibrary.cs:line 78

at StackInheritanceLibrary.
in C:\examples\ch21\Fig21_13\StackInheritanceLibrary\
StackInheritanceLibrary\StackInheritance.cs:line 27

at StackInheritanceTest.
in C:\examples\ch21\Fig21_14\StackInheritanceTest\
StackInheritanceTest\StackInheritanceTest.cs:

1 // Fig. 19.15: StackCompositionLibrary.cs
2 // StackComposition declaration with composed List object.
3 using LinkedListLibrary;
4
5 namespace StackCompositionLibrary
6 {
7 // class StackComposition encapsulates List's capabilities
8 public class StackComposition
9 {

10
11
12 // construct empty stack
13 public StackComposition()
14 {
15
16 } // end constructor
17
18 // add object to stack
19 public void Push(object dataValue)
20 {
21
22 } // end method Push
23

Fig. 19.15 | StackComposition class encapsulates functionality of class List. (Part 1 of 2.)

Fig. 19.14 | Testing class StackInheritance. (Part 3 of 3.)

RemoveFromFront()

StackInheritance.Pop()

Main(String[] args)

line 35

private List stack;

stack = new List("stack");

stack.InsertAtFront(dataValue);

766 Chapter 19 Data Structures

19.6 Queues
Another commonly used data structure is the queue. A queue is similar to a checkout line
in a supermarket—the cashier services the person at the beginning of the line first. Other
customers enter the line only at the end and wait for service. Queue nodes are removed
only from the head (or front) of the queue and are inserted only at the tail (or end). For
this reason, a queue is a first-in, first-out (FIFO) data structure. The insert and remove
operations are known as enqueue and dequeue.

Queues have many uses in computer systems. Computers with only a single processor
can service only one app at a time. Each app requiring processor time is placed in a queue.
The app at the front of the queue is the next to receive service. Each app gradually advances
to the front as the apps before it receive service.

Queues are also used to support print spooling. For example, a single printer might
be shared by all users of a network. Many users can send print jobs to the printer, even
when the printer is already busy. These print jobs are placed in a queue until the printer
becomes available. A program called a spooler manages the queue to ensure that as each
print job completes, the next one is sent to the printer.

Information packets also wait in queues in computer networks. Each time a packet
arrives at a network node, it must be routed to the next node along the path to the packet’s
final destination. The routing node routes one packet at a time, so additional packets are
enqueued until the router can route them.

A file server in a computer network handles file-access requests from many clients
throughout the network. Servers have a limited capacity to service requests from clients.
When that capacity is exceeded, client requests wait in queues.

Queue Class That Inherits from List

The code in Fig. 19.16 creates a queue class by inheriting from a list class. We want the
QueueInheritance class (Fig. 19.16) to have methods Enqueue, Dequeue, IsEmpty and

24 // remove object from stack
25 public object Pop()
26 {
27
28 } // end method Pop
29
30 // determine whether stack is empty
31 public bool IsEmpty()
32 {
33
34 } // end method IsEmpty
35
36 // output stack contents
37 public void Display()
38 {
39
40 } // end method Display
41 } // end class StackComposition
42 } // end namespace StackCompositionLibrary

Fig. 19.15 | StackComposition class encapsulates functionality of class List. (Part 2 of 2.)

return stack.RemoveFromFront();

return stack.IsEmpty();

stack.Display();

19.6 Queues 767

Display. Essentially, these are the methods InsertAtBack, RemoveFromFront, IsEmpty
and Display of class List. Of course, the list class contains other methods (such as Inser-
tAtFront and RemoveFromBack) that we would rather not make accessible through the
public interface to the queue class. Remember that all methods in the public interface of
the List class are also public methods of the derived class QueueInheritance.

The implementation of each QueueInheritance method calls the appropriate List
method—method Enqueue calls InsertAtBack and method Dequeue calls RemoveFrom-
Front. Calls to IsEmpty and Display invoke the base-class versions that were inherited
from class List into QueueInheritance’s public interface. Class QueueInheritance uses
namespace LinkedListLibrary (Fig. 19.4); thus, the class library for QueueInheritance
must have a reference to the LinkedListLibrary class library.

Class QueueInheritanceTest’s Main method (Fig. 19.17) creates a QueueInheri-

tance object called queue. Lines 15–18 define four values that will be enqueued and
dequeued. The program enqueues (lines 21, 23, 25 and 27) a bool containing true, a char
containing '$', an int containing 34567 and a string containing "hello". Class
QueueInheritanceTest uses namespace LinkedListLibrary and namespace QueueIn-

1 // Fig. 19.16: QueueInheritanceLibrary.cs
2 // Implementing a queue by inheriting from class List.
3 using LinkedListLibrary;
4
5 namespace QueueInheritanceLibrary
6 {
7 // class QueueInheritance inherits List's capabilities
8
9 {

10 // pass name "queue" to List constructor
11 public QueueInheritance()
12
13 {
14 } // end constructor
15
16 // place dataValue at end of queue by inserting
17 // dataValue at end of linked list
18 public void Enqueue(object dataValue)
19 {
20
21 } // end method Enqueue
22
23 // remove item from front of queue by removing
24 // item at front of linked list
25 public object Dequeue()
26 {
27
28 } // end method Dequeue
29 } // end class QueueInheritance
30 } // end namespace QueueInheritanceLibrary

Fig. 19.16 | Implementing a queue by inheriting from class List.

public class QueueInheritance : List

: base("queue")

InsertAtBack(dataValue);

return RemoveFromFront();

768 Chapter 19 Data Structures

heritanceLibrary; thus, the solution for class StackInheritanceTest must have refer-
ences to both class libraries.

1 // Fig. 19.17: QueueTest.cs
2 // Testing class QueueInheritance.
3 using System;
4 using QueueInheritanceLibrary;
5 using LinkedListLibrary;
6
7 // demonstrate functionality of class QueueInheritance
8 class QueueTest
9 {

10 public static void Main(string[] args)
11 {
12 QueueInheritance queue = new QueueInheritance();
13
14 // create objects to store in the queue
15 bool aBoolean = true;
16 char aCharacter = '$';
17 int anInteger = 34567;
18 string aString = "hello";
19
20
21
22
23
24
25
26
27
28
29
30 // use method Dequeue to remove items from queue
31 object removedObject = null;
32
33 // remove items from queue
34 try

35 {
36 while (true)
37 {
38
39 Console.WriteLine(removedObject + " dequeued");
40
41 } // end while
42 } // end try
43 catch ()
44 {
45 // if exception occurs, write stack trace
46 Console.Error.WriteLine();
47 } // end catch
48 } // end Main
49 } // end class QueueTest

Fig. 19.17 | Testing class QueueInheritance. (Part 1 of 2.)

// use method Enqueue to add items to queue
queue.Enqueue(aBoolean);
queue.Display();
queue.Enqueue(aCharacter);
queue.Display();
queue.Enqueue(anInteger);
queue.Display();
queue.Enqueue(aString);
queue.Display();

removedObject = queue.Dequeue();

queue.Display();

EmptyListException emptyListException

emptyListException.StackTrace

19.7 Trees 769

An infinite while loop (lines 36–41) dequeues the elements from the queue in FIFO
order. When there are no objects left to dequeue, method Dequeue throws an Empty-

ListException, and the program displays the exception’s stack trace, which shows the
program-execution stack at the time the exception occurred. The program uses method
Display (inherited from class List) to output the contents of the queue after each opera-
tion.

19.7 Trees
Linked lists, stacks and queues are linear data structures (i.e., sequences). A tree is a non-
linear, two-dimensional data structure with special properties. Tree nodes contain two or
more links.

Basic Terminology
With binary trees (Fig. 19.18), each tree node contains two links (none, one or both of
which may be null). The root node is the first node in a tree. Each link in the root node
refers to a child. The left child is the first node in the left subtree, and the right child is
the first node in the right subtree. The children of a specific node are called siblings. A
node with no children is called a leaf node. Computer scientists normally draw trees from
the root node down—the opposite of the way most trees grow in nature.

The queue is: True

The queue is: True $

The queue is: True $ 34567

The queue is: True $ 34567 hello

True dequeued
The queue is: $ 34567 hello

$ dequeued
The queue is: 34567 hello

34567 dequeued
The queue is: hello

hello dequeued
Empty queue

at LinkedListLibrary.List.
in C:\examples\ch21\Fig21_04\LinkedListLibrary\
LinkedListLibrary\LinkedListLibrary.cs:line 78

at QueueInheritanceLibrary.QueueInheritance.
in C:\examples\ch21\Fig21_16\QueueInheritanceLibrary\
QueueInheritanceLibrary\QueueInheritance.cs:line 28

at QueueTest.
in C:\examples\ch21\Fig21_17\QueueTest\
QueueTest\QueueTest.cs:

Fig. 19.17 | Testing class QueueInheritance. (Part 2 of 2.)

RemoveFromFront()

Dequeue()

Main(String[] args)

line 38

770 Chapter 19 Data Structures

Binary Search Trees
In our binary-tree example, we create a special binary tree called a binary search tree. A bi-
nary search tree (with no duplicate node values) has the characteristic that the values in any
left subtree are less than the value in the subtree’s parent node, and the values in any right
subtree are greater than the value in the subtree’s parent node. Figure 19.19 illustrates a bi-
nary search tree with 9 integer values. The shape of the binary search tree that corresponds
to a set of data can depend on the order in which the values are inserted into the tree.

19.7.1 Binary Search Tree of Integer Values
The app of Figs. 19.20 and 19.21 creates a binary search tree of integers and traverses it
(i.e., walks through all its nodes) in three ways—using recursive inorder, preorder and
postorder traversals. The program generates 10 random numbers and inserts each into the
tree. Figure 19.20 defines class Tree in namespace BinaryTreeLibrary for reuse purpos-
es. Figure 19.21 defines class TreeTest to demonstrate class Tree’s functionality. Method
Main of class TreeTest instantiates an empty Tree object, then randomly generates 10 in-

Fig. 19.18 | Binary-tree graphical representation.

Common Programming Error 19.2
Not setting to null the links in leaf nodes of a tree is a common logic error.

Fig. 19.19 | Binary search tree containing 9 values.

Root node reference

Left subtree
of node

containing B

Right subtree
of node
containing B

Root node B

A D

C

47

25

11 43 65

77

31 44 68

19.7 Trees 771

tegers and inserts each value in the binary tree by calling Tree method InsertNode. The
program then performs preorder, inorder and postorder traversals of the tree. We’ll discuss
these traversals shortly.

1 // Fig. 19.20: BinaryTreeLibrary.cs
2 // Declaration of class TreeNode and class Tree.
3 using System;
4
5 namespace BinaryTreeLibrary
6 {
7 // class TreeNode declaration
8 class TreeNode
9 {

10 // automatic property LeftNode
11
12
13 // automatic property Data
14
15
16 // automatic property RightNode
17
18
19 // initialize Data and make this a leaf node
20 public TreeNode(int nodeData)
21 {
22
23 // node has no children
24 } // end constructor
25
26 // insert TreeNode into Tree that contains nodes;
27 // ignore duplicate values
28 public void Insert(int insertValue)
29 {
30 if () // insert in left subtree
31 {
32 // insert new TreeNode
33 if (LeftNode == null)
34
35 else // continue traversing left subtree
36
37 } // end if
38 else if () // insert in right subtree
39 {
40 // insert new TreeNode
41 if (RightNode == null)
42
43 else // continue traversing right subtree
44
45 } // end else if
46 } // end method Insert
47 } // end class TreeNode
48

Fig. 19.20 | Declaration of class TreeNode and class Tree. (Part 1 of 3.)

public TreeNode LeftNode { get; set; }

public int Data { get; set; }

public TreeNode RightNode { get; set; }

Data = nodeData;
LeftNode = RightNode = null;

insertValue < Data

LeftNode = new TreeNode(insertValue);

LeftNode.Insert(insertValue);

insertValue > Data

RightNode = new TreeNode(insertValue);

RightNode.Insert(insertValue);

772 Chapter 19 Data Structures

49 // class Tree declaration
50 public class Tree
51 {
52 private TreeNode root;
53
54 // construct an empty Tree of integers
55 public Tree()
56 {
57 root = null;
58 } // end constructor
59
60 // Insert a new node in the binary search tree.
61 // If the root node is null, create the root node here.
62 // Otherwise, call the insert method of class TreeNode.
63 public void InsertNode(int insertValue)
64 {
65 if (root == null)
66
67 else

68
69 } // end method InsertNode
70
71 // begin preorder traversal
72 public void PreorderTraversal()
73 {
74 PreorderHelper(root);
75 } // end method PreorderTraversal
76
77 // recursive method to perform preorder traversal
78 private void PreorderHelper(TreeNode node)
79 {
80 if (node != null)
81 {
82
83
84
85
86
87
88
89
90 } // end if
91 } // end method PreorderHelper
92
93 // begin inorder traversal
94 public void InorderTraversal()
95 {
96 InorderHelper(root);
97 } // end method InorderTraversal
98
99 // recursive method to perform inorder traversal
100 private void InorderHelper(TreeNode node)
101 {

Fig. 19.20 | Declaration of class TreeNode and class Tree. (Part 2 of 3.)

root = new TreeNode(insertValue);

root.Insert(insertValue);

// output node Data
Console.Write(node.Data + " ");

// traverse left subtree
PreorderHelper(node.LeftNode);

// traverse right subtree
PreorderHelper(node.RightNode);

19.7 Trees 773

102 if (node != null)
103 {
104
105
106
107
108
109
110
111
112 } // end if
113 } // end method InorderHelper
114
115 // begin postorder traversal
116 public void PostorderTraversal()
117 {
118 PostorderHelper(root);
119 } // end method PostorderTraversal
120
121 // recursive method to perform postorder traversal
122 private void PostorderHelper(TreeNode node)
123 {
124 if (node != null)
125 {
126
127
128
129
130
131
132
133
134 } // end if
135 } // end method PostorderHelper
136 } // end class Tree
137 } // end namespace BinaryTreeLibrary

1 // Fig. 19.21: TreeTest.cs
2 // Testing class Tree with a binary tree.
3 using System;
4 using BinaryTreeLibrary;
5
6 // class TreeTest declaration
7 public class TreeTest
8 {
9 // test class Tree

10 public static void Main(string[] args)
11 {
12
13 int insertValue;

Fig. 19.21 | Testing class Tree with a binary tree. (Part 1 of 2.)

Fig. 19.20 | Declaration of class TreeNode and class Tree. (Part 3 of 3.)

// traverse left subtree
InorderHelper(node.LeftNode);

// output node data
Console.Write(node.Data + " ");

// traverse right subtree
InorderHelper(node.RightNode);

// traverse left subtree
PostorderHelper(node.LeftNode);

// traverse right subtree
PostorderHelper(node.RightNode);

// output node Data
Console.Write(node.Data + " ");

Tree tree = new Tree();

774 Chapter 19 Data Structures

Class TreeNode (lines 8–47 of Fig. 19.20) is a self-referential class containing three
properties—LeftNode and RightNode of type TreeNode and Data of type int. Initially,
every TreeNode is a leaf node, so the constructor (lines 20–24) initializes references Left-
Node and RightNode to null. We discuss TreeNode method Insert (lines 28–46) shortly.

Class Tree (lines 50–136) manipulates objects of class TreeNode. Class Tree has as
private data root (line 52)—a reference to the root node of the tree. The class contains
public method InsertNode (lines 63–69) to insert a new node in the tree and public

methods PreorderTraversal (lines 72–75), InorderTraversal (lines 94–97) and Pos-

torderTraversal (lines 116–119) to begin traversals of the tree. Each of these methods
calls a separate recursive utility method to perform the traversal operations on the internal
representation of the tree. The Tree constructor (lines 55–58) initializes root to null to
indicate that the tree initially is empty.

14
15 Console.WriteLine("Inserting values: ");
16 Random random = new Random();
17
18 // insert 10 random integers from 0-99 in tree
19 for (int i = 1; i <= 10; i++)
20 {
21 insertValue = random.Next(100);
22 Console.Write(insertValue + " ");
23
24
25 } // end for
26
27 // perform preorder traversal of tree
28 Console.WriteLine("\n\nPreorder traversal");
29
30
31 // perform inorder traversal of tree
32 Console.WriteLine("\n\nInorder traversal");
33
34
35 // perform postorder traversal of tree
36 Console.WriteLine("\n\nPostorder traversal");
37
38 Console.WriteLine();
39 } // end Main
40 } // end class TreeTest

Inserting values:
39 69 94 47 50 72 55 41 97 73

Preorder traversal
39 69 47 41 50 55 94 72 73 97

Inorder traversal
39 41 47 50 55 69 72 73 94 97

Postorder traversal
41 55 50 47 73 72 97 94 69 39

Fig. 19.21 | Testing class Tree with a binary tree. (Part 2 of 2.)

tree.InsertNode(insertValue);

tree.PreorderTraversal();

tree.InorderTraversal();

tree.PostorderTraversal();

19.7 Trees 775

Tree method InsertNode (lines 63–69) first determines whether the tree is empty. If
so, line 66 allocates a new TreeNode, initializes the node with the integer being inserted in
the tree and assigns the new node to root. If the tree is not empty, InsertNode calls
TreeNode method Insert (lines 28–46), which recursively determines the location for the
new node in the tree and inserts the node at that location. A node can be inserted only as a
leaf node in a binary search tree.

The TreeNode method Insert compares the value to insert with the data value in the
root node. If the insert value is less than the root-node data, the program determines
whether the left subtree is empty (line 33). If so, line 34 allocates a new TreeNode, initial-
izes it with the integer being inserted and assigns the new node to reference LeftNode.
Otherwise, line 36 recursively calls Insert for the left subtree to insert the value into the
left subtree. If the insert value is greater than the root-node data, the program determines
whether the right subtree is empty (line 41). If so, line 42 allocates a new TreeNode, ini-
tializes it with the integer being inserted and assigns the new node to reference RightNode.
Otherwise, line 44 recursively calls Insert for the right subtree to insert the value in the
right subtree. If the insert value matches an existing node value, the insert value is ignored.

Methods InorderTraversal, PreorderTraversal and PostorderTraversal call
helper methods InorderHelper (lines 100–113), PreorderHelper (lines 78–91) and
PostorderHelper (lines 122–135), respectively, to traverse the tree and display the node
values. The purpose of the helper methods in class Tree is to allow the programmer to start
a traversal without needing to obtain a reference to the root node first, then call the recur-
sive method with that reference. Methods InorderTraversal, PreorderTraversal and
PostorderTraversal simply take private variable root and pass it to the appropriate
helper method to initiate a traversal of the tree. For the following discussion, we use the
binary search tree shown in Fig. 19.22.

Inorder Traversal Algorithm
Method InorderHelper (lines 100–113) defines the steps for an inorder traversal. Those
steps are as follows:

1. If the argument is null, do not process the tree.

2. Traverse the left subtree with a call to InorderHelper (line 105).

3. Process the value in the node (line 108).

4. Traverse the right subtree with a call to InorderHelper (line 111).

The inorder traversal does not process the value in a node until the values in that node’s
left subtree are processed. The inorder traversal of the tree in Fig. 19.22 is

Fig. 19.22 | Binary search tree.

6 13 17 27 33 42 48

27

13

6 17 33 48

42

776 Chapter 19 Data Structures

The inorder traversal of a binary search tree displays the node values in ascending
order. The process of creating a binary search tree actually sorts the data (when coupled
with an inorder traversal)—thus, this process is called the binary-tree sort.

Preorder Traversal Algorithm
Method PreorderHelper (lines 78–91) defines the steps for a preorder traversal. Those
steps are as follows:

1. If the argument is null, do not process the tree.

2. Process the value in the node (line 83).

3. Traverse the left subtree with a call to PreorderHelper (line 86).

4. Traverse the right subtree with a call to PreorderHelper (line 89).
The preorder traversal processes the value in each node as the node is visited. After pro-
cessing the value in a given node, the preorder traversal processes the values in the left sub-
tree, then the values in the right subtree. The preorder traversal of the tree in Fig. 19.22 is

Postorder Traversal Algorithm
Method PostorderHelper (lines 122–135) defines the steps for a postorder traversal. Those
steps are as follows:

1. If the argument is null, do not process the tree.

2. Traverse the left subtree with a call to PostorderHelper (line 127).

3. Traverse the right subtree with a call to PostorderHelper (line 130).

4. Process the value in the node (line 133).

The postorder traversal processes the value in each node after the values of all that node’s
children are processed. The postorder traversal of the tree in Fig. 19.22 is

Duplicate Elimination
A binary search tree facilitates duplicate elimination. While building a tree, the insertion
operation recognizes attempts to insert a duplicate value, because a duplicate follows the
same “go left” or “go right” decisions on each comparison as the original value did. Thus,
the insertion operation eventually compares the duplicate with a node containing the same
value. At this point, the insertion operation might simply discard the duplicate value.

Searching a binary tree for a value that matches a key value is fast, especially for tightly
packed binary trees. In a tightly packed binary tree, each level contains about twice as
many elements as the previous level. Figure 19.22 is a tightly packed binary tree. A tightly
packed binary search tree with n elements has a minimum of log2 n levels. For such a tree,
at most log2 n comparisons are required either to find a match or to determine that no
match exists. Searching a (tightly packed) 1000-element binary search tree requires at most
10 comparisons, because 210 > 1000. Searching a (tightly packed) 1,000,000-element
binary search tree requires at most 20 comparisons, because 220 > 1,000,000.

27 13 6 17 42 33 48

6 17 13 33 48 42 27

19.7 Trees 777

Overview of the Binary-Tree Exercises
The chapter exercises present algorithms for other binary-tree operations, such as perform-
ing a level-order traversal of a binary tree. The level-order traversal of a binary tree visits
the nodes of the tree row by row, starting at the root-node level. On each level of the tree,
a level-order traversal visits the nodes from left to right.

19.7.2 Binary Search Tree of IComparable Objects
The binary-tree example in Section 19.7.1 works nicely when all the data is of type int. Sup-
pose that you want to manipulate a binary tree of doubles. You could rewrite the TreeNode
and Tree classes with different names and customize the classes to manipulate doubles. Sim-
ilarly, for each data type you could create customized versions of classes TreeNode and Tree.
This proliferates code, and can become difficult to manage and maintain.

Ideally, we’d like to define the binary tree’s functionality once and reuse it for many
types. Languages like C# provide capabilities that enable all objects to be manipulated in
a uniform manner. Using such capabilities enables us to design a more flexible data struc-
ture. C# provides these capabilities with generics (Chapter 20).

In our next example, we take advantage of C#’s polymorphic capabilities by imple-
menting TreeNode and Tree classes that manipulate objects of any type that implements
interface IComparable (namespace System). It is imperative that we be able to compare
objects stored in a binary search tree, so we can determine the path to the insertion point
of a new node. Classes that implement IComparable define method CompareTo, which
compares the object that invokes the method with the object that the method receives as
an argument. The method returns an int value less than zero if the calling object is less
than the argument object, zero if the objects are equal and a positive value if the calling
object is greater than the argument object. Also, both the calling and argument objects
must be of the same data type; otherwise, the method throws an ArgumentException.

Figures 19.23–19.24 enhance the program of Section 19.7.1 to manipulate ICompa-
rable objects. One restriction on the new versions of classes TreeNode and Tree is that each
Tree object can contain objects of only one type (e.g., all strings or all doubles). If a pro-
gram attempts to insert multiple types in the same Tree object, ArgumentExceptions will
occur. We modified only five lines of code in class TreeNode (lines 14, 20, 28, 30 and 38
of Fig. 19.23) and one line of code in class Tree (line 63) to enable processing of ICompa-
rable objects. Except for lines 30 and 38, all other changes simply replaced int with ICom-
parable. Lines 30 and 38 previously used the < and > operators to compare the value being
inserted with the value in a given node. These lines now compare IComparable objects via
the interface’s CompareTo method, then test the method’s return value to determine
whether it’s less than zero (the calling object is less than the argument object) or greater than
zero (the calling object is greater than the argument object), respectively. [Note: If this class
were written using generics, the type of data, int or IComparable, could be replaced at
compile time by any other type that implements the necessary operators and methods.]

1 // Fig. 19.23: BinaryTreeLibrary2.cs
2 // Declaration of class TreeNode and class Tree.
3 using System;

Fig. 19.23 | Declaration of class TreeNode and class Tree. (Part 1 of 4.)

778 Chapter 19 Data Structures

4
5 namespace BinaryTreeLibrary2
6 {
7 // class TreeNode declaration
8 class TreeNode
9 {

10 // automatic property LeftNode
11 public TreeNode LeftNode { get; set; }
12
13 // automatic property Data
14 public Data { get; set; }
15
16 // automatic property RightNode
17 public TreeNode RightNode { get; set; }
18
19 // initialize Data and make this a leaf node
20 public TreeNode(nodeData)
21 {
22 Data = nodeData;
23 LeftNode = RightNode = null; // node has no children
24 } // end constructor
25
26 // insert TreeNode into Tree that contains nodes;
27 // ignore duplicate values
28 public void Insert(insertValue)
29 {
30 if () // insert in left subtree
31 {
32 // insert new TreeNode
33 if (LeftNode == null)
34 LeftNode = new TreeNode(insertValue);
35 else // continue traversing left subtree
36 LeftNode.Insert(insertValue);
37 } // end if
38 else if () // insert in right
39 {
40 // insert new TreeNode
41 if (RightNode == null)
42 RightNode = new TreeNode(insertValue);
43 else // continue traversing right subtree
44 RightNode.Insert(insertValue);
45 } // end else if
46 } // end method Insert
47 } // end class TreeNode
48
49 // class Tree declaration
50 public class Tree
51 {
52 private TreeNode root;
53
54 // construct an empty Tree of IComparable objects
55 public Tree()
56 {

Fig. 19.23 | Declaration of class TreeNode and class Tree. (Part 2 of 4.)

IComparable

IComparable

IComparable

insertValue.CompareTo(Data) < 0

insertValue.CompareTo(Data) > 0

19.7 Trees 779

57 root = null;
58 } // end constructor
59
60 // Insert a new node in the binary search tree.
61 // If the root node is null, create the root node here.
62 // Otherwise, call the insert method of class TreeNode.
63 public void InsertNode(insertValue)
64 {
65 if (root == null)
66 root = new TreeNode(insertValue);
67 else

68 root.Insert(insertValue);
69 } // end method InsertNode
70
71 // begin preorder traversal
72 public void PreorderTraversal()
73 {
74 PreorderHelper(root);
75 } // end method PreorderTraversal
76
77 // recursive method to perform preorder traversal
78 private void PreorderHelper(TreeNode node)
79 {
80 if (node != null)
81 {
82 // output node Data
83 Console.Write(node.Data + " ");
84
85 // traverse left subtree
86 PreorderHelper(node.LeftNode);
87
88 // traverse right subtree
89 PreorderHelper(node.RightNode);
90 } // end if
91 } // end method PreorderHelper
92
93 // begin inorder traversal
94 public void InorderTraversal()
95 {
96 InorderHelper(root);
97 } // end method InorderTraversal
98
99 // recursive method to perform inorder traversal
100 private void InorderHelper(TreeNode node)
101 {
102 if (node != null)
103 {
104 // traverse left subtree
105 InorderHelper(node.LeftNode);
106
107 // output node data
108 Console.Write(node.Data + " ");
109

Fig. 19.23 | Declaration of class TreeNode and class Tree. (Part 3 of 4.)

IComparable

780 Chapter 19 Data Structures

Class TreeTest (Fig. 19.24) creates three Tree objects to store int, double and
string values, all of which the .NET Framework defines as IComparable types. The pro-
gram populates the trees with the values in arrays intArray (line 12), doubleArray (line
13) and stringArray (lines 14–15), respectively.

110 // traverse right subtree
111 InorderHelper(node.RightNode);
112 } // end if
113 } // end method InorderHelper
114
115 // begin postorder traversal
116 public void PostorderTraversal()
117 {
118 PostorderHelper(root);
119 } // end method PostorderTraversal
120
121 // recursive method to perform postorder traversal
122 private void PostorderHelper(TreeNode node)
123 {
124 if (node != null)
125 {
126 // traverse left subtree
127 PostorderHelper(node.LeftNode);
128
129 // traverse right subtree
130 PostorderHelper(node.RightNode);
131
132 // output node Data
133 Console.Write(node.Data + " ");
134 } // end if
135 } // end method PostorderHelper
136 } // end class Tree
137 } // end namespace BinaryTreeLibrary

1 // Fig. 19.24: TreeTest.cs
2 // Testing class Tree with IComparable objects.
3 using System;
4 using BinaryTreeLibrary2;
5
6 // class TreeTest declaration
7 public class TreeTest
8 {
9 // test class Tree

10 public static void Main(string[] args)
11 {
12
13
14
15

Fig. 19.24 | Testing class Tree with IComparable objects. (Part 1 of 3.)

Fig. 19.23 | Declaration of class TreeNode and class Tree. (Part 4 of 4.)

int[] intArray = { 8, 2, 4, 3, 1, 7, 5, 6 };
double[] doubleArray = { 8.8, 2.2, 4.4, 3.3, 1.1, 7.7, 5.5, 6.6 };
string[] stringArray = { "eight", "two", "four",

"three", "one", "seven", "five", "six" };

19.7 Trees 781

16
17 // create int Tree
18 Tree intTree = new Tree();
19
20
21
22 // create double Tree
23 Tree doubleTree = new Tree();
24
25
26
27 // create string Tree
28 Tree stringTree = new Tree();
29
30
31 } // end Main
32
33 // populate Tree with array elements
34 private static void PopulateTree(Array array, Tree tree, string name)
35 {
36 Console.WriteLine("\n\n\nInserting into " + name + ":");
37
38 foreach ()
39 {
40 Console.Write(data + " ");
41 tree.InsertNode(data);
42 } // end foreach
43 } // end method PopulateTree
44
45 // perform traversals
46 private static void TraverseTree(Tree tree, string treeType)
47 {
48 // perform preorder traversal of tree
49 Console.WriteLine("\n\nPreorder traversal of " + treeType);
50
51
52 // perform inorder traversal of tree
53 Console.WriteLine("\n\nInorder traversal of " + treeType);
54
55
56 // perform postorder traversal of tree
57 Console.WriteLine("\n\nPostorder traversal of " + treeType);
58
59 } // end method TraverseTree
60 } // end class TreeTest

Inserting into intTree:
8 2 4 3 1 7 5 6

Preorder traversal of intTree
8 2 1 4 3 7 5 6

Inorder traversal of intTree
1 2 3 4 5 6 7 8

Fig. 19.24 | Testing class Tree with IComparable objects. (Part 2 of 3.)

PopulateTree(intArray, intTree, "intTree");
TraverseTree(intTree, "intTree");

PopulateTree(doubleArray, doubleTree, "doubleTree");
TraverseTree(doubleTree, "doubleTree");

PopulateTree(stringArray, stringTree, "stringTree");
TraverseTree(stringTree, "stringTree");

IComparable data in array

tree.PreorderTraversal();

tree.InorderTraversal();

tree.PostorderTraversal();

782 Chapter 19 Data Structures

Method PopulateTree (lines 34–43) receives as arguments an Array containing the
initializer values for the Tree, a Tree in which the array elements will be placed and a
string representing the Tree name, then inserts each Array element into the Tree.
Method TraverseTree (lines 46–59) receives as arguments a Tree and a string repre-
senting the Tree name, then outputs the preorder, inorder and postorder traversals of the
Tree. The inorder traversal of each Tree outputs the data in sorted order regardless of the
data type stored in the Tree. Our polymorphic implementation of class Tree invokes the
appropriate data type’s CompareTo method to determine the path to each value’s insertion
point by using the standard binary-search-tree insertion rules. Also, notice that the Tree
of strings appears in alphabetical order.

19.8 Wrap-Up
In this chapter, you learned that simple types are value-type structs but can still be used
anywhere objects are expected in a program due to boxing and unboxing conversions.
You learned that linked lists are collections of data items that are “linked together in a
chain.” You also learned that a program can perform insertions and deletions anywhere in
a linked list (though our implementation performed insertions and deletions only at the
ends of the list). We demonstrated that the stack and queue data structures are constrained
versions of lists. For stacks, you saw that insertions and deletions are made only at the
top—so stacks are known as last-in, first out (LIFO) data structures. For queues, which

Postorder traversal of intTree
1 3 6 5 7 4 2 8

Inserting into doubleTree:
8.8 2.2 4.4 3.3 1.1 7.7 5.5 6.6

Preorder traversal of doubleTree
8.8 2.2 1.1 4.4 3.3 7.7 5.5 6.6

Inorder traversal of doubleTree
1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8

Postorder traversal of doubleTree
1.1 3.3 6.6 5.5 7.7 4.4 2.2 8.8

Inserting into stringTree:
eight two four three one seven five six

Preorder traversal of stringTree
eight two four five three one seven six

Inorder traversal of stringTree
eight five four one seven six three two

Postorder traversal of stringTree
five six seven one three four two eight

Fig. 19.24 | Testing class Tree with IComparable objects. (Part 3 of 3.)

19.8 Summary 783

represent waiting lines, you saw that insertions are made at the tail and deletions are made
from the head—so queues are known as first-in, first out (FIFO) data structures. We also
presented the binary tree data structure. You saw a binary search tree that facilitated high-
speed searching and sorting of data and efficient duplicate elimination. In the next chap-
ter, we introduce generics, which allow you to declare a family of classes and methods that
implement the same functionality on any type.

Summary
Section 19.1 Introduction
• Dynamic data structures can grow and shrink at execution time.

Section 19.2 Simple-Type structs, Boxing and Unboxing
• All simple-type names are aliases for corresponding structs in namespace System.

• Each simple type struct declares methods for manipulating the corresponding simple-type values.

• Each struct that represents a simple type inherits from class ValueType in namespace System.

• A boxing conversion creates an object that contains a copy of a simple-type value.

• An unboxing conversion retrieves a simple-type value from an object.

Section 19.3 Self-Referential Classes
• A self-referential class contains a data member that refers to an object of the same class type. Self-

referential objects can be linked to form data structures, such as lists, queues, stacks and trees.

• Creating and maintaining dynamic data structures requires dynamic memory allocation—a pro-
gram’s ability to obtain more memory at execution time (to hold new nodes) and to release mem-
ory no longer needed.

• Operator new takes as an operand the type of the object being dynamically allocated, calls the
appropriate constructor to initialize the object and returns a reference to the new object. If no
memory is available, new throws an OutOfMemoryException.

Section 19.4 Linked Lists
• A linked list is a linear collection (i.e., a sequence) of self-referential class objects called nodes,

connected by reference links.

• A node can contain properties of any type, including references to objects of other classes.

• A linked list is accessed via a reference to the first node of the list. Each subsequent node is ac-
cessed via the link-reference member stored in the previous node.

• By convention, the link reference in the last node of a list is set to null to mark the end of the list.

• A circular, singly linked list begins with a reference to the first node, and each node contains a
reference to the next node. The “last node” does not contain a null reference; rather, the reference
in the last node points back to the first node, thus closing the “circle.”

• A doubly linked list allows traversals both forward and backward. Such a list is often implement-
ed with two “start references”—one that refers to the first element of the list to allow front-to-
back traversal of the list and one that refers to the last element to allow back-to-front traversal.
Each node has both a forward reference to the next node in the list and a backward reference to
the previous node.

784 Chapter 19 Data Structures

• In a circular, doubly linked list, the forward reference of the last node refers to the first node, and
the backward reference of the first node refers to the last node, thus closing the “circle.”

Section 19.5 Stacks
• Stacks are important in compilers and operating systems.

• A stack is a constrained version of a linked list—new nodes can be added to and removed from
a stack only at the top. A stack is referred to as a last-in, first-out (LIFO) data structure.

• The primary stack operations are push and pop. Operation push adds a new node to the top of
the stack. Operation pop removes a node from the top of the stack and returns the data object
from the popped node.

Section 19.6 Queues
• Queues represent waiting lines. Insertions occur at the back (also referred to as the tail) of a

queue, and deletions occur from the front (also referred to as the head) of a queue.

• A queue is similar to a checkout line in a supermarket: The first person in line is served first; other
customers enter the line at the end and wait to be served.

• Queue nodes are removed only from the head of the queue and are inserted only at the tail of the
queue. For this reason, a queue is referred to as a first-in, first-out (FIFO) data structure.

• The insert and remove operations for a queue are known as enqueue and dequeue.

Section 19.7 Trees
• Binary trees facilitate high-speed searching and sorting of data.

• Tree nodes contain two or more links.

• A binary tree is a tree whose nodes all contain two links (each of which can be null). The root
node is the first node in a tree.

• Each link in the root node refers to a child. The left child is the root node of the left subtree, and
the right child is the root node of the right subtree.

• The children of a node are called siblings. A node with no children is called a leaf node.

• A binary search tree (with no duplicate node values) has the characteristic that the values in any
left subtree are less than the value in that subtree’s parent node, and the values in any right sub-
tree are greater than the value in that subtree’s parent node.

• A node can be inserted only as a leaf node in a binary search tree.

• In a preorder traversal, the value in each node is processed as the node is visited. After the value
in a given node is processed, the values in the left subtree are processed, then the values in the
right subtree are processed.

• In a postorder traversal, the value in each node is processed after the node’s left and right subtrees
are processed.

• In an inorder traversal, the value in each node is processed after the node’s left subtree is pro-
cessed and before the node’s right subtree is processed.

• The inorder traversal of a binary search tree processes the node values in ascending order. The
process of creating a binary search tree actually sorts the data (when coupled with an inorder tra-
versal)—thus, this process is called the binary-tree sort.

• The binary search tree facilitates duplicate elimination. As the tree is created, attempts to insert a
duplicate value are recognized because a duplicate follows the same “go left” or “go right” decisions
on each comparison that the original value did. Thus, the duplicate eventually is compared with
a node containing the same value. The duplicate value may simply be discarded at this point.

Terminology 785

Terminology
ArgumentException

binary search tree
binary tree
binary-tree sort
boxing conversion
child node
circular, doubly linked list
circular, singly linked list
collection
CompareTo method of interface IComparable
data structures
dequeue
doubly linked list
duplicate elimination
dynamic data structures
enqueue
first-in, first-out (FIFO) data structure
head of a queue
IComparable interface
inorder traversal
InvalidCastException

last-in, first-out (LIFO) data structure
leaf node
left child node
left subtree
level-order traversal of a binary tree
linear data structure
link

linked list
node
OutOfMemoryException

parent node
pop on a stack
postorder traversal
predicate method
preorder traversal
print spooling
push on a stack
queue
right child node
right subtree
root node
searching
self-referential class
sibling node
simple type
singly linked list
sorting
spooler
stack
struct

tail of a queue
top of a stack
tightly packed binary tree
unboxing conversion
ValueType class

Self-Review Exercises
19.1 State whether each of the following is true or false. If false, explain why.

a) In a queue, the first item to be added is the last item to be removed.
b) Trees can have no more than two child nodes per node.
c) A tree node with no children is called a leaf node.
d) Linked-list nodes are stored contiguously in memory.
e) The primary operations of the stack data structure are enqueue and dequeue.
f) Lists, stacks and queues are linear data structures.

19.2 Fill in the blanks in each of the following statements:
a) A(n) class is used to define nodes that form dynamic data structures, which

can grow and shrink at execution time.
b) Operator allocates memory dynamically; this operator returns a reference

to the allocated memory.
c) A(n) is a constrained version of a linked list in which nodes can be inserted

and deleted only from the start of the list; this data structure returns node values in last-
in, first-out order.

d) A queue is a(n) data structure, because the first nodes inserted are the first
nodes removed.

786 Chapter 19 Data Structures

e) A(n) is a constrained version of a linked list in which nodes can be inserted
only at the end of the list and deleted only from the start of the list.

f) A(n) is a nonlinear, two-dimensional data structure that contains nodes
with two or more links.

g) The nodes of a(n) tree contain two link members.
h) The tree-traversal algorithm that processes the node then processes all the nodes to its

left followed by all the nodes to its right is called .

Answers to Self-Review Exercises
19.1 a) False. A queue is a first-in, first-out data structure—the first item added is the first item
removed. b) False. In general, trees may have as many child nodes per node as is necessary. Only
binary trees are restricted to no more than two child nodes per node. c) True. d) False. Linked-list
nodes are logically contiguous, but they need not be stored in a physically contiguous memory
space. e) False. Those are the primary operations of a queue. The primary operations of a stack are
push and pop. f) True.

19.2 a) self-referential. b) new. c) stack. d) first-in, first-out (FIFO). e) queue. f) tree. g) binary.
h) preorder.

Exercises
19.3 (Merging Ordered-List Objects) Write a program that merges two ordered-list objects of inte-
gers into a single ordered-list object of integers. Method Merge of class ListMerge should receive refer-
ences to each of the list objects to be merged and should return a reference to the merged-list object.

19.4 (Reversing a Line of Text with a Stack) Write a program that inputs a line of text and uses
a stack object to display the line reversed.

19.5 (Palindromes) Write a program that uses a stack to determine whether a string is a palin-
drome (i.e., the string is spelled identically backward and forward). The program should ignore cap-
italization, spaces and punctuation.

19.6 (Evaluating Expressions with a Stack) Stacks are used by compilers to evaluate expressions
and generate machine-language code. In this and the next exercise, we investigate how compilers
evaluate arithmetic expressions consisting only of constants, operators and parentheses.

Humans generally write expressions like 3 + 4 and 7 / 9, in which the operator (+ or / here) is
written between its operands—this is called infix notation. Computers “prefer” postfix notation, in
which the operator is written to the right of its two operands. The preceding infix expressions
would appear in postfix notation as 3 4 + and 7 9 /, respectively.

To evaluate a complex infix expression, a compiler would first convert the expression to post-
fix notation, then evaluate the postfix version of the expression. Each of these algorithms requires
only a single left-to-right pass of the expression. Each algorithm uses a stack object in support of its
operation, and in each algorithm the stack is used for a different purpose. Here, you’ll implement
the infix-to-postfix conversion algorithm. In the next exercise, you’ll implement the postfix-expres-
sion evaluation algorithm.

Write class InfixToPostfixConverter to convert an ordinary infix arithmetic expression
(assume a valid expression is entered), with single-digit integers, such as

(6 + 2) * 5 - 8 / 4

to a postfix expression. The postfix version of the preceding infix expression is

6 2 + 5 * 8 4 / -

Exercises 787

The program should read the expression into StringBuilder infix, then use class StackInheri-
tance (implemented in Fig. 19.13) to help create the postfix expression in StringBuilder postfix.
The algorithm for creating a postfix expression is as follows:

a) Push a left parenthesis '(' on the stack.
b) Append a right parenthesis ')' to the end of infix.
c) While the stack is not empty, read infix from left to right and do the following:

If the current character in infix is a digit, append it to postfix.
If the current character in infix is a left parenthesis, push it onto the stack.
If the current character in infix is an operator:

Pop operators (if there are any) at the top of the stack while they have equal
or higher precedence than the current operator, and append the popped
operators to postfix.

Push the current character in infix onto the stack.
If the current character in infix is a right parenthesis:

Pop operators from the top of the stack and append them to postfix until
a left parenthesis is at the top of the stack.

Pop (and discard) the left parenthesis from the stack.
The following arithmetic operations are allowed in an expression:

+ addition
- subtraction
* multiplication
/ division
^ exponentiation
% modulus

Some of the methods you may want to provide in your program follow:
a) Method ConvertToPostfix, which converts the infix expression to postfix notation.
b) Method IsOperator, which determines whether c is an operator.
c) Method Precedence, which determines whether the precedence of operator1 (from the

infix expression) is less than, equal to or greater than the precedence of operator2 (from
the stack). The method returns true if operator1 has lower precedence than or equal
precedence to operator2. Otherwise, false is returned.

19.7 (Evaluating a Postfix Expression with a Stack) Write class PostfixEvaluator, which eval-
uates a postfix expression (assume it is valid) such as

6 2 + 5 * 8 4 / -

The program should read a postfix expression consisting of digits and operators into a String-

Builder. Using the stack class from Exercise 19.6, the program should scan the expression and
evaluate it. The algorithm (for single-digit numbers) is as follows:

a) Append a right parenthesis ')' to the end of the postfix expression. When the right-
parenthesis character is encountered, no further processing is necessary.

b) When the right-parenthesis character has not been encountered, read the expression
from left to right.

If the current character is a digit, do the following:
Push its integer value on the stack (the integer value of a digit character is its
value in the computer’s character set minus the value of '0' in Unicode).

Otherwise, if the current character is an operator:
Pop the two top elements of the stack into variables x and y.
Calculate y operator x.
Push the result of the calculation onto the stack.

c) When the right parenthesis is encountered in the expression, pop the top value of the
stack. This is the result of the postfix expression.

788 Chapter 19 Data Structures

[Note: In Part b above (based on the sample expression at the beginning of this exercise), if the
operator is '/', the top of the stack is 4 and the next element in the stack is 8, then pop 4 into x,
pop 8 into y, evaluate 8 / 4 and push the result, 2, back on the stack. This note also applies to oper-
ator '-'.] The arithmetic operations allowed in an expression are:

+ addition
- subtraction
* multiplication
/ division
^ exponentiation
% modulus

You may want to provide the following methods:
a) Method EvaluatePostfixExpression, which evaluates the postfix expression.
b) Method Calculate, which evaluates the expression op1 operator op2.

19.8 (Level-Order Binary Tree-Traversal) The program of Fig. 19.21 illustrated three recursive
methods of traversing a binary tree—inorder, preorder, and postorder traversals. This exercise pres-
ents the level-order traversal of a binary tree, in which the node values are displayed level by level,
starting at the root-node level. The nodes on each level are displayed from left to right. The level-
order traversal is not a recursive algorithm. It uses a queue object to control the output of the nodes.
The algorithm is as follows:

a) Insert the root node in the queue.
b) While there are nodes left in the queue, do the following:

Get the next node in the queue.
Display the node’s value.
If the reference to the left child of the node is not null:

Insert the left child node in the queue.
If the reference to the right child of the node is not null:

Insert the right child node in the queue.
Write method LevelOrderTraversal to perform a level-order traversal of a binary-tree object.

Modify the program of Fig. 19.21 to use this method. [Note: You also will need to use the queue-
processing methods of Fig. 19.16 in this program.]

20Generics

…our special individuality, as
distinguished from our generic
humanity.
—Oliver Wendell Holmes, Sr.

Every man of genius sees the
world at a different angle from
his fellows.
—Havelock Ellis

Born under one law, to another
bound.
—Lord Brooke

O b j e c t i v e s
In this chapter you’ll:

� Create generic methods that
perform identical tasks on
arguments of different types.

� Create a generic Stack class
that can be used to store
objects of most types.

� Understand how to overload
generic methods with
nongeneric methods or with
other generic methods.

� Understand the kinds of
constraints that can be
applied to a type parameter.

� Apply multiple constraints to
a type parameter.

790 Chapter 20 Generics

20.1 Introduction
In Chapter 19, we presented data structures that stored and manipulated object refer-
ences. This chapter continues our multi-chapter discussion on data structures. You could
store any object in our data structures. One inconvenient aspect of storing object refer-
ences occurs when retrieving them from a collection. An app normally needs to process
specific types of objects. As a result, the object references obtained from a collection typ-
ically need to be downcast to an appropriate type to allow the app to process the objects
correctly. In addition, data of value types (e.g., int and double) must be boxed to be ma-
nipulated with object references, which increases the overhead of processing such data.
Most importantly, processing all data as type object limits the C# compiler’s ability to
perform type checking.

Though we can easily create data structures that manipulate any type of data as
objects (as we did in Chapter 19), it would be nice if we could detect type mismatches at
compile time—this is known as compile-time type safety. For example, if a Stack should
store only int values, attempting to push a string onto that Stack should cause a com-
pile-time error. Similarly, a Sort method should be able to compare elements that are all
guaranteed to have the same type. If we create type-specific versions of class Stack class
and method Sort, the C# compiler would certainly be able to ensure compile-time type
safety. However, this would require that we create many copies of the same basic code.

This chapter discusses generics, which provide the means to create the general models
mentioned above. Generic methods enable you to specify, with a single method declaration,
a set of related methods. Generic classes enable you to specify, with a single class declaration, a
set of related classes. Similarly, generic interfaces enable you to specify, with a single interface
declaration, a set of related interfaces. Generics provide compile-time type safety. [Note: You can
also implement generic structs and delegates.] So far in this book, we’ve used the generic
types List (Chapter 9) and Dictionary (Chapter 17).

We can write a generic method for sorting an array of objects, then invoke the generic
method separately with an int array, a double array, a string array and so on, to sort each
different type of array. The compiler performs type checking to ensure that the array
passed to the sorting method contains only elements of the correct type. We can write a
single generic Stack class that manipulates a stack of objects, then instantiate Stack

objects for a stack of ints, a stack of doubles, a stack of strings and so on. The compiler
performs type checking to ensure that the Stack stores only elements of the correct type.

This chapter presents examples of generic methods and generic classes. It also con-
siders the relationships between generics and other C# features, such as overloading.
Chapter 21, Collections, discusses the .NET Framework’s generic and nongeneric collec-
tions classes. A collection is a data structure that maintains a group of related objects or

20.1 Introduction
20.2 Motivation for Generic Methods
20.3 Generic-Method Implementation
20.4 Type Constraints

20.5 Overloading Generic Methods
20.6 Generic Classes
20.7 Wrap-Up

Summary | Terminology | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

20.2 Motivation for Generic Methods 791

values. The .NET Framework collection classes use generics to allow you to specify the
exact types of object that a particular collection will store.

20.2 Motivation for Generic Methods
Overloaded methods are often used to perform similar operations on different types of
data. To understand the motivation for generic methods, let’s begin with an example
(Fig. 20.1) that contains three overloaded DisplayArray methods (lines 23–29, lines 32–
38 and lines 41–47). These methods display the elements of an int array, a double array
and a char array, respectively. Soon, we’ll reimplement this program more concisely and
elegantly using a single generic method.

1 // Fig. 20.1: OverloadedMethods.cs
2 // Using overloaded methods to display arrays of different types.
3 using System;
4
5 class OverloadedMethods
6 {
7 static void Main(string[] args)
8 {
9 // create arrays of int, double and char

10 int[] intArray = { 1, 2, 3, 4, 5, 6 };
11 double[] doubleArray = { 1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7 };
12 char[] charArray = { 'H', 'E', 'L', 'L', 'O' };
13
14 Console.WriteLine("Array intArray contains:");
15
16 Console.WriteLine("Array doubleArray contains:");
17
18 Console.WriteLine("Array charArray contains:");
19
20 } // end Main
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

Fig. 20.1 | Using overloaded methods to display arrays of different types. (Part 1 of 2.)

DisplayArray(intArray); // pass an int array argument

DisplayArray(doubleArray); // pass a double array argument

DisplayArray(charArray); // pass a char array argument

// output int array
private static void DisplayArray(int[] inputArray)
{

foreach (int element in inputArray)
Console.Write(element + " ");

Console.WriteLine("\n");
} // end method DisplayArray

// output double array
private static void DisplayArray(double[] inputArray)
{

foreach (double element in inputArray)
Console.Write(element + " ");

Console.WriteLine("\n");
} // end method DisplayArray

792 Chapter 20 Generics

The program begins by declaring and initializing three arrays—six-element int array
intArray (line 10), seven-element double array doubleArray (line 11) and five-element
char array charArray (line 12). Then, lines 14–19 output the arrays.

When the compiler encounters a method call, it attempts to locate a method declara-
tion that has the same method name and parameters that match the argument types in the
method call. In this example, each DisplayArray call exactly matches one of the Display-
Array method declarations. For example, line 15 calls DisplayArray with intArray as its
argument. At compile time, the compiler determines argument intArray’s type (i.e.,
int[]), attempts to locate a method named DisplayArray that specifies a single int[]
parameter (which it finds at lines 23–29) and sets up a call to that method. Similarly, when
the compiler encounters the DisplayArray call at line 17, it determines argument double-
Array’s type (i.e., double[]), then attempts to locate a method named DisplayArray that
specifies a single double[] parameter (which it finds at lines 32–38) and sets up a call to
that method. Finally, when the compiler encounters the DisplayArray call at line 19, it
determines argument charArray’s type (i.e., char[]), then attempts to locate a method
named DisplayArray that specifies a single char[] parameter (which it finds at lines 41–
47) and sets up a call to that method.

Study each DisplayArray method. Note that the array element type (int, double or
char) appears in two locations in each method—the method header (lines 23, 32 and 41)
and the foreach statement header (lines 25, 34 and 43). If we replace the element types in
each method with a generic name (such as T for “type”) then all three methods would look
like the one in Fig. 20.2. It appears that if we can replace the array element type in each of
the three methods with a single “generic type parameter,” then we should be able to declare
one DisplayArray method that can display the elements of any array. The method in
Fig. 20.2 will not compile, because its syntax is not correct. We declare a generic Display-
Array method with the proper syntax in Fig. 20.3.

39
40
41
42
43
44
45
46
47
48 } // end class OverloadedMethods

Array intArray contains:
1 2 3 4 5 6

Array doubleArray contains:
1.1 2.2 3.3 4.4 5.5 6.6 7.7

Array charArray contains:
H E L L O

Fig. 20.1 | Using overloaded methods to display arrays of different types. (Part 2 of 2.)

// output char array
private static void DisplayArray(char[] inputArray)
{

foreach (char element in inputArray)
Console.Write(element + " ");

Console.WriteLine("\n");
} // end method DisplayArray

20.3 Generic-Method Implementation 793

20.3 Generic-Method Implementation
If the operations performed by several overloaded methods are identical for each argument
type, the overloaded methods can be more compactly and conveniently coded using a ge-
neric method. You can write a single generic-method declaration that can be called at dif-
ferent times with arguments of different types. Based on the types of the arguments passed
to the generic method, the compiler handles each method call appropriately.

Figure 20.3 reimplements the app of Fig. 20.1 using a generic DisplayArray method
(lines 24–30). Note that the DisplayArray method calls in lines 16, 18 and 20 are iden-
tical to those of Fig. 20.1, the outputs of the two apps are identical and the code in
Fig. 20.3 is 17 lines shorter than that in Fig. 20.1. As illustrated in Fig. 20.3, generics
enable us to create and test our code once, then reuse it for many different types of data.
This demonstrates the expressive power of generics.

1 private static void DisplayArray(T[] inputArray)
2 {
3 foreach (T element in inputArray)
4 Console.Write(element + " ");
5
6 Console.WriteLine("\n");
7 } // end method DisplayArray

Fig. 20.2 | DisplayArray method in which actual type names are replaced by convention with
the generic name T. Again, this code will not compile.

1 // Fig. 20.3: GenericMethod.cs
2 // Using overloaded methods to display arrays of different types.
3 using System;
4 using System.Collections.Generic;
5
6 class GenericMethod
7 {
8 public static void Main(string[] args)
9 {

10 // create arrays of int, double and char
11 int[] intArray = { 1, 2, 3, 4, 5, 6 };
12 double[] doubleArray = { 1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7 };
13 char[] charArray = { 'H', 'E', 'L', 'L', 'O' };
14
15 Console.WriteLine("Array intArray contains:");
16
17 Console.WriteLine("Array doubleArray contains:");
18
19 Console.WriteLine("Array charArray contains:");
20
21 } // end Main
22

Fig. 20.3 | Using a generic method to display arrays of different types. (Part 1 of 2.)

DisplayArray(intArray); // pass an int array argument

DisplayArray(doubleArray); // pass a double array argument

DisplayArray(charArray); // pass a char array argument

794 Chapter 20 Generics

Line 24 begins method DisplayArray’s declaration. All generic method declarations
have a type-parameter list delimited by angle brackets (<T> in this example) that follows
the method’s name. Each type-parameter list contains one or more type parameters, sep-
arated by commas. A type parameter is an identifier that’s used in place of actual type
names. The type parameters can be used to declare the return type, the parameter types
and the local variable types in a generic method declaration; the type parameters act as
placeholders for type arguments that represent the types of data that will be passed to the
generic method.

A generic method’s body is declared like that of any other method. Note that the type-
parameter names throughout the method declaration must match those declared in the
type-parameter list. For example, line 26 declares element in the foreach statement as
type T, which matches the type parameter (T) declared in line 24. Also, a type parameter
can be declared only once in the type-parameter list but can appear more than once in the
method’s parameter list. Type-parameter names need not be unique among different
generic methods.

Method DisplayArray’s type-parameter list (line 24) declares type parameter T as the
placeholder for the array-element type that DisplayArraywill output. Note that T appears
in the parameter list as the array-element type (line 24). The foreach statement header
(line 26) also uses T as the element type. These are the same two locations where the over-
loaded DisplayArray methods of Fig. 20.1 specified int, double or char as the element
type. The remainder of DisplayArray is identical to the version presented in Fig. 20.1.

23
24
25
26
27
28
29
30
31 } // end class GenericMethod

Array intArray contains:
1 2 3 4 5 6

Array doubleArray contains:
1.1 2.2 3.3 4.4 5.5 6.6 7.7

Array charArray contains:
H E L L O

Common Programming Error 20.1
If you forget to include the type-parameter list when declaring a generic method, the com-
piler will not recognize the type-parameter names when they’re encountered in the meth-
od. This results in compilation errors.

Fig. 20.3 | Using a generic method to display arrays of different types. (Part 2 of 2.)

// output array of all types
private static void DisplayArray< T >(T[] inputArray)
{

foreach (T element in inputArray)
Console.Write(element + " ");

Console.WriteLine("\n");
} // end method DisplayArray

20.3 Generic-Method Implementation 795

As in Fig. 20.1, the program of Fig. 20.3 begins by declaring and initializing six-ele-
ment int array intArray (line 11), seven-element double array doubleArray (line 12) and
five-element char array charArray (line 13). Then each array is output by calling
DisplayArray (lines 16, 18 and 20)—once with argument intArray, once with argument
doubleArray and once with argument charArray.

When the compiler encounters a method call such as line 16, it analyzes the set of
methods (both nongeneric and generic) that might match the method call, looking for a
method that best matches the call. If there are no matching methods, or if there’s more
than one best match, the compiler generates an error. If you have any uncertainty on
which of your methods will be called, the complete details of method-call resolution can
be found in Section 14.5.5.1 of the ECMA C# Language Specification

or Section 7.5.3 of the Microsoft C# Language Specification 4

In the case of line 16, the compiler determines that the best match occurs if the type pa-
rameter T in lines 24 and 26 of method DisplayArray’s declaration is replaced with the
type of the elements in the method call’s argument intArray (i.e., int). Then, the com-
piler sets up a call to DisplayArray with int as the type argument for the type parameter
T. This is known as the type-inferencing process. The same process is repeated for the calls
to method DisplayArray in lines 18 and 20.

You can also use explicit type arguments to indicate the exact type that should be used
to call a generic function. For example, line 16 could be written as

The preceding method call explicitly provides the type argument (int) that should be used
to replace type parameter T in lines 24 and 26 of the DisplayArray method’s declaration.

For each variable declared with a type parameter, the compiler also determines
whether the operations performed on such a variable are allowed for all types that the type
parameter can assume. The only operation performed on the array elements in this
example is to output the string representation of the elements. Line 27 performs an
implicit boxing conversion for every value-type array element and an implicit ToString call
on every array element. Since all objects have a ToString method, the compiler is satisfied
that line 27 performs a valid operation for any array element.

By declaring DisplayArray as a generic method in Fig. 20.3, we eliminated the need
for the overloaded methods of Fig. 20.1, saving 17 lines of code and creating a reusable

Good Programming Practice 20.1
It’s recommended that type parameters be specified as individual capital letters. Typically,
a type parameter that represents the type of an element in an array (or other collection) is
named E for “element” or T for “type.”

www.ecma-international.org/publications/standards/Ecma-334.htm

bit.ly/CSharp4Spec

Common Programming Error 20.2
If the compiler cannot find a single nongeneric or generic method declaration that’s a best
match for a method call, or if there are multiple best matches, a compilation error occurs.

DisplayArray< int >(intArray); // pass an int array argument

www.ecma-international.org/publications/standards/Ecma-334.htm

796 Chapter 20 Generics

method that can output the string representations of the elements in any one-dimensional
array, not just arrays of int, double or char elements.

20.4 Type Constraints
In this section, we present a generic Maximum method that determines and returns the larg-
est of its three arguments (all of the same type). The generic method in this example uses
the type parameter to declare both the method’s return type and its parameters. Normally,
when comparing values to determine which one is greater, you would use the > operator.
However, this operator is not overloaded for use with every type that’s built into the
Framework Class Library or that might be defined by extending those types. Generic code
is restricted to performing operations that are guaranteed to work for every possible type.
Thus, an expression like variable1 < variable2 is not allowed unless the compiler can
ensure that the operator < is provided for every type that will ever be used in the generic
code. Similarly, you cannot call a method on a generic-type variable unless the compiler
can ensure that all types that will ever be used in the generic code support that method.

IComparable<T> Interface
It’s possible to compare two objects of the same type if that type implements the generic
interface IComparable<T> (of namespace System). A benefit of implementing interface
IComparable<T> is that IComparable<T> objects can be used with the sorting and searching
methods of classes in the System.Collections.Generic namespace—we discuss those
methods in Chapter 21. The structures in the Framework Class Library that correspond
to the simple types all implement this interface. For example, the structure for simple type
double is Double and the structure for simple type int is Int32—both Double and Int32
implement the IComparable<T> interface. Types that implement IComparable<T> must
declare a CompareTo method for comparing objects. For example, if we have two ints,
int1 and int2, they can be compared with the expression:

Method CompareTo must return 0 if the objects are equal, a negative integer if int1 is less
than int2 or a positive integer if int1 is greater than int2. It’s the responsibility of the
programmer who declares a type that implements IComparable<T> to define method
CompareTo such that it compares the contents of two objects of that type and returns the
appropriate result.

Specifying Type Constraints
Even though IComparable objects can be compared, they cannot be used with generic code
by default, because not all types implement interface IComparable<T>. However, we can re-
strict the types that can be used with a generic method or class to ensure that they meet cer-
tain requirements. This feature—known as a type constraint—restricts the type of the
argument supplied to a particular type parameter. Figure 20.4 declares method Maximum

(lines 20–34) with a type constraint that requires each of the method’s arguments to be of
type IComparable<T>. This restriction is important, because not all objects can be com-
pared. However, all IComparable<T> objects are guaranteed to have a CompareTo method
that can be used in method Maximum to determine the largest of its three arguments.

int1.CompareTo(int2)

20.4 Type Constraints 797

Generic method Maximum uses type parameter T as the return type of the method (line
20), as the type of method parameters x, y and z (line 20), and as the type of local variable
max (line 23). Generic method Maximum’s where clause (after the parameter list in line 21)
specifies the type constraint for type parameter T. In this case, the clause where T : ICom-
parable<T> indicates that this method requires the type argument to implement interface
IComparable<T>. If no type constraint is specified, the default type constraint is object.

C# provides several kinds of type constraints. A class constraint indicates that the type
argument must be an object of a specific base class or one of its subclasses. An interface con-
straint indicates that the type argument’s class must implement a specific interface. The type

1 // Fig. 20.4: MaximumTest.cs
2 // Generic method Maximum returns the largest of three objects.
3 using System;
4
5 class MaximumTest
6 {
7 public static void Main(string[] args)
8 {
9 Console.WriteLine("Maximum of {0}, {1} and {2} is {3}\n",

10 3, 4, 5, Maximum(3, 4, 5));
11 Console.WriteLine("Maximum of {0}, {1} and {2} is {3}\n",
12 6.6, 8.8, 7.7, Maximum(6.6, 8.8, 7.7));
13 Console.WriteLine("Maximum of {0}, {1} and {2} is {3}\n",
14 "pear", "apple", "orange",
15 Maximum("pear", "apple", "orange"));
16 } // end Main
17
18 // generic function determines the
19 // largest of the IComparable objects
20 private static T Maximum< T >(T x, T y, T z)
21 where T : IComparable< T >
22 {
23 T max = x; // assume x is initially the largest
24
25 // compare y with max
26 if (y.CompareTo(max) > 0)
27 max = y; // y is the largest so far
28
29 // compare z with max
30 if (z.CompareTo(max) > 0)
31 max = z; // z is the largest
32
33 return max; // return largest object
34 } // end method Maximum
35 } // end class MaximumTest

Maximum of 3, 4 and 5 is 5

Maximum of 6.6, 8.8 and 7.7 is 8.8

Maximum of pear, apple and orange is pear

Fig. 20.4 | Generic method Maximum returns the largest of three objects.

798 Chapter 20 Generics

constraint in line 21 is an interface constraint, because IComparable<T> is an interface. You
can specify that the type argument must be a reference type or a value type by using the ref-
erence-type constraint (class) or the value-type constraint (struct), respectively. Finally,
you can specify a constructor constraint—new()—to indicate that the generic code can use
operator new to create new objects of the type represented by the type parameter. If a type
parameter is specified with a constructor constraint, the type argument’s class must provide
a public parameterless or default constructor to ensure that objects of the class can be created
without passing constructor arguments; otherwise, a compilation error occurs.

It’s possible to apply multiple constraints to a type parameter. To do so, simply pro-
vide a comma-separated list of constraints in the where clause. If you have a class con-
straint, reference-type constraint or value-type constraint, it must be listed first—only one
of these types of constraints can be used for each type parameter. Interface constraints (if
any) are listed next. The constructor constraint is listed last (if there is one).

Analyzing the Code
Method Maximum assumes that its first argument (x) is the largest and assigns it to local
variable max (line 23). Next, the if statement at lines 26–27 determines whether y is great-
er than max. The condition invokes y’s CompareTo method with the expression y.Compa-

reTo(max). If y is greater than max, then y is assigned to variable max (line 27). Similarly,
the statement at lines 30–31 determines whether z is greater than max. If so, line 31 assigns
z to max. Then, line 33 returns max to the caller.

In Main (lines 7–16), line 10 calls Maximum with the integers 3, 4 and 5. Generic
method Maximum is a match for this call, but its arguments must implement interface ICom-
parable<T> to ensure that they can be compared. Type int is a synonym for struct
Int32, which implements interface IComparable<int>. Thus, ints (and other simple
types) are valid arguments to method Maximum.

Line 12 passes three double arguments to Maximum. Again, this is allowed because
double is a synonym for the Double struct, which implements IComparable<double>.
Line 15 passes Maximum three strings, which are also IComparable<string> objects. We
intentionally placed the largest value in a different position in each method call (lines 10,
12 and 15) to show that the generic method always finds the maximum value, regardless
of its position in the argument list and regardless of the inferred type argument.

20.5 Overloading Generic Methods
A generic method may be overloaded. Each overloaded method must have a unique sig-
nature (as discussed in Chapter 7). A class can provide two or more generic methods with
the same name but different method parameters. For example, we could provide a second
version of generic method DisplayArray (Fig. 20.3) with the additional parameters low-
Index and highIndex that specify the portion of the array to output (see Exercise 20.8).

A generic method can be overloaded by nongeneric methods with the same method
name. When the compiler encounters a method call, it searches for the method declaration
that best matches the method name and the argument types specified in the call. For
example, generic method DisplayArray of Fig. 20.3 could be overloaded with a version spe-
cific to strings that outputs the strings in tabular format (see Exercise 20.9). If the com-
piler cannot match a method call to either a nongeneric method or a generic method, or if
there’s ambiguity due to multiple possible matches, the compiler generates an error.

20.6 Generic Classes 799

20.6 Generic Classes
The concept of a data structure (e.g., a stack) that contains data elements can be under-
stood independently of the element type it manipulates. A generic class provides a means
for describing a class in a type-independent manner. We can then instantiate type-specific
versions of the generic class. This capability is an opportunity for software reusability.

With a generic class, you can use a simple, concise notation to indicate the actual
type(s) that should be used in place of the class’s type parameter(s). At compilation time,
the compiler ensures your code’s type safety, and the runtime system replaces type param-
eters with type arguments to enable your client code to interact with the generic class.

One generic Stack class, for example, could be the basis for creating many Stack

classes (e.g., “Stack of double,” “Stack of int,” “Stack of char,” “Stack of Employee”).
Figure 20.5 presents a generic Stack class declaration. This class should not be confused
with the class Stack from namespace System.Collections.Generics. A generic class dec-
laration is similar to a nongeneric class declaration, except that the class name is followed
by a type-parameter list (line 5) and, optionally, one or more constraints on its type param-
eter. Type parameter T represents the element type the Stack will manipulate. As with
generic methods, the type-parameter list of a generic class can have one or more type
parameters separated by commas. (You’ll create a generic class with two type parameters
in Exercise 20.11.) Type parameter T is used throughout the Stack class declaration
(Fig. 20.5) to represent the element type. Class Stack declares variable elements as an
array of type T (line 8). This array (created at line 21) will store the Stack’s elements. [Note:
This example implements a Stack as an array. As you’ve seen in Chapter 19, Stacks also
are commonly implemented as constrained versions of linked lists.]

1 // Fig. 20.5: Stack.cs
2 // Generic class Stack.
3 using System;
4
5
6 {
7 private int top; // location of the top element
8
9

10 // parameterless constructor creates a stack of the default size
11 public Stack()
12 : this(10) // default stack size
13 {
14 // empty constructor; calls constructor at line 18 to perform init
15 } // end stack constructor
16
17 // constructor creates a stack of the specified number of elements
18 public Stack(int stackSize)
19 {
20 if (stackSize > 0) // validate stackSize
21
22 else

23

Fig. 20.5 | Generic class Stack. (Part 1 of 2.)

class Stack< T >

private T[] elements; // array that stores stack elements

elements = new T[stackSize]; // create stackSize elements

throw new ArgumentException("Stack size must be positive.");

800 Chapter 20 Generics

Stack Constructors
Class Stack has two constructors. The parameterless constructor (lines 11–15) passes the
default stack size (10) to the one-argument constructor, using the syntax this (line 12) to
invoke another constructor in the same class. The one-argument constructor (lines 18–26)
validates the stackSize argument and creates an array of the specified stackSize (if it’s
greater than 0) or throws an exception, otherwise.

Stack Method Push

Method Push (lines 30–38) first determines whether an attempt is being made to push an
element onto a full Stack. If so, lines 33–34 throw a FullStackException (declared in
Fig. 20.6). If the Stack is not full, line 36 increments the top counter to indicate the new
top position, and line 37 places the argument in that location of array elements.

Stack Method Pop

Method Pop (lines 42–49) first determines whether an attempt is being made to pop an
element from an empty Stack. If so, line 45 throws an EmptyStackException (declared in
Fig. 20.7). Otherwise, line 47 decrements the top counter to indicate the new top posi-
tion, and line 48 returns the original top element of the Stack.

Classes FullStackException (Fig. 20.6) and EmptyStackException (Fig. 20.7) each
provide a parameterless constructor, a one-argument constructor of exception classes (as
discussed in Section 13.8) and a two-argument constructor for creating a new exception

24
25 top = -1; // stack initially empty
26 } // end stack constructor
27
28 // push element onto the stack; if unsuccessful,
29 // throw FullStackException
30
31 {
32 if (top == elements.Length - 1) // stack is full
33 throw new FullStackException(string.Format(
34 "Stack is full, cannot push {0}", pushValue));
35
36 ++top; // increment top
37 elements[top] = pushValue; // place pushValue on stack
38 } // end method Push
39
40 // return the top element if not empty,
41 // else throw EmptyStackException
42
43 {
44 if (top == -1) // stack is empty
45 throw new EmptyStackException("Stack is empty, cannot pop");
46
47 --top; // decrement top
48 return elements[top + 1]; // return top value
49 } // end method Pop
50 } // end class Stack

Fig. 20.5 | Generic class Stack. (Part 2 of 2.)

public void Push(T pushValue)

public T Pop()

20.6 Generic Classes 801

using an existing one. The parameterless constructor sets the default error message while
the other two constructors set custom error messages.

1 // Fig. 20.6: FullStackException.cs
2 // FullStackException indicates a stack is full.
3 using System;
4
5 class FullStackException : Exception
6 {
7 // parameterless constructor
8 public FullStackException() : base("Stack is full")
9 {

10 // empty constructor
11 } // end FullStackException constructor
12
13 // one-parameter constructor
14 public FullStackException(string exception) : base(exception)
15 {
16 // empty constructor
17 } // end FullStackException constructor
18
19 // two-parameter constructor
20 public FullStackException(string exception, Exception inner)
21 : base(exception, inner)
22 {
23 // empty constructor
24 } // end FullStackException constructor
25 } // end class FullStackException

Fig. 20.6 | FullStackException indicates a stack is full.

1 // Fig. 20.7: EmptyStackException.cs
2 // EmptyStackException indicates a stack is empty.
3 using System;
4
5 class EmptyStackException : Exception
6 {
7 // parameterless constructor
8 public EmptyStackException() : base("Stack is empty")
9 {

10 // empty constructor
11 } // end EmptyStackException constructor
12
13 // one-parameter constructor
14 public EmptyStackException(string exception) : base(exception)
15 {
16 // empty constructor
17 } // end EmptyStackException constructor
18

Fig. 20.7 | EmptyStackException indicates a stack is empty. (Part 1 of 2.)

802 Chapter 20 Generics

As with generic methods, when a generic class is compiled, the compiler performs type
checking on the class’s type parameters to ensure that they can be used with the code in
the generic class. The constraints determine the operations that can be performed on the
type parameters. The runtime system replaces the type parameters with the actual types at
runtime. For class Stack (Fig. 20.5), no type constraint is specified, so the default type
constraint, object, is used. The scope of a generic class’s type parameter is the entire class.

Now, let’s consider an app (Fig. 20.8) that uses the Stack generic class. Lines 13–14
declare variables of type Stack<double> (pronounced “Stack of double”) and Stack<int>
(pronounced “Stack of int”). The types double and int are the Stack’s type arguments.
The compiler replaces the type parameters in the generic class so that the compiler can per-
form type checking. Method Main instantiates objects doubleStack of size 5 (line 18) and
intStack of size 10 (line 19), then calls methods TestPushDouble (lines 28–48),
TestPopDouble (lines 51–73), TestPushInt (lines 76–96) and TestPopInt (lines 99–121)
to manipulate the two Stacks in this example.

19 // two-parameter constructor
20 public EmptyStackException(string exception, Exception inner)
21 : base(exception, inner)
22 {
23 // empty constructor
24 } // end EmptyStackException constructor
25 } // end class EmptyStackException

1 // Fig. 20.8: StackTest.cs
2 // Testing generic class Stack.
3 using System;
4
5 class StackTest
6 {
7 // create arrays of doubles and ints
8 private static double[] doubleElements =
9 new double[]{ 1.1, 2.2, 3.3, 4.4, 5.5, 6.6 };

10 private static int[] intElements =
11 new int[]{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 };
12
13
14
15
16 public static void Main(string[] args)
17 {
18 doubleStack = new Stack< double >(5); // stack of doubles
19 intStack = new Stack< int >(10); // stack of ints
20
21 TestPushDouble(); // push doubles onto doubleStack
22 TestPopDouble(); // pop doubles from doubleStack
23 TestPushInt(); // push ints onto intStack
24 TestPopInt(); // pop ints from intStack
25 } // end Main

Fig. 20.8 | Testing generic class Stack. (Part 1 of 4.)

Fig. 20.7 | EmptyStackException indicates a stack is empty. (Part 2 of 2.)

private static Stack< double > doubleStack; // stack stores doubles
private static Stack< int > intStack; // stack stores int objects

20.6 Generic Classes 803

26
27 // test Push method with doubleStack
28 private static void TestPushDouble()
29 {
30 // push elements onto stack
31 try

32 {
33 Console.WriteLine("\nPushing elements onto doubleStack");
34
35 // push elements onto stack
36 foreach (var element in doubleElements)
37 {
38 Console.Write("{0:F1} ", element);
39 doubleStack.Push(element); // push onto doubleStack
40 } // end foreach
41 } // end try
42 catch (FullStackException exception)
43 {
44 Console.Error.WriteLine();
45 Console.Error.WriteLine("Message: " + exception.Message);
46 Console.Error.WriteLine(exception.StackTrace);
47 } // end catch
48 } // end method TestPushDouble
49
50 // test Pop method with doubleStack
51 private static void TestPopDouble()
52 {
53 // pop elements from stack
54 try

55 {
56 Console.WriteLine("\nPopping elements from doubleStack");
57
58 double popValue; // store element removed from stack
59
60 // remove all elements from stack
61 while (true)
62 {
63 popValue = doubleStack.Pop(); // pop from doubleStack
64 Console.Write("{0:F1} ", popValue);
65 } // end while
66 } // end try
67 catch (EmptyStackException exception)
68 {
69 Console.Error.WriteLine();
70 Console.Error.WriteLine("Message: " + exception.Message);
71 Console.Error.WriteLine(exception.StackTrace);
72 } // end catch
73 } // end method TestPopDouble
74
75 // test Push method with intStack
76 private static void TestPushInt()
77 {

Fig. 20.8 | Testing generic class Stack. (Part 2 of 4.)

804 Chapter 20 Generics

78 // push elements onto stack
79 try

80 {
81 Console.WriteLine("\nPushing elements onto intStack");
82
83 // push elements onto stack
84 foreach (var element in intElements)
85 {
86 Console.Write("{0} ", element);
87 intStack.Push(element); // push onto intStack
88 } // end foreach
89 } // end try
90 catch (FullStackException exception)
91 {
92 Console.Error.WriteLine();
93 Console.Error.WriteLine("Message: " + exception.Message);
94 Console.Error.WriteLine(exception.StackTrace);
95 } // end catch
96 } // end method TestPushInt
97
98 // test Pop method with intStack
99 private static void TestPopInt()
100 {
101 // pop elements from stack
102 try

103 {
104 Console.WriteLine("\nPopping elements from intStack");
105
106 int popValue; // store element removed from stack
107
108 // remove all elements from stack
109 while (true)
110 {
111 popValue = intStack.Pop(); // pop from intStack
112 Console.Write("{0} ", popValue);
113 } // end while
114 } // end try
115 catch (EmptyStackException exception)
116 {
117 Console.Error.WriteLine();
118 Console.Error.WriteLine("Message: " + exception.Message);
119 Console.Error.WriteLine(exception.StackTrace);
120 } // end catch
121 } // end method TestPopInt
122 } // end class StackTest

Pushing elements onto doubleStack
1.1 2.2 3.3 4.4 5.5 6.6
Message: Stack is full, cannot push 6.6

at Stack`1.Push(T pushValue) in
c:\examples\ch22\Fig22_05_08\Stack\Stack\Stack.cs:line 36

at StackTest.TestPushDouble() in
c:\examples\ch22\Fig22_05_08\Stack\Stack\StackTest.cs:line 39

Fig. 20.8 | Testing generic class Stack. (Part 3 of 4.)

20.6 Generic Classes 805

Method TestPushDouble

Method TestPushDouble (lines 28–48) invokes method Push to place the double values
1.1, 2.2, 3.3, 4.4 and 5.5 stored in array doubleElements onto doubleStack. The fo-
reach statement terminates when the test program attempts to Push a sixth value onto
doubleStack (which is full, because doubleStack can store only five elements). In this
case, the method throws a FullStackException (Fig. 20.6) to indicate that the Stack is
full. Lines 42–47 catch this exception and display the message and stack-trace informa-
tion. The stack trace indicates the exception that occurred and shows that Stack method
Push generated the exception at line 36 of the file Stack.cs (Fig. 20.5). The trace also
shows that method Push was called by StackTest method TestPushDouble at line 39 of
StackTest.cs. This information enables you to determine the methods that were on the
method-call stack at the time that the exception occurred. Because the program catches
the exception, the C# runtime environment considers the exception to have been handled,
and the program can continue executing.

Method TestPopDouble

Method TestPopDouble (lines 51–73) invokes Stack method Pop in an infinite while
loop to remove all the values from the stack. Note in the output that the values are popped
off in last-in, first-out order—this, of course, is the defining characteristic of stacks. The
while loop (lines 61–65) continues until the stack is empty. An EmptyStackException oc-
curs when an attempt is made to pop from the empty stack. This causes the program to
proceed to the catch block (lines 67–72) and handle the exception, so the program can
continue executing. When the test program attempts to Pop a sixth value, the doubleStack
is empty, so method Pop throws an EmptyStackException.

Popping elements from doubleStack
5.5 4.4 3.3 2.2 1.1
Message: Stack is empty, cannot pop

at Stack`1.Pop() in
c:\examples\ch22\Fig22_05_08\Stack\Stack\Stack.cs:line 47

at StackTest.TestPopDouble() in
c:\examples\ch22\Fig22_05_08\Stack\Stack\StackTest.cs:line 63

Pushing elements onto intStack
1 2 3 4 5 6 7 8 9 10 11l
Message: Stack is full, cannot push 11

at Stack`1.Push(T pushValue) in
c:\examples\ch22\Fig22_05_08\Stack\Stack\Stack.cs:line 36

at StackTest.TestPushInt() in
c:\examples\ch22\Fig22_05_08\Stack\Stack\StackTest.cs:line 87

Popping elements from intStack
10 9 8 7 6 5 4 3 2 1
Message: Stack is empty, cannot pop

at Stack`1.Pop() in
c:\examples\ch22\Fig22_05_08\Stack\Stack\Stack.cs:line 47

at StackTest.TestPopInt() in
c:\examples\ch22\Fig22_05_08\Stack\Stack\StackTest.cs:line 111

Fig. 20.8 | Testing generic class Stack. (Part 4 of 4.)

806 Chapter 20 Generics

Methods TestPushInt and TestPopInt

Method TestPushInt (lines 76–96) invokes Stack method Push to place values onto int-
Stack until it’s full. Method TestPopInt (lines 99–121) invokes Stack method Pop to re-
move values from intStack until it’s empty. Again, values pop in last-in, first-out order.

Creating Generic Methods to Test Class Stack< T >

Note that the code in methods TestPushDouble and TestPushInt is almost identical for
pushing values onto a Stack<double> or a Stack<int>, respectively. Similarly the code in
methods TestPopDouble and TestPopInt is almost identical for popping values from a
Stack<double> or a Stack<int>, respectively. This presents another opportunity to use
generic methods. Figure 20.9 declares generic method TestPush (lines 33–54) to perform
the same tasks as TestPushDouble and TestPushInt in Fig. 20.8—that is, Push values
onto a Stack<T>. Similarly, generic method TestPop (lines 57–79) performs the same
tasks as TestPopDouble and TestPopInt in Fig. 20.8—that is, Pop values off a Stack<T>.

1 // Fig. 20.9: StackTest.cs
2 // Testing generic class Stack.
3 using System;
4 using System.Collections.Generic;
5
6 class StackTest
7 {
8 // create arrays of doubles and ints
9 private static double[] doubleElements =

10 new double[] { 1.1, 2.2, 3.3, 4.4, 5.5, 6.6 };
11 private static int[] intElements =
12 new int[] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 };
13
14 private static Stack< double > doubleStack; // stack stores doubles
15 private static Stack< int > intStack; // stack stores int objects
16
17 public static void Main(string[] args)
18 {
19 doubleStack = new Stack< double >(5); // stack of doubles
20 intStack = new Stack< int >(10); // stack of ints
21
22 // push doubles onto doubleStack
23
24 // pop doubles from doubleStack
25
26 // push ints onto intStack
27
28 // pop ints from intStack
29
30 } // end Main
31
32 // test Push method
33
34
35 {

Fig. 20.9 | Testing generic class Stack. (Part 1 of 3.)

TestPush("doubleStack", doubleStack, doubleElements);

TestPop("doubleStack", doubleStack);

TestPush("intStack", intStack, intElements);

TestPop("intStack", intStack);

private static void TestPush< T >(string name, Stack< T > stack,
IEnumerable< T > elements)

20.6 Generic Classes 807

36 // push elements onto stack
37 try

38 {
39 Console.WriteLine("\nPushing elements onto " + name);
40
41 // push elements onto stack
42 foreach (var element in elements)
43 {
44 Console.Write("{0} ", element);
45 stack.Push(element); // push onto stack
46 } // end foreach
47 } // end try
48 catch (FullStackException exception)
49 {
50 Console.Error.WriteLine();
51 Console.Error.WriteLine("Message: " + exception.Message);
52 Console.Error.WriteLine(exception.StackTrace);
53 } // end catch
54 } // end method TestPush
55
56 // test Pop method
57
58 {
59 // pop elements from stack
60 try

61 {
62 Console.WriteLine("\nPopping elements from " + name);
63
64 T popValue; // store element removed from stack
65
66 // remove all elements from stack
67 while (true)
68 {
69 popValue = stack.Pop(); // pop from stack
70 Console.Write("{0} ", popValue);
71 } // end while
72 } // end try
73 catch (EmptyStackException exception)
74 {
75 Console.Error.WriteLine();
76 Console.Error.WriteLine("Message: " + exception.Message);
77 Console.Error.WriteLine(exception.StackTrace);
78 } // end catch
79 } // end TestPop
80 } // end class StackTest

Pushing elements onto doubleStack
1.1 2.2 3.3 4.4 5.5 6.6
Message: Stack is full, cannot push 6.6

at Stack`1.Push(T pushValue)
in c:\examples\ch22\Fig22_09\Stack\Stack\Stack.cs:line 36

at StackTest.TestPush[T](String name, Stack`1 stack, IEnumerable`1 elements)
in c:\examples\ch22\Fig22_09\Stack\Stack\StackTest.cs:line 45

Fig. 20.9 | Testing generic class Stack. (Part 2 of 3.)

private static void TestPop< T >(string name, Stack< T > stack)

808 Chapter 20 Generics

Method Main (Fig. 20.9, lines 17–30) creates the Stack<double> (line 19) and
Stack<int> (line 20) objects. Lines 23–29 invoke generic methods TestPush and TestPop
to test the Stack objects.

Generic method TestPush (lines 33–54) uses type parameter T (specified at line 33)
to represent the data type stored in the Stack. The generic method takes three argu-
ments—a string that represents the name of the Stack object for output purposes, an
object of type Stack<T> and an IEnumerable<T> that contains the elements that will be
Pushed onto Stack<T>. Note that the compiler enforces consistency between the type of
the Stack and the elements that will be pushed onto the Stack when Push is invoked,
which is the type argument of the generic method call. Generic method TestPop (lines 57–
79) takes two arguments—a string that represents the name of the Stack object for
output purposes and an object of type Stack<T>.

20.7 Wrap-Up
This chapter introduced generics. We discussed how generics ensure compile-time type
safety by checking for type mismatches at compile time. You learned that the compiler will
allow generic code to compile only if all operations performed on the type parameters in
the generic code are supported for all types that could be used with the generic code. You
also learned how to declare generic methods and classes using type parameters. We dem-
onstrated how to use a type constraint to specify the requirements for a type parameter—
a key component of compile-time type safety. We discussed several kinds of type con-
straints, including reference-type constraints, value-type constraints, class constraints, in-
terface constraints and constructor constraints. We also discussed how to implement
multiple type constraints for a type parameter. Finally, we showed how generics improve

Popping elements from doubleStack
5.5 4.4 3.3 2.2 1.1
Message: Stack is empty, cannot pop

at Stack`1.Pop() in c:\examples\ch22\Fig22_09\Stack\Stack\Stack.cs:line 47
at StackTest.TestPop[T](String name, Stack`1 stack) in

c:\examples\ch22\Fig22_09\Stack\Stack\StackTest.cs:line 69

Pushing elements onto intStack
1 2 3 4 5 6 7 8 9 10 11
Message: Stack is full, cannot push 11

at Stack`1.Push(T pushValue) in
c:\examples\ch22\Fig22_09\Stack\Stack\Stack.cs:line 36

at StackTest.TestPush[T](String name, Stack`1 stack, IEnumerable`1 elements)
in c:\examples\ch22\Fig22_09\Stack\Stack\StackTest.cs:line 45

Popping elements from intStack
10 9 8 7 6 5 4 3 2 1
Message: Stack is empty, cannot pop

at Stack`1.Pop() in c:\examples\ch22\Fig22_09\Stack\Stack\Stack.cs:line 47
at StackTest.TestPop[T](String name, Stack`1 stack) in

c:\examples\ch22\Fig22_09\Stack\Stack\StackTest.cs:line 69

Fig. 20.9 | Testing generic class Stack. (Part 3 of 3.)

20.7 Summary 809

code reuse. In the next chapter, we demonstrate the .NET Framework Class Library’s col-
lection classes, interfaces and algorithms. Collection classes are pre-built data structures
that you can reuse in your apps, saving you time.

Summary
Section 20.1 Introduction
• Generic methods enable you to specify, with a single method declaration, a set of related methods.

• Generic classes enable you to specify, with a single class declaration, a set of related classes.

• Generic interfaces enable you to specify, with a single interface declaration, a set of related inter-
faces.

• Generics provide compile-time type safety.

Section 20.2 Motivation for Generic Methods
• Overloaded methods are often used to perform similar operations on different types of data.

• When the compiler encounters a method call, it attempts to locate a method declaration that has
the same method name and parameters that match the argument types in the method call.

Section 20.3 Generic-Method Implementation
• If the operations performed by several overloaded methods are identical for each argument type,

the overloaded methods can be more compactly and conveniently coded using a generic method.

• You can write a single generic-method declaration that can be called at different times with ar-
guments of different types. Based on the types of the arguments passed to the generic method,
the compiler handles each method call appropriately.

• All generic-method declarations have a type-parameter list delimited by angle brackets that fol-
lows the method’s name. Each type-parameter list contains one or more type parameters, sepa-
rated by commas.

• A type parameter is used in place of actual type names. The type parameters can be used to de-
clare the return type, parameter types and local variable types in a generic-method declaration;
the type parameters act as placeholders for type arguments that represent the types of data that
will be passed to the generic method.

• A generic method’s body is declared like that of any other method. The type-parameter names
throughout the method declaration must match those declared in the type-parameter list.

• A type parameter can be declared only once in the type-parameter list but can appear more than
once in the method’s parameter list. Type-parameter names need not be unique among different
generic methods.

• When the compiler encounters a method call, it analyzes the set of methods (both nongeneric and
generic) that might match the method call, looking for a method that best matches the call. If there
are no matching methods, or if there’s more than one best match, the compiler generates an error.

• You can use explicit type arguments to indicate the exact type that should be used to call a generic
function. For example, the method call DisplayArray<int>(intArray); explicitly provides the
type argument (int) that should be used to replace type parameter T in the DisplayArray meth-
od’s declaration.

• For each variable declared with a type parameter, the compiler also determines whether the oper-
ations performed on such a variable are allowed for all types that the type parameter can assume.

810 Chapter 20 Generics

Section 20.4 Type Constraints
• Generic code is restricted to performing operations that are guaranteed to work for every possible

type. Thus, an expression like variable1 < variable2 is not allowed unless the compiler can en-
sure that the operator < is provided for every type that will ever be used in the generic code. Sim-
ilarly, you cannot call a method on a generic-type variable unless the compiler can ensure that all
types that will ever be used in the generic code support that method.

• It’s possible to compare two objects of the same type if that type implements the generic interface
IComparable<T> (of namespace System), which declares method CompareTo.

• IComparable<T> objects can be used with the sorting and searching methods of classes in the Sys-
tem.Collections.Generic namespace.

• Simple types all implement interface IComparable<T>.

• It’s the responsibility of the programmer who declares a type that implements IComparable<T>
to declare method CompareTo such that it compares the contents of two objects of that type and
returns the appropriate result.

• You can restrict the types that can be used with a generic method or class to ensure that they meet
certain requirements. This feature—known as a type constraint—restricts the type of the argu-
ment supplied to a particular type parameter. For example, the clause where T : IComparable<T>
indicates that the type arguments must implement interface IComparable<T>. If no type con-
straint is specified, the default type constraint is object.

• A class constraint indicates that the type argument must be an object of a specific base class or
one of its subclasses.

• An interface constraint indicates that the type argument’s class must implement a specific interface.

• You can specify that the type argument must be a reference type or a value type by using the ref-
erence-type constraint (class) or the value-type constraint (struct), respectively.

• You can specify a constructor constraint—new()—to indicate that the generic code can use op-
erator new to create new objects of the type represented by the type parameter. If a type parameter
is specified with a constructor constraint, the type argument’s class must provide a public pa-
rameterless or default constructor to ensure that objects of the class can be created without pass-
ing constructor arguments; otherwise, a compilation error occurs.

• It’s possible to apply multiple constraints to a type parameter by providing a comma-separated
list of constraints in the where clause.

• If you have a class constraint, reference-type constraint or value-type constraint, it must be listed
first—only one of these types of constraints can be used for each type parameter. Interface con-
straints (if any) are listed next. The constructor constraint is listed last (if there is one).

Section 20.5 Overloading Generic Methods
• A generic method may be overloaded. All methods must contain a unique signature.

• A generic method can be overloaded by nongeneric methods with the same method name. When
the compiler encounters a method call, it searches for the method declaration that most precisely
matches the method name and the argument types specified in the call.

Section 20.6 Generic Classes
• A generic class provides a means for describing a class in a type-independent manner.

• Once you have a generic class, you can use a simple, concise notation to indicate the actual
type(s) that should be used in place of the class’s type parameter(s). At compilation time, the
compiler ensures the type safety of your code, and the runtime system replaces type parameters
with actual arguments to enable your client code to interact with the generic class.

Terminology 811

• A generic class declaration is similar to a nongeneric class declaration, except that the class name
is followed by a type-parameter list and optional constraints on its type parameters.

• As with generic methods, the type-parameter list of a generic class can have one or more type
parameters separated by commas.

• When a generic class is compiled, the compiler performs type checking on the class’s type param-
eters to ensure that they can be used with the code in the generic class. The constraints determine
the operations that can be performed on the variables declared with type parameters.

Terminology
class constraint
CompareTo method of interface IComparable<T>
compile-time type safety
constructor constraint (new())
default type constraint (object) of a type

parameter
explicit type argument
generic class
generic interface
generic method
generics
IComparable<T> interface
interface constraint

multiple constraints
new() (constructor) constraint
overloading generic methods
reference-type constraint (class)
scope of a type parameter
type argument
type checking
type constraint
type inference
type parameter
type-parameter list
value type constraint (struct)
where clause

Self-Review Exercises
20.1 State whether each of the following is true or false. If false, explain why.

a) A generic method cannot have the same method name as a nongeneric method.
b) All generic method declarations have a type-parameter list that immediately precedes

the method name.
c) A generic method can be overloaded by another generic method with the same method

name but a different number of type parameters.
d) A type parameter can be declared only once in the type-parameter list but can appear

more than once in the method’s parameter list.
e) Type-parameter names among different generic methods must be unique.
f) The scope of a generic class’s type parameter is the entire class.
g) A type parameter can have at most one interface constraint, but multiple class constraints.

20.2 Fill in the blanks in each of the following:
a) enable you to specify, with a single method declaration, a set of related meth-

ods; enable you to specify, with a single class declaration, a set of related classes.
b) A type-parameter list is delimited by .
c) The of a generic method can be used to specify the types of the arguments to

the method, to specify the return type of the method and to declare variables within the
method.

d) The statement “Stack<int> objectStack = new Stack<int>();” indicates that object-
Stack stores .

e) In a generic class declaration, the class name is followed by a(n) .
f) The constraint requires that the type argument must have a public parame-

terless constructor.

812 Chapter 20 Generics

Answers to Self-Review Exercises
20.1 a) False. A generic method can be overloaded by nongeneric methods with the same or a
different number of arguments. b) False. All generic method declarations have a type-parameter list
that immediately follows the method’s name. c) True. d) True. e) False. Type-parameter names
among different generic methods need not be unique. f) True. g) False. A type parameter can have
at most one class constraint, but multiple interface constraints.

20.2 a) Generic methods, generic classes. b) angle brackets. c) type parameters. d) ints. e) type-
parameter list. f) new.

Exercises
20.3 (Generic Notation) Explain the use of the following notation in a C# program:

public class Array<T>

20.4 (Overloading Generic Methods) How can generic methods be overloaded?

20.5 (Determining which Method to Call) The compiler performs a matching process to deter-
mine which method to call when a method is invoked. Under what circumstances does an attempt
to make a match result in a compile-time error?

20.6 (What Does this Statement Do?) Explain why a C# program might use the statement

Array< Employee > workerlist = new Array< Employee >();

20.7 (Generic Linear Search Method) Write a generic method, Search, that implements the lin-
ear-search algorithm. Method Search should compare the search key with each element in its array
parameter until the search key is found or until the end of the array is reached. If the search key is
found, return its location in the array; otherwise, return -1. Write a test app that inputs and searches
an int array and a double array. Provide buttons that the user can click to randomly generate int
and double values. Display the generated values in a TextBox, so the user knows what values they
can search for [Hint: Use (T : IComparable< T >) in the where clause for method Search so that you
can use method CompareTo to compare the search key to the elements in the array.]

20.8 (Overloading a Generic Method) Overload generic method DisplayArray of Fig. 20.3 so
that it takes two additional int arguments: lowIndex and highIndex. A call to this method displays
only the designated portion of the array. Validate lowIndex and highIndex. If either is out of range,
or if highIndex is less than or equal to lowIndex, the overloaded DisplayArraymethod should throw
an InvalidIndexException; otherwise, DisplayArray should return the number of elements dis-
played. Then modify Main to exercise both versions of DisplayArray on arrays intArray, double-
Array and charArray. Test all capabilities of both versions of DisplayArray.

20.9 (Overloading a Generic Method with a Non-Generic Method) Overload generic method
DisplayArray of Fig. 20.3 with a nongeneric version that displays an array of strings in neat, tabular
format, as shown in the sample output that follows:

20.10 (Generic Method IsEqualTo) Write a simple generic version of method IsEqualTo that
compares its two arguments with the Equals method, and returns true if they’re equal and false

otherwise. Use this generic method in a program that calls IsEqualTo with a variety of simple types,
such as object or int. What result do you get when you attempt to run this program?

Array stringArray contains:
one two three four
five six seven eight

Exercises 813

20.11 (Generic Class Pair) Write a generic class Pair which has two type parameters, F and S, rep-
resenting the type of the first and second element of the pair, respectively. Add properties for the
first and second elements of the pair. [Hint: The class header should be public class Pair<F, S>.]

20.12 (Generic Classes TreeNode and Tree) Convert classes TreeNode and Tree from Fig. 19.20
into generic classes. To insert an object in a Tree, the object must be compared to the objects in
existing TreeNodes. For this reason, classes TreeNode and Tree should specify IComparable<T> as the
interface constraint of each class’s type parameter. After modifying classes TreeNode and Tree, write
a test app that creates three Tree objects—one that stores ints, one that stores doubles and one that
stores strings. Insert 10 values into each tree. Then output the preorder, inorder and postorder tra-
versals for each Tree.

20.13 (Generic Method TestTree) Modify your test program from Exercise 20.12 to use generic
method TestTree to test the three Tree objects. The method should be called three times—once for
each Tree object.

21 Collections

I think this is the most
extraordinary collection of
talent, of human knowledge,
that has ever been gathered
together at the White House—
with the possible exception of
when Thomas Jefferson dined
alone.
—John F. Kennedy

O b j e c t i v e s
In this chapter you’ll:

� Learn about the nongeneric
and generic collections that
are provided by the .NET
Framework.

� Use class Array’s static
methods to manipulate
arrays.

� Use enumerators to “walk
through” a collection.

� Use the foreach statement
with the .NET collections.

� Use nongeneric collection
classes ArrayList, Stack,
and Hashtable.

� Use generic collections
SortedDictionary and
LinkedList.

� Be introduced to covariance
and contravariance for
generic types.

21.1 Introduction 815

21.1 Introduction
Chapter 19 discussed how to create and manipulate data structures. The discussion was
“low level,” in the sense that we painstakingly created each element of each data structure
dynamically with new and modified the data structures by directly manipulating their ele-
ments and references to their elements. For the vast majority of apps, there’s no need to
build such custom data structures. Instead, you can use the prepackaged data-structure class-
es provided by the .NET Framework. These classes are known as collection classes—they
store collections of data. Each instance of one of these classes is a collection of items. Some
examples of collections are the cards you hold in a card game, the songs stored in your com-
puter, the real-estate records in your local registry of deeds (which map book numbers and
page numbers to property owners), and the players on your favorite sports team.

Collection classes enable you to store sets of items by using existing data structures,
without concern for how they’re implemented. This is a nice example of code reuse. Pro-
grammers can code faster and expect excellent performance, maximizing execution speed
and minimizing memory consumption. In this chapter, we discuss the collection interfaces
that list the capabilities of each collection type, the implementation classes and the enu-
merators that “walk through” collections.

The .NET Framework provides several namespaces dedicated to collections.
Namespace System.Collections contains collections that store references to objects. We
included these because there’s a large amount of legacy code in industry that uses these col-
lections. Most new apps should use the collections in the System.Collections.Generic

namespace, which contains generic classes—such as the List<T> and Dictionary<K, V>

classes you learned previously—to store collections of specific types. Namespace
System.Collections.Concurrent contains so-called thread-safe collections for use in
multithreaded applications. The System.Collections.Specialized namespace contains
several collections that support specific types, such as strings and bits. You can learn more
about this namespace at msdn.microsoft.com/en-us/library/system.collections.spe-
cialized.aspx. The collections in these namespaces provide standardized, reusable compo-
nents; you do not need to write your own collection classes. These collections are written for
broad reuse. They’re tuned for rapid execution and for efficient use of memory.

21.2 Collections Overview
All collection classes in the .NET Framework implement some combination of the collec-
tion interfaces. These interfaces declare the operations to be performed generically on vari-
ous types of collections. Figure 21.1 lists some of the interfaces of the .NET Framework

21.1 Introduction
21.2 Collections Overview
21.3 Class Array and Enumerators
21.4 Nongeneric Collections

21.4.1 Class ArrayList
21.4.2 Class Stack
21.4.3 Class Hashtable

21.5 Generic Collections
21.5.1 Generic Class SortedDictionary
21.5.2 Generic Class LinkedList

21.6 Covariance and Contravariance for
Generic Types

21.7 Wrap-Up

Summary | Terminology | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

816 Chapter 21 Collections

collections. All the interfaces in Fig. 21.1 are declared in namespace System.Collections
and have generic analogs in namespace System.Collections.Generic. Implementations
of these interfaces are provided within the framework. Programmers may also provide im-
plementations specific to their own requirements.

Namespaces System.Collections and System.Collections.Specialized

In earlier versions of C#, the .NET Framework primarily provided the collection classes
in the System.Collections and System.Collections.Specialized namespaces. These
classes stored and manipulated object references. You could store any object in a collec-
tion. One inconvenient aspect of storing object references occurs when retrieving them
from a collection. An app normally needs to process specific types of objects. As a result,
the object references obtained from a collection typically need to be downcast to an ap-
propriate type to allow the app to process the objects correctly.

Namespace System.Collections.Generic
The .NET Framework also includes the System.Collections.Generic namespace, which
uses the generics capabilities we introduced in Chapter 20. Many of these classes are sim-
ply generic counterparts of the classes in namespace System.Collections. This means
that you can specify the exact type that will be stored in a collection. You receive the ben-
efits of compile-time type checking—the compiler ensures that you’re using appropriate
types with your collection and, if not, issues compile-time error messages. Also, once you
specify the type stored in a collection, any item you retrieve from the collection will have
the correct type. This eliminates the need for explicit type casts that can throw Invalid-

CastExceptions at execution time if the referenced object is not of the appropriate type.
This also eliminates the overhead of explicit casting, improving efficiency. Generic collec-
tions are especially useful for storing structs, since they eliminate the overhead of boxing
and unboxing.

Interface Description

ICollection The interface from which interfaces IList and IDictionary inherit. Contains
a Count property to determine the size of a collection and a CopyTo method for
copying a collection’s contents into a traditional array.

IList An ordered collection that can be manipulated like an array. Provides an
indexer for accessing elements with an int index. Also has methods for search-
ing and modifying a collection, including Add, Remove, Contains and IndexOf.

IDictionary A collection of values, indexed by an arbitrary “key” object. Provides an
indexer for accessing elements with an object index and methods for modify-
ing the collection (e.g., Add, Remove). IDictionary property Keys contains the
objects used as indices, and property Values contains all the stored objects.

IEnumerable An object that can be enumerated. This interface contains exactly one method,
GetEnumerator, which returns an IEnumerator object (discussed in
Section 21.3). ICollection extends IEnumerable, so all collection classes
implement IEnumerable directly or indirectly.

Fig. 21.1 | Some common collection interfaces.

21.2 Collections Overview 817

This chapter demonstrates collection classes Array, ArrayList, Stack, Hashtable,
generic SortedDictionary, and generic LinkedList—plus built-in array capabilities.
Namespace System.Collections provides several other data structures, including
BitArray (a collection of true/false values), Queue and SortedList (a collection of key–
value pairs that are sorted by key and can be accessed either by key or by index).
Figure 21.2 summarizes many of the collection classes. We also discuss the IEnumerator
interface. Collection classes can create enumerators that allow programmers to walk
through the collections. Although these enumerators have different implementations, they
all implement the IEnumerator interface so that they can be processed polymorphically.
As we’ll soon see, the foreach statement is simply a convenient notation for using an enu-
merator. In the next section, we begin our discussion by examining enumerators and the
capabilities for array manipulation. Collection classes directly or indirectly implement
ICollection and IEnumerable (or their generic equivalents ICollection<T> and IEnu-

merable<T> for generic collections).

Class Implements Description

System namespace:

Array IList The base class of all conventional arrays. See
Section 21.3.

System.Collections namespace:

ArrayList IList Mimics conventional arrays, but will grow or
shrink as needed to accommodate the number of
elements. See Section 21.4.1.

BitArray ICollection A memory-efficient array of bools.

Hashtable IDictionary An unordered collection of key–value pairs that
can be accessed by key. See Section 21.4.3.

Queue ICollection A first-in, first-out collection. See Section 19.6.

SortedList IDictionary A collection of key–value pairs that are sorted by
key and can be accessed either by key or by index.

Stack ICollection A last-in, first-out collection. See Section 21.4.2.

System.Collections.Generic namespace:

Dictionary<K, V> IDictionary<K, V> A generic, unordered collection of key–value pairs
that can be accessed by key. See Section 17.4.

LinkedList<T> ICollection<T> A doubly linked list. See Section 21.5.2.

List<T> IList<T> A generic ArrayList. Section 9.4.

Queue<T> ICollection<T> A generic Queue.

SortedDictionary<K,V> IDictionary<K, V> A Dictionary that sorts the data by the keys in a
binary tree. See Section 21.5.1.

SortedList<K, V> IDictionary<K, V> A generic SortedList.

Stack<T> ICollection<T> A generic Stack. See Section 21.4.2.

Fig. 21.2 | Some collection classes of the .NET Framework.

818 Chapter 21 Collections

21.3 Class Array and Enumerators
Chapter 8 presented basic array-processing capabilities. All arrays implicitly inherit from
abstract base class Array (namespace System); this class defines property Length, which
specifies the number of elements in the array. In addition, class Array provides static
methods that provide algorithms for processing arrays. Typically, class Array overloads
these methods—for example, Arraymethod Reverse can reverse the order of the elements
in an entire array or can reverse the elements in a specified range of elements in an array.
For a complete list of class Array’s static methods visit:

Figure 21.3 demonstrates several static methods of class Array.

msdn.microsoft.com/en-us/library/system.array.aspx

1 // Fig. 21.3: UsingArray.cs
2 // Array class static methods for common array manipulations.
3 using System;
4 using System.Collections;
5
6 // demonstrate algorithms of class Array
7 public class UsingArray
8 {
9 private static int[] intValues = { 1, 2, 3, 4, 5, 6 };

10 private static double[] doubleValues = { 8.4, 9.3, 0.2, 7.9, 3.4 };
11 private static int[] intValuesCopy;
12
13 // method Main demonstrates class Array's methods
14 public static void Main(string[] args)
15 {
16 intValuesCopy = new int[intValues.Length]; // defaults to zeroes
17
18 Console.WriteLine("Initial array values:\n");
19 PrintArrays(); // output initial array contents
20
21 // sort doubleValues
22
23
24 // copy intValues into intValuesCopy
25
26
27 Console.WriteLine("\nArray values after Sort and Copy:\n");
28 PrintArrays(); // output array contents
29 Console.WriteLine();
30
31 // search for 5 in intValues
32
33 if (result >= 0)
34 Console.WriteLine("5 found at element {0} in intValues",
35 result);
36 else

37 Console.WriteLine("5 not found in intValues");
38

Fig. 21.3 | Array class used to perform common array manipulations. (Part 1 of 2.)

Array.Sort(doubleValues);

Array.Copy(intValues, intValuesCopy, intValues.Length);

int result = Array.BinarySearch(intValues, 5);

21.3 Class Array and Enumerators 819

39 // search for 8763 in intValues
40
41 if (result >= 0)
42 Console.WriteLine("8763 found at element {0} in intValues",
43 result);
44 else

45 Console.WriteLine("8763 not found in intValues");
46 } // end Main
47
48 // output array content with enumerators
49 private static void PrintArrays()
50 {
51 Console.Write("doubleValues: ");
52
53 // iterate through the double array with an enumerator
54
55
56
57
58
59 Console.Write("\nintValues: ");
60
61 // iterate through the int array with an enumerator
62
63
64
65
66
67 Console.Write("\nintValuesCopy: ");
68
69 // iterate through the second int array with a foreach statement
70
71
72
73 Console.WriteLine();
74 } // end method PrintArrays
75 } // end class UsingArray

Initial array values:

doubleValues: 8.4 9.3 0.2 7.9 3.4
intValues: 1 2 3 4 5 6
intValuesCopy: 0 0 0 0 0 0

Array values after Sort and Copy:

doubleValues: 0.2 3.4 7.9 8.4 9.3
intValues: 1 2 3 4 5 6
intValuesCopy: 1 2 3 4 5 6

5 found at element 4 in intValues
8763 not found in intValues

Fig. 21.3 | Array class used to perform common array manipulations. (Part 2 of 2.)

result = Array.BinarySearch(intValues, 8763);

IEnumerator enumerator = doubleValues.GetEnumerator();

while (enumerator.MoveNext())
Console.Write(enumerator.Current + " ");

enumerator = intValues.GetEnumerator();

while (enumerator.MoveNext())
Console.Write(enumerator.Current + " ");

foreach (var element in intValuesCopy)
Console.Write(element + " ");

820 Chapter 21 Collections

The using directives in lines 3–4 include the namespaces System (for classes Array
and Console) and System.Collections (for interface IEnumerator, which we discuss
shortly). References to the assemblies for these namespaces are implicitly included in every
app, so we do not need to add any new references to the project file.

Our test class declares three static array variables (lines 9–11). The first two lines ini-
tialize intValues and doubleValues to an int and double array, respectively. static vari-
able intValuesCopy is intended to demonstrate the Array’s Copy method, so it’s left with
the default value null—it does not yet refer to an array.

Line 16 initializes intValuesCopy to an int array with the same length as array int-
Values. Line 19 calls the PrintArrays method (lines 49–74) to output the initial contents
of all three arrays. We discuss the PrintArraysmethod shortly. We can see from the output
of Fig. 21.3 that each element of array intValuesCopy is initialized to the default value 0.

Array Method Sort

Line 22 uses static Array method Sort to sort array doubleValues. When this method
returns, the array contains its original elements sorted in ascending order. The elements in
the array must implement the IComparable interface.

Array Method Copy

Line 25 uses static Array method Copy to copy elements from array intValues to array
intValuesCopy. The first argument is the array to copy (intValues), the second argument
is the destination array (intValuesCopy) and the third argument is an int representing the
number of elements to copy (in this case, intValues.Length specifies all elements).

Array Method BinarySearch

Lines 32 and 40 invoke static Array method BinarySearch to perform binary searches
on array intValues. Method BinarySearch receives the sorted array in which to search and
the key for which to search. The method returns the index in the array at which it finds
the key (or a negative number if the key was not found). BinarySearch assumes that it
receives a sorted array. Its behavior on an unsorted array is unpredictable. Chapter 18 dis-
cusses binary searching in detail.

Array Method GetEnumerator and Interface IEnumerator
Method PrintArrays (lines 49–74) uses class Array’s methods to loop though each array.
The GetEnumerator method (line 54) obtains an enumerator for array doubleValues. Re-
call that Array implements the IEnumerable interface. All arrays inherit implicitly from
Array, so both the int[] and double[] array types implement IEnumerable interface
method GetEnumerator, which returns an enumerator that can iterate over the collection.
Interface IEnumerator (which all enumerators implement) defines methods MoveNext and
Reset and property Current. MoveNext moves the enumerator to the next element in the
collection. The first call to MoveNext positions the enumerator at the first element of the
collection. MoveNext returns true if there’s at least one more element in the collection;
otherwise, the method returns false. Method Reset positions the enumerator before the
first element of the collection. Methods MoveNext and Reset throw an Invalid-

OperationException if the contents of the collection are modified in any way after the
enumerator is created. Property Current returns the object at the current location in the
collection.

21.4 Nongeneric Collections 821

When an enumerator is returned by the GetEnumerator method in line 54, it’s ini-
tially positioned before the first element in Array doubleValues. Then when line 56 calls
MoveNext in the first iteration of the while loop, the enumerator advances to the first ele-
ment in doubleValues. The while statement in lines 56–57 loops over each element until
the enumerator passes the end of doubleValues and MoveNext returns false. In each iter-
ation, we use the enumerator’s Current property to obtain and output the current array
element. Lines 62–65 iterate over array intValues.

Notice that PrintArrays is called twice (lines 19 and 28), so GetEnumerator is called
twice on doubleValues. The GetEnumerator method (lines 54 and 62) always returns an
enumerator positioned before the first element. Also notice that the IEnumerator property
Current is read-only. Enumerators cannot be used to modify the contents of collections,
only to obtain the contents.

Iterating Over a Collection with foreach

Lines 70–71 use a foreach statement to iterate over the collection elements. The foreach
statement uses an enumerator to accomplish this task. Both loop over the elements of an
array one by one in consecutive order. Neither allows you to modify the elements during
the iteration. This is not a coincidence. The foreach statement implicitly obtains an enu-
merator via the GetEnumerator method and uses the enumerator’s MoveNext method and
Current property to traverse the collection, just as we did explicitly in lines 54–57. For
this reason, we can use the foreach statement to iterate over any collection that imple-
ments the IEnumerable interface—not just arrays. We demonstrate this functionality in
the next section when we discuss class ArrayList.

Array Methods Clear, CreateInstance, IndexOf, LastIndexOf and Reverse

Other static Array methods include Clear (to set a range of elements to 0, false or
null, as appropriate), CreateInstance (to create a new array of a specified type), IndexOf
(to locate the first occurrence of an object in an array or portion of an array), LastIndexOf
(to locate the last occurrence of an object in an array or portion of an array) and Reverse

(to reverse the contents of an array or portion of an array).

21.4 Nongeneric Collections
The System.Collections namespace in the .NET Framework Class Library is the prima-
ry source for nongeneric collections. These classes provide standard implementations of
many of the data structures discussed in Chapter 19 with collections that store references
of type object. In this section, we demonstrate classes ArrayList, Stack and Hashtable.

21.4.1 Class ArrayList
In most programming languages, conventional arrays have a fixed size—they cannot be
changed dynamically to conform to an app’s execution-time memory requirements. In
some apps, this fixed-size limitation presents a problem. You must choose between using

Common Programming Error 21.1
If a collection is modified after an enumerator is created for that collection, the enumerator
immediately becomes invalid—any methods called on the enumerator after this point throw
InvalidOperationExceptions. For this reason, enumerators are said to be “fail fast.”

822 Chapter 21 Collections

fixed-size arrays that are large enough to store the maximum number of elements the app
may require and using dynamic data structures that can grow and shrink the amount of
memory required to store data in response to the changing requirements of an app at ex-
ecution time.

The .NET Framework’s ArrayList collection class mimics the functionality of con-
ventional arrays and provides dynamic resizing of the collection through the class’s
methods. At any time, an ArrayList contains a certain number of elements less than or
equal to its capacity—the number of elements currently reserved for the ArrayList. An
app can manipulate the capacity with ArrayList property Capacity. New apps should use
the generic List<T> class (the generic version of ArrayList) introduced in Chapter 9.

ArrayLists store references to objects. All classes derive from class object, so an
ArrayList can contain objects of any type. Figure 21.4 lists some useful methods and
properties of class ArrayList.

Performance Tip 21.1
As with linked lists, inserting additional elements into an ArrayList whose current size
is less than its capacity is a fast operation.

Performance Tip 21.2
It’s a slow operation to insert an element into an ArrayList that needs to grow larger to
accommodate a new element. An ArrayList that’s at its capacity must have its memory
reallocated and the existing values copied into it.

Performance Tip 21.3
If storage is at a premium, use method TrimToSize of class ArrayList to trim an Array-
List to its exact size. This will optimize an ArrayList’s memory use. Be careful—if the
app needs to insert additional elements, the process will be slower, because the ArrayList
must grow dynamically (trimming leaves no room for growth).

Method or
property Description

Add Adds an object to the ArrayList’s end and returns an int specifying the index
at which the object was added.

Capacity Property that gets and sets the number of elements for which space is currently
reserved in the ArrayList.

Clear Removes all the elements from the ArrayList.

Contains Returns true if the specified object is in the ArrayList; otherwise, returns
false.

Count Read-only property that gets the number of elements stored in the ArrayList.

IndexOf Returns the index of the first occurrence of the specified object in the Array-
List.

Insert Inserts an object at the specified index.

Fig. 21.4 | Some methods and properties of class ArrayList. (Part 1 of 2.)

21.4 Nongeneric Collections 823

Figure 21.5 demonstrates class ArrayList and several of its methods. Class ArrayList
belongs to the System.Collections namespace (line 4). Lines 8–11 declare two arrays of
strings (colors and removeColors) that we’ll use to fill two ArrayList objects. Recall from
Section 10.10 that constants must be initialized at compile time, but readonly variables can
be initialized at execution time. Arrays are objects created at execution time, so we declare
colors and removeColorswith readonly—not const—to make them unmodifiable. When
the app begins execution, we create an ArrayListwith an initial capacity of one element and
store it in variable list (line 16). The foreach statement in lines 19–20 adds the five ele-
ments of array colors to list via ArrayList’s Add method, so list grows to accommodate
these new elements. Line 24 uses ArrayList’s overloaded constructor to create a new Array-

List initialized with the contents of array removeColors, then assigns it to variable
removeList. This constructor can initialize the contents of an ArrayList with the elements
of any ICollection passed to it. Many of the collection classes have such a constructor.
Notice that the constructor call in line 24 performs the task of lines 19–20.

Line 27 calls method DisplayInformation (lines 37–54) to output the contents of
the list. This method uses a foreach statement to traverse the elements of an ArrayList.
As we discussed in Section 21.3, the foreach statement is a convenient shorthand for
calling ArrayList’s GetEnumerator method and using an enumerator to traverse the ele-
ments of the collection. Also, line 40 infers that the iteration variable’s type is object
because class ArrayList is nongeneric and stores references to objects.

Remove Removes the first occurrence of the specified object.

RemoveAt Removes an object at the specified index.

RemoveRange Removes a specified number of elements starting at a specified index.

Sort Sorts the ArrayList—the elements must implement IComparable or the over-
loaded version of Sort that receives a IComparer must be used.

TrimToSize Sets the Capacity of the ArrayList to the number of elements the ArrayList
currently contains (Count).

1 // Fig. 21.5: ArrayListTest.cs
2 // Using class ArrayList.
3 using System;
4 using System.Collections;
5
6 public class ArrayListTest
7 {
8 private static readonly string[] colors =
9 { "MAGENTA", "RED", "WHITE", "BLUE", "CYAN" };

10 private static readonly string[] removeColors =
11 { "RED", "WHITE", "BLUE" };

Fig. 21.5 | Using class ArrayList. (Part 1 of 3.)

Method or
property Description

Fig. 21.4 | Some methods and properties of class ArrayList. (Part 2 of 2.)

824 Chapter 21 Collections

12
13 // create ArrayList, add colors to it and manipulate it
14 public static void Main(string[] args)
15 {
16 ArrayList list = new ArrayList(1); // initial capacity of 1
17
18 // add the elements of the colors array to the ArrayList list
19 foreach (var color in colors)
20 list.Add(color); // add color to the ArrayList list
21
22 // add elements in the removeColors array to
23 // the ArrayList removeList with the ArrayList constructor
24
25
26 Console.WriteLine("ArrayList: ");
27 DisplayInformation(list); // output the list
28
29 // remove from ArrayList list the colors in removeList
30 RemoveColors(list, removeList);
31
32 Console.WriteLine("\nArrayList after calling RemoveColors: ");
33 DisplayInformation(list); // output list contents
34 } // end Main
35
36 // displays information on the contents of an array list
37 private static void DisplayInformation(ArrayList arrayList)
38 {
39 // iterate through array list with a foreach statement
40
41
42
43 // display the size and capacity
44 Console.WriteLine("\nSize = {0}; Capacity = {1}",
45);
46
47
48
49 if (index != -1)
50 Console.WriteLine("The array list contains BLUE at index {0}.",
51 index);
52 else

53 Console.WriteLine("The array list does not contain BLUE.");
54 } // end method DisplayInformation
55
56
57
58
59
60
61
62
63
64 } // end class ArrayListTest

Fig. 21.5 | Using class ArrayList. (Part 2 of 3.)

ArrayList removeList = new ArrayList(removeColors);

foreach (var element in arrayList)
Console.Write("{0} ", element); // invokes ToString

arrayList.Count, arrayList.Capacity

int index = arrayList.IndexOf("BLUE");

// remove colors specified in secondList from firstList
private static void RemoveColors(ArrayList firstList,

ArrayList secondList)
{

// iterate through second ArrayList like an array
for (int count = 0; count < secondList.Count; ++count)

firstList.Remove(secondList[count]);
} // end method RemoveColors

21.4 Nongeneric Collections 825

ArrayList Methods Count and Capacity

We use properties Count and Capacity (line 45) to display the current number and the
maximum number of elements that can be stored without allocating more memory to the
ArrayList. The output of Fig. 21.5 indicates that the ArrayList has capacity 8.

ArrayList Methods IndexOf and Contains

In line 47, we invoke method IndexOf to determine the position of the string "BLUE" in
arrayList and store the result in local variable index. IndexOf returns -1 if the element
is not found. The if statement in lines 49–53 checks if index is -1 to determine whether
arrayList contains "BLUE". If it does, we output its index. ArrayList also provides meth-
od Contains, which simply returns true if an object is in the ArrayList, and false oth-
erwise. Method Contains is preferred if we do not need the index of the element.

ArrayList Method Remove

After method DisplayInformation returns, we call method RemoveColors (lines 57–63)
with the two ArrayLists. The for statement in lines 61–62 iterates over ArrayList sec-
ondList. Line 62 uses an indexer to access an ArrayList element—by following the Ar-
rayList reference name with square brackets ([]) containing the desired index of the
element. An ArgumentOutOfRangeException occurs if the specified index is not both
greater than 0 and less than the number of elements currently stored in the ArrayList
(specified by the ArrayList’s Count property).

We use the indexer to obtain each of secondList’s elements, then remove each one
from firstList with the Remove method. This method deletes a specified item from an
ArrayList by performing a linear search and removing (only) the first occurrence of the
specified object. All subsequent elements shift toward the beginning of the ArrayList to
fill the emptied position.

After the call to RemoveColors, line 33 again outputs the contents of list, confirming
that the elements of removeList were, indeed, removed.

ArrayList:
MAGENTA RED WHITE BLUE CYAN
Size = 5; Capacity = 8
The array list contains BLUE at index 3.

ArrayList after calling RemoveColors:
MAGENTA CYAN
Size = 2; Capacity = 8
The array list does not contain BLUE.

Performance Tip 21.4
ArrayList methods IndexOf and Contains each perform a linear search, which is a costly
operation for large ArrayLists. If the ArrayList is sorted, use ArrayList method Bina-
rySearch to perform a more efficient search. Method BinarySearch returns the index of
the element, or a negative number if the element is not found.

Fig. 21.5 | Using class ArrayList. (Part 3 of 3.)

826 Chapter 21 Collections

21.4.2 Class Stack
The Stack class implements a stack data structure and provides much of the functionality
that we defined in our own implementation in Section 19.5. Refer to that section for a dis-
cussion of stack data-structure concepts. We created a test app in Fig. 19.14 to demon-
strate the StackInheritance data structure that we developed. We adapt Fig. 19.14 in
Fig. 21.6 to demonstrate the .NET Framework collection class Stack. New apps requiring
a stack class should use the generic Stack<T> class.

1 // Fig. 21.6: StackTest.cs
2 // Demonstrating class Stack.
3 using System;
4 using System.Collections;
5
6 public class StackTest
7 {
8 public static void Main(string[] args)
9 {

10 Stack stack = new Stack(); // create an empty Stack
11
12 // create objects to store in the stack
13 bool aBoolean = true;
14 char aCharacter = '$';
15 int anInteger = 34567;
16 string aString = "hello";
17
18 // use method Push to add items to (the top of) the stack
19
20 PrintStack(stack);
21
22 PrintStack(stack);
23
24 PrintStack(stack);
25
26 PrintStack(stack);
27
28 // check the top element of the stack
29 Console.WriteLine("The top element of the stack is {0}\n",
30);
31
32 // remove items from stack
33 try

34 {
35
36
37
38
39
40
41 } // end try
42 catch (InvalidOperationException exception)
43 {

Fig. 21.6 | Demonstrating class Stack. (Part 1 of 2.)

stack.Push(aBoolean);

stack.Push(aCharacter);

stack.Push(anInteger);

stack.Push(aString);

stack.Peek()

while (true)
{

object removedObject = stack.Pop();
Console.WriteLine(removedObject + " popped");
PrintStack(stack);

} // end while

21.4 Nongeneric Collections 827

The using directive in line 4 allows us to use the Stack class with its unqualified name
from the System.Collections namespace. Line 10 creates a Stack. As one might expect,
class Stack has methods Push and Pop to perform the basic stack operations.

Stack Method Push

Method Push takes an object as an argument and inserts it at the top of the Stack. If the
number of items on the Stack (the Count property) is equal to the capacity at the time of

44 // if exception occurs, output stack trace
45 Console.Error.WriteLine(exception);
46 } // end catch
47 } // end Main
48
49 // display the contents of a stack
50 private static void PrintStack(Stack stack)
51 {
52 if (stack.Count == 0)
53 Console.WriteLine("stack is empty\n"); // the stack is empty
54 else

55 {
56 Console.Write("The stack is: ");
57
58 // iterate through the stack with a foreach statement
59
60
61
62 Console.WriteLine("\n");
63 } // end else
64 } // end method PrintStack
65 } // end class StackTest

The stack is: True

The stack is: $ True

The stack is: 34567 $ True

The stack is: hello 34567 $ True

The top element of the stack is hello

hello popped
The stack is: 34567 $ True

34567 popped
The stack is: $ True

$ popped
The stack is: True

True popped
stack is empty

System.InvalidOperationException: Stack empty.
at System.Collections.Stack.Pop()
at StackTest.Main(String[] args) in

c:\examples\ch23\fig23_06\StackTest\StackTest\StackTest.cs:line 37

Fig. 21.6 | Demonstrating class Stack. (Part 2 of 2.)

foreach (var element in stack)
Console.Write("{0} ", element); // invokes ToString

828 Chapter 21 Collections

the Push operation, the Stack grows to accommodate more objects. Lines 19–26 use
method Push to add four elements (a bool, a char, an int and a string) to the stack and
invoke method PrintStack (lines 50–64) after each Push to output the contents of the
stack. Notice that this nongeneric Stack class can store only references to objects, so each
of the value-type items—the bool, the char and the int—is implicitly boxed before it’s
added to the Stack. (Namespace System.Collections.Generic provides a generic Stack
class that has many of the same methods and properties used in Fig. 21.6. This version
eliminates the overhead of boxing and unboxing simple types.)

Method PrintStack

Method PrintStack (lines 50–64) uses Stack property Count (implemented to fulfill the
contract of interface ICollection) to obtain the number of elements in stack. If the stack
is not empty (i.e., Count is not equal to 0), we use a foreach statement to iterate over the
stack and output its contents by implicitly invoking the ToStringmethod of each element.
The foreach statement implicitly invokes Stack’s GetEnumerator method, which we
could have called explicitly to traverse the stack via an enumerator.

Stack Method Peek

Method Peek returns the value of the top stack element but does not remove the element
from the Stack. We use Peek at line 30 to obtain the top object of the Stack, then output
that object, implicitly invoking the object’s ToString method. An InvalidOperationEx-

ception occurs if the Stack is empty when the app calls Peek. We do not need an excep-
tion-handling block because we know the stack is not empty here.

Stack Method Pop

Method Pop takes no arguments—it removes and returns the object currently on the Stack’s
top. An infinite loop (lines 35–40) pops objects off the stack and outputs them until the stack
is empty. When the app calls Pop on the empty stack, an InvalidOperationException is
thrown. The catch block (lines 42–46) outputs the exception, implicitly invoking the In-
validOperationException’s ToString method to obtain its error message and stack trace.

Stack Method Contains

Although Fig. 21.6 does not demonstrate it, class Stack also has method Contains, which
returns true if the Stack contains the specified object, and returns false otherwise.

21.4.3 Class Hashtable
When an app creates objects of new or existing types, it needs to manage those objects effi-
ciently. This includes sorting and retrieving objects. Sorting and retrieving information
with arrays is efficient if some aspect of your data directly matches the key value and if those
keys are unique and tightly packed. If you have 100 employees with nine-digit social security
numbers and you want to store and retrieve employee data by using the social security num-
ber as a key, it would nominally require an array with 1,000,000,000 elements, because
there are 1,000,000,000 unique nine-digit numbers. If you have an array that large, you

Common Programming Error 21.2
Attempting to Peek or Pop an empty Stack (a Stack whose Count property is 0) causes an
InvalidOperationException.

21.4 Nongeneric Collections 829

could get high performance storing and retrieving employee records by simply using the so-
cial security number as the array index, but it would be a huge waste of memory.

Many apps have this problem—either the keys are of the wrong type (i.e., not non-
negative integers), or they’re of the right type but are sparsely spread over a large range.

Hashing
What is needed is a high-speed scheme for converting keys such as social security numbers
and inventory part numbers to unique array indices. Then, when an app needs to store
something, the scheme could convert the key rapidly to an index and the record of infor-
mation could be stored at that location in the array. Retrieval occurs the same way—once
the app has a key for which it wants to retrieve the data record, the app simply applies the
conversion to the key, which produces the array index where the data resides in the array
and retrieves the data.

The scheme we describe here is the basis of a technique called hashing, in which we
store data in a data structure called a hash table. Why the name? Because, when we convert
a key into an array index, we literally scramble the bits, making a “hash” of the number.
The number actually has no real significance beyond its usefulness in storing and
retrieving this particular data record.

Collisions
A glitch in the scheme occurs when there are collisions (i.e., two different keys “hash into”
the same cell, or element, in the array). Since we cannot sort two different data records to the
same space, we need to find an alternative home for all records beyond the first that hash to
a particular array index. One scheme for doing this is to “hash again” (i.e., to reapply the
hashing transformation to the key to provide a next candidate cell in the array). The hashing
process is designed so that with just a few hashes, an available cell will be found.

Another scheme uses one hash to locate the first candidate cell. If the cell is occupied,
successive cells are searched linearly until an available cell is found. Retrieval works the
same way—the key is hashed once, the resulting cell is checked to determine whether it
contains the desired data. If it does, the search is complete. If it does not, successive cells
are searched linearly until the desired data is found.

The most popular solution to hash-table collisions is to have each cell of the table be
a hash “bucket”—typically, a linked list of all the key–value pairs that hash to that cell.
This is the solution that the .NET Framework’s Hashtable class implements.

Load Factor
The load factor affects the performance of hashing schemes. The load factor is the ratio of
the number of objects stored in the hash table to the total number of cells of the hash table.
As this ratio gets higher, the chance of collisions tends to increase.

Performance Tip 21.5
The load factor in a hash table is a classic example of a space/time trade-off: By increasing
the load factor, we get better memory utilization, but the app runs slower due to increased
hashing collisions. By decreasing the load factor, we get better speed because of reduced
hashing collisions, but we get poorer memory utilization because a larger portion of the
hash table remains empty.

830 Chapter 21 Collections

Computer-science students study hashing schemes in courses called “Data Structures”
and “Algorithms.” Recognizing the value of hashing, the .NET Framework provides class
Hashtable to enable programmers to easily employ hashing in apps.

This concept is profoundly important in our study of object-oriented programming.
Classes encapsulate and hide complexity (i.e., implementation details) and offer user-
friendly interfaces. Crafting classes to do this properly is one of the most valued skills in
the field of object-oriented programming.

Hash Function
A hash function performs a calculation that determines where to place data in the hash ta-
ble. The hash function is applied to the key in a key–value pair of objects. Class Hashtable
can accept any object as a key. For this reason, class object defines method GetHashCode,
which all objects inherit. Most classes that are candidates to be used as keys in a hash table
override this method to provide one that performs efficient hash-code calculations for a
specific type. For example, a string has a hash-code calculation that’s based on the con-
tents of the string.

Demonstrating Hashtable
Figure 21.7 uses a Hashtable to count the number of occurrences of each word in a
string. New apps should use generic class Dictionary<K, V> (introduced in Section 17.4)
rather than Hashtable.

1 // Fig. 21.7: HashtableTest.cs
2 // App counts the number of occurrences of each word in a string
3 // and stores them in a hash table.
4 using System;
5 using System.Text.RegularExpressions;
6 using System.Collections;
7
8 public class HashtableTest
9 {

10 public static void Main(string[] args)
11 {
12 // create hash table based on user input
13 Hashtable table = CollectWords();
14
15 // display hash-table content
16 DisplayHashtable(table);
17 } // end Main
18
19 // create hash table from user input
20 private static Hashtable CollectWords()
21 {
22 Hashtable table = new Hashtable(); // create a new hash table
23
24 Console.WriteLine("Enter a string: "); // prompt for user input
25 string input = Console.ReadLine(); // get input
26

Fig. 21.7 | App counts the number of occurrences of each word in a string and stores them in
a hash table. (Part 1 of 2.)

21.4 Nongeneric Collections 831

27 // split input text into tokens
28
29
30 // processing input words
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45 return table;
46 } // end method CollectWords
47
48 // display hash-table content
49 private static void DisplayHashtable(Hashtable table)
50 {
51 Console.WriteLine("\nHashtable contains:\n{0,-12}{1,-12}",
52 "Key:", "Value:");
53
54 // generate output for each key in hash table
55 // by iterating through the Keys property with a foreach statement
56
57
58
59 Console.WriteLine("\nsize: {0}", table.Count);
60 } // end method DisplayHashtable
61 } // end class HashtableTest

Enter a string:
As idle as a painted ship upon a painted ocean

Hashtable contains:
Key: Value:
ocean 1
a 2
as 2
ship 1
upon 1
painted 2
idle 1

size: 7

Fig. 21.7 | App counts the number of occurrences of each word in a string and stores them in
a hash table. (Part 2 of 2.)

string[] words = Regex.Split(input, @"\s+");

foreach (var word in words)
{

string wordKey = word.ToLower(); // get word in lowercase

// if the hash table contains the word
if (table.ContainsKey(wordKey))
{

table[wordKey] = ((int) table[wordKey]) + 1;
} // end if
else

// add new word with a count of 1 to hash table
table.Add(wordKey, 1);

} // end foreach

foreach (var key in table.Keys)
Console.WriteLine("{0,-12}{1,-12}", key, table[key]);

832 Chapter 21 Collections

Lines 4–6 contain using directives for namespaces System (for class Console),
System.Text.RegularExpressions (for class Regex) and System.Collections (for class
Hashtable). Class HashtableTest declares three static methods. Method CollectWords
(lines 20–46) inputs a string and returns a Hashtable in which each value stores the
number of times that word appears in the string and the word is used for the key. Method
DisplayHashtable (lines 49–60) displays the Hashtable passed to it in column format.
The Main method (lines 10–17) simply invokes CollectWords (line 13), then passes the
Hashtable returned by CollectWords to DisplayHashtable in line 16.

Method CollectWords

Method CollectWords (lines 20–46) begins by initializing local variable table with a new
Hashtable (line 22) that has a default maximum load factor of 1.0. When the Hashtable
reaches the specified load factor, the capacity is increased automatically. (This implemen-
tation detail is invisible to clients of the class.) Lines 24–25 prompt the user and input a
string. We use static method Split of class Regex (introduced in the online section of
Chapter 16) in line 28 to divide the string by its whitespace characters. This creates an
array of “words,” which we then store in local variable words.

Hashtable Methods ContainsKey and Add

Lines 31–43 loop over every element of array words. Each word is converted to lowercase
with string method ToLower, then stored in variable wordKey (line 33). Then line 36 calls
Hashtable method ContainsKey to determine whether the word is in the hash table (and
thus has occurred previously in the string). If the Hashtable does not contain an entry
for the word, line 42 uses Hashtable method Add to create a new entry in the hash table,
with the lowercase word as the key and an object containing 1 as the value. Autoboxing oc-
curs when the app passes integer 1 to method Add, because the hash table stores both the
key and value in references of type object.

Hashtable Indexer
If the word is already a key in the hash table, line 38 uses the Hashtable’s indexer to obtain
and set the key’s associated value (the word count) in the hash table. We first downcast the
value obtained by the get accessor from an object to an int. This unboxes the value so
that we can increment it by 1. Then, when we use the indexer’s set accessor to assign the
key’s associated value, the incremented value is implicitly reboxed so that it can be stored
in the hash table.

Invoking the get accessor of a Hashtable indexer with a key that does not exist in the
hash table obtains a null reference. Using the set accessor with a key that does not exist
in the hash table creates a new entry, as if you had used the Add method.

Method DisplayHashtable

Line 45 returns the hash table to the Main method, which then passes it to method Dis-

playHashtable (lines 49–60), which displays all the entries. This method uses read-only
property Keys (line 56) to get an ICollection that contains all the keys. Because ICol-

Common Programming Error 21.3
Using the Add method to add a key that already exists in the hash table causes an Argu-

mentException.

21.5 Generic Collections 833

lection extends IEnumerable, we can use this collection in the foreach statement in lines
56–57 to iterate over the keys of the hash table. This loop accesses and outputs each key
and its value in the hash table using the iteration variable and table’s get accessor. Each
key and its value is displayed in a field width of -12. The negative field width indicates that
the output is left justified. A hash table is not sorted, so the key–value pairs are not dis-
played in any particular order. Line 59 uses Hashtable property Count to get the number
of key–value pairs in the Hashtable.

DictionaryEntry and IDictionary

Lines 56–57 could have also used the foreach statement with the Hashtable object itself,
instead of using the Keys property. If you use a foreach statement with a Hashtable ob-
ject, the iteration variable will be of type DictionaryEntry. The enumerator of a
Hashtable (or any other class that implements IDictionary) uses the DictionaryEntry
structure to store key–value pairs. This structure provides properties Key and Value for re-
trieving the key and value of the current element. If you do not need the keys, class
Hashtable also provides a read-only Values property that gets an ICollection of all the
values stored in the Hashtable. We can use this property to iterate through the values
stored in the Hashtable without regard for where they’re stored.

Problems with Nongeneric Collections
In the word-counting app of Fig. 21.7, our Hashtable stores its keys and data as object
references, even though we store only string keys and int values by convention. This re-
sults in some awkward code. For example, line 38 was forced to unbox and box the int data
stored in the Hashtable every time it incremented the count for a particular key. This is
inefficient. A similar problem occurs in line 56—the iteration variable of the foreach
statement is an object reference. If we need to use any of its string-specific methods, we
need an explicit downcast.

This can cause subtle bugs. Suppose we decide to improve the readability of Fig. 21.7
by using the indexer’s set accessor instead of the Add method to add a key–value pair in
line 42, but accidentally type:

This statement will create a new entry with a string key and string value instead of an
int value of 1. Although the app will compile correctly, this is clearly incorrect. If a word
appears twice, line 38 will try to downcast this string to an int, causing an Invalid-

CastException at execution time. The error that appears at execution time will indicate
that the problem is at line 38, where the exception occurred, not at line 42. This makes the
error more difficult to find and debug, especially in large apps where the exception may
occur in a different file—and even in a different assembly.

21.5 Generic Collections
The System.Collections.Generic namespace contains generic classes that allow us to
create collections of specific types. As you saw in Fig. 21.2, many of the classes are simply
generic versions of nongeneric collections. A couple of classes implement new data struc-
tures. Here, we demonstrate generic collections SortedDictionary and LinkedList.

table[wordKey] = wordKey; // initialize to 1

834 Chapter 21 Collections

21.5.1 Generic Class SortedDictionary
A dictionary is the general term for a collection of key–value pairs. A hash table is one way
to implement a dictionary. The .NET Framework provides several implementations of
dictionaries, both generic and nongeneric, all of which implement the IDictionary inter-
face (described in Fig. 21.1). The app in Fig. 21.8 is a modification of Fig. 21.7 that uses
the generic class SortedDictionary. Generic class SortedDictionary does not use a hash
table, but instead stores its key–value pairs in a binary search tree. (We discussed binary
trees in depth in Section 19.7.) As the class name suggests, the entries in SortedDiction-
ary are sorted in the tree by key. When the key implements generic interface ICompara-
ble<T>, the SortedDictionary uses the results of IComparable<T> method CompareTo to
sort the keys. Notice that despite these implementation details, we use the same public
methods, properties and indexers with classes Hashtable and SortedDictionary in the
same ways. In fact, except for the generic-specific syntax, Fig. 21.8 looks remarkably sim-
ilar to Fig. 21.7. This is the beauty of object-oriented programming.

1 // Fig. 21.8: SortedDictionaryTest.cs
2 // App counts the number of occurrences of each word in a string
3 // and stores them in a generic sorted dictionary.
4 using System;
5 using System.Text.RegularExpressions;
6
7
8 public class SortedDictionaryTest
9 {

10 public static void Main(string[] args)
11 {
12 // create sorted dictionary based on user input
13 SortedDictionary< string, int > dictionary = CollectWords();
14
15 // display sorted dictionary content
16 DisplayDictionary(dictionary);
17 } // end Main
18
19 // create sorted dictionary from user input
20 private static SortedDictionary< string, int > CollectWords()
21 {
22 // create a new sorted dictionary
23
24
25
26 Console.WriteLine("Enter a string: "); // prompt for user input
27 string input = Console.ReadLine(); // get input
28
29 // split input text into tokens
30 string[] words = Regex.Split(input, @"\s+");
31

Fig. 21.8 | App counts the number of occurrences of each word in a string and stores them in
a generic sorted dictionary. (Part 1 of 2.)

using System.Collections.Generic;

SortedDictionary< string, int > dictionary =
new SortedDictionary< string, int >();

21.5 Generic Collections 835

Line 6 contains a using directive for the System.Collections.Generic namespace,
which contains class SortedDictionary. The generic class SortedDictionary takes two
type arguments—the first specifies the type of key (i.e., string) and the second the type
of value (i.e., int). We have simply replaced the word Hashtable in line 13 and lines 23–

32 // processing input words
33 foreach (var word in words)
34 {
35 string wordKey = word.ToLower(); // get word in lowercase
36
37 // if the dictionary contains the word
38 if (dictionary.ContainsKey(wordKey))
39 {
40
41 } // end if
42 else

43 // add new word with a count of 1 to the dictionary
44 dictionary.Add(wordKey, 1);
45 } // end foreach
46
47 return dictionary;
48 } // end method CollectWords
49
50 // display dictionary content
51
52
53 {
54 Console.WriteLine("\nSorted dictionary contains:\n{0,-12}{1,-12}",
55 "Key:", "Value:");
56
57 // generate output for each key in the sorted dictionary
58 // by iterating through the Keys property with a foreach statement
59
60 Console.WriteLine("{0,-12}{1,-12}", key, dictionary[key]);
61
62 Console.WriteLine("\nsize: {0}", dictionary.Count);
63 } // end method DisplayDictionary
64 } // end class SortedDictionaryTest

Enter a string:
We few, we happy few, we band of brothers

Sorted dictionary contains:
Key: Value:
band 1
brothers 1
few, 2
happy 1
of 1
we 3

size: 6

Fig. 21.8 | App counts the number of occurrences of each word in a string and stores them in
a generic sorted dictionary. (Part 2 of 2.)

++dictionary[wordKey];

private static void DisplayDictionary< K, V >(
SortedDictionary< K, V > dictionary)

foreach (K key in dictionary.Keys)

836 Chapter 21 Collections

24 with SortedDictionary<string, int> to create a dictionary of int values keyed with
strings. Now, the compiler can check and notify us if we attempt to store an object of the
wrong type in the dictionary. Also, because the compiler now knows that the data struc-
ture contains int values, there’s no longer any need for the downcast in line 40. This allows
line 40 to use the much more concise prefix increment (++) notation. These changes result
in code that can be checked for type safety at compile time.

Static method DisplayDictionary (lines 51–63) has been modified to be completely
generic. It takes type parameters K and V. These parameters are used in line 52 to indicate
that DisplayDictionary takes a SortedDictionary with keys of type K and values of type
V. We use type parameter K again in line 59 as the type of the iteration key. This use of
generics is a marvelous example of code reuse. If we decide to change the app to count the
number of times each character appears in a string, method DisplayDictionary could
receive an argument of type SortedDictionary<char, int>without modification. This is
precisely what you’ll do in Exercise 21.12. The key–value pairs displayed are now ordered
by key, as shown in Fig. 21.8.

21.5.2 Generic Class LinkedList
The generic LinkedList class is a doubly linked list—we can navigate the list both back-
ward and forward with nodes of generic class LinkedListNode. Each node contains prop-
erty Value and read-only properties Previous and Next. The Value property’s type
matches LinkedList’s single type parameter because it contains the data stored in the
node. The Previous property gets a reference to the preceding node in the linked list (or
null if the node is the first of the list). Similarly, the Next property gets a reference to the
subsequent reference in the linked list (or null if the node is the last of the list). We dem-
onstrate a few linked-list manipulations in Fig. 21.9.

Performance Tip 21.6
Because class SortedDictionary keeps its elements sorted in a binary tree, obtaining or
inserting a key–value pair takes O(log n) time, which is fast compared to linear searching,
then inserting.

Common Programming Error 21.4
Invoking the get accessor of a SortedDictionary indexer with a key that does not exist
in the collection causes a KeyNotFoundException. This behavior is different from that of
the Hashtable indexer’s get accessor, which would return null.

1 // Fig. 21.9: LinkedListTest.cs
2 // Using LinkedLists.
3 using System;
4 using System.Collections.Generic;
5
6 public class LinkedListTest
7 {
8 private static readonly string[] colors = { "black", "yellow",
9 "green", "blue", "violet", "silver" };

Fig. 21.9 | Using LinkedLists. (Part 1 of 4.)

21.5 Generic Collections 837

10 private static readonly string[] colors2 = { "gold", "white",
11 "brown", "blue", "gray" };
12
13 // set up and manipulate LinkedList objects
14 public static void Main(string[] args)
15 {
16 LinkedList< string > list1 = new LinkedList< string >();
17
18 // add elements to first linked list
19 foreach (var color in colors)
20 list1.AddLast(color);
21
22 // add elements to second linked list via constructor
23 LinkedList< string > list2 = new LinkedList< string >(colors2);
24
25 Concatenate(list1, list2); // concatenate list2 onto list1
26 PrintList(list1); // display list1 elements
27
28 Console.WriteLine("\nConverting strings in list1 to uppercase\n");
29 ToUppercaseStrings(list1); // convert to uppercase string
30 PrintList(list1); // display list1 elements
31
32 Console.WriteLine("\nDeleting strings between BLACK and BROWN\n");
33 RemoveItemsBetween(list1, "BLACK", "BROWN");
34
35 PrintList(list1); // display list1 elements
36 PrintReversedList(list1); // display list in reverse order
37 } // end Main
38
39 // display list contents
40
41 {
42 Console.WriteLine("Linked list: ");
43
44
45
46
47 Console.WriteLine();
48 } // end method PrintList
49
50 // concatenate the second list on the end of the first list
51 private static void Concatenate< T >(LinkedList< T > list1,
52 LinkedList< T > list2)
53 {
54
55
56
57
58 } // end method Concatenate
59
60 // locate string objects and convert to uppercase
61
62

Fig. 21.9 | Using LinkedLists. (Part 2 of 4.)

private static void PrintList< T >(LinkedList< T > list)

foreach (T value in list)
Console.Write("{0} ", value);

// concatenate lists by copying element values
// in order from the second list to the first list
foreach (T value in list2)

list1.AddLast(value); // add new node

private static void ToUppercaseStrings(LinkedList< string > list)
{

838 Chapter 21 Collections

63
64
65
66
67
68
69
70
71
72
73
74
75 // delete list items between two given items
76 private static void RemoveItemsBetween< T >(LinkedList< T > list,
77 T startItem, T endItem)
78 {
79 // get the nodes corresponding to the start and end item
80
81
82
83 // remove items after the start item
84 // until we find the last item or the end of the linked list
85 while ((currentNode.Next != null) &&
86 (currentNode.Next != endNode))
87 {
88
89 } // end while
90 } // end method RemoveItemsBetween
91
92 // display reversed list
93 private static void PrintReversedList< T >(LinkedList< T > list)
94 {
95 Console.WriteLine("Reversed List:");
96
97 // iterate over the list by using the nodes
98
99
100
101
102
103
104
105
106 Console.WriteLine();
107 } // end method PrintReversedList
108 } // end class LinkedListTest

Linked list:
black yellow green blue violet silver gold white brown blue gray

Converting strings in list1 to uppercase

Fig. 21.9 | Using LinkedLists. (Part 3 of 4.)

// iterate over the list by using the nodes
LinkedListNode< string > currentNode = list.First;

while (currentNode != null)
{

string color = currentNode.Value; // get value in node
currentNode.Value = color.ToUpper(); // convert to uppercase

currentNode = currentNode.Next; // get next node
} // end while

} // end method ToUppercaseStrings

LinkedListNode< T > currentNode = list.Find(startItem);
LinkedListNode< T > endNode = list.Find(endItem);

list.Remove(currentNode.Next); // remove next node

LinkedListNode< T > currentNode = list.Last;

while (currentNode != null)
{

Console.Write("{0} ", currentNode.Value);
currentNode = currentNode.Previous; // get previous node

} // end while

21.5 Generic Collections 839

The using directive in line 4 allows us to use the LinkedList class by its unqualified
name. Lines 16–23 create LinkedLists list1 and list2 of strings and fill them with the
contents of arrays colors and colors2, respectively. LinkedList is a generic class that has
one type parameter for which we specify the type argument string in this example (lines
16 and 23).

LinkedList Methods AddLast and AddFirst

We demonstrate two ways to fill the lists. In lines 19–20, we use the foreach statement and
method AddLast to fill list1. The AddLast method creates a new LinkedListNode (with
the given value available via the Value property) and appends this node to the end of the
list. There’s also an AddFirst method that inserts a node at the beginning of the list. Line
23 invokes the constructor that takes an IEnumerable<string> parameter. All arrays im-
plicitly inherit from the generic interfaces IList and IEnumerablewith the type of the array
as the type argument, so the string array colors2 implements IEnumerable<string>. The
type parameter of this generic IEnumerable matches the type parameter of the generic
LinkedList object. This constructor call copies the contents of the array colors2 to list2.

Methods That Test Class LinkedList
Line 25 calls generic method Concatenate (lines 51–58) to append all elements of list2
to the end of list1. Line 26 calls method PrintList (lines 40–48) to output list1’s con-
tents. Line 29 calls method ToUppercaseStrings (lines 61–73) to convert each string el-
ement to uppercase, then line 30 calls PrintList again to display the modified strings.
Line 33 calls method RemoveItemsBetween (lines 76–90) to remove the elements between
"BLACK" and "BROWN"—not including either. Line 35 outputs the list again, then line 36
invokes method PrintReversedList (lines 93–107) to display the list in reverse order.

Generic Method Concatentate

Generic method Concatenate (lines 51–58) iterates over list2 with a foreach statement
and calls method AddLast to append each value to the end of list1. The LinkedList
class’s enumerator loops over the values of the nodes, not the nodes themselves, so the it-
eration variable has type T. Notice that this creates a new node in list1 for each node in
list2. One LinkedListNode cannot be a member of more than one LinkedList. If you
want the same data to belong to more than one LinkedList, you must make a copy of the
node for each list to avoid InvalidOperationExceptions.

Generic Method PrintList and Method ToUppercaseStrings

Generic method PrintList (lines 40–48) similarly uses a foreach statement to iterate
over the values in a LinkedList, and outputs them. Method ToUppercaseStrings (lines

Linked list:
BLACK YELLOW GREEN BLUE VIOLET SILVER GOLD WHITE BROWN BLUE GRAY

Deleting strings between BLACK and BROWN

Linked list:
BLACK BROWN BLUE GRAY
Reversed List:
GRAY BLUE BROWN BLACK

Fig. 21.9 | Using LinkedLists. (Part 4 of 4.)

840 Chapter 21 Collections

61–73) takes a linked list of strings and converts each string value to uppercase. This
method replaces the strings stored in the list, so we cannot use an enumerator (via a fo-
reach statement) as in the previous two methods. Instead, we obtain the first LinkedList-
Node via the First property (line 64), and use a while statement to loop through the list
(lines 66–72). Each iteration of the while statement obtains and updates the contents of
currentNode via property Value, using string method ToUpper to create an uppercase
version of string color. At the end of each iteration, we move the current node to the
next node in the list by assigning currentNode to the node obtained by its own Next prop-
erty (line 71). The Next property of the last node of the list gets null, so when the while
statement iterates past the end of the list, the loop exits.

Method ToUppercaseStrings

It does not make sense to declare ToUppercaseStrings as a generic method, because it uses
the string-specific methods of the values in the nodes. Methods PrintList (lines 40–48)
and Concatenate (lines 51–58) do not need to use any string-specific methods, so they
can be declared with generic type parameters to promote maximal code reuse.

Generic Method RemoveItemsBetween

Generic method RemoveItemsBetween (lines 76–90) removes a range of items between
two nodes. Lines 80–81 obtain the two “boundary” nodes of the range by using method
Find. This method performs a linear search on the list and returns the first node that con-
tains a value equal to the passed argument. Method Find returns null if the value is not
found. We store the node preceding the range in local variable currentNode and the node
following the range in endNode.

Lines 85–89 remove all the elements between currentNode and endNode. On each iter-
ation of the loop, we remove the node following currentNode by invoking method Remove

(line 88). Method Remove takes a LinkedListNode, splices that node out of the LinkedList,
and fixes the references of the surrounding nodes. After the Remove call, currentNode’s Next
property now gets the node following the node just removed, and that node’s Previous prop-
erty now gets currentNode. The while statement continues to loop until there are no nodes
left between currentNode and endNode, or until currentNode is the last node in the list.
(There’s also an overloaded version of method Remove that performs a linear search for the
specified value and removes the first node in the list that contains it.)

Method PrintReversedList

Method PrintReversedList (lines 93–107) displays the list backward by navigating the
nodes manually. Line 98 obtains the last element of the list via the Last property and
stores it in currentNode. The while statement in lines 100–104 iterates through the list
backward by moving the currentNode reference to the previous node at the end of each
iteration, then exiting when we move past the beginning of the list. Note how similar this
code is to lines 64–72, which iterated through the list from the beginning to the end.

21.6 Covariance and Contravariance for Generic Types
C# supports covariance and contravariance of generic interface and delegate types. We’ll
consider these concepts in the context of arrays, which have always been covariant and
contravariant in C#.

21.6 Covariance and Contravariance for Generic Types 841

Covariance in Arrays
Recall our Employee class hierarchy from Section 12.5, which consisted of the base class
Employee and the derived classes SalariedEmployee, CommissionEmployee and Base-

PlusCommissionEmployee. Assuming the declarations

we can write the following statement:

Even though the array type SalariedEmployee[] does not derive from the array type
Employee[], the preceding assignment is allowed because class SalariedEmployee is a de-
rived class of Employee.

Similarly, suppose we have the following method, which displays the string repre-
sentation of each Employee in its employees array parameter:

We can call this method with the array of SalariedEmployees, as in:

and the method will correctly display the string representation of each SalariedEmploy-
ee object in the argument array. Assigning an array of a derived-class type to an array vari-
able of a base-class type is an example of covariance.

Covariance in Generic Types
Covariance works with several generic interface and delegate types, including IEnumera-

ble<T>. Arrays and generic collections implement the IEnumerable<T> interface. Using
the salariedEmployees array declared previously, consider the following statement:

Prior to Visual C# 2010, this generated a compilation error. Interface IEnumerable<T> is
now covariant, so the preceding statement is allowed. If we modify method PrintEmploy-
ees as in:

we can call PrintEmployees with the array of SalariedEmployee objects, because that ar-
ray implements the interface IEnumerable<SalariedEmployee> and because a Salaried-
Employee is an Employee and because IEnumerable<T> is covariant. Covariance like this
works only with reference types that are related by a class hierarchy.

Contravariance in Arrays
Previously, we showed that an array of a derived-class type (salariedEmployees) can be
assigned to an array variable of a base-class type (employees). Now, consider the following
statement, which has always worked in C#:

SalariedEmployee[] salariedEmployees = {
new SalariedEmployee("Bob", "Blue", "111-11-1111", 800M),
new SalariedEmployee("Rachel", "Red", "222-22-2222", 1234M) };

Employee[] employees;

employees = salariedEmployees;

void PrintEmployees(Employee[] employees)

PrintEmployees(salariedEmployees);

IEnumerable< Employee > employees = salariedEmployees;

void PrintEmployees(IEnumerable< Employee > employees)

SalariedEmployee[] salariedEmployees2 =
(SalariedEmployee[]) employees;

842 Chapter 21 Collections

Based on the previous statements, we know that the Employee array variable employees
currently refers to an array of SalariedEmployees. Using a cast operator to assign employ-
ees—an array of base-class-type elements—to salariedEmployees2—an array of de-
rived-class-type elements—is an example of contravariance. The preceding cast will fail at
runtime if employees is not an array of SalariedEmployees.

Contravariance in Generic Types
To understand contravariance in generic types, consider a SortedSet of SalariedEmploy-
ees. Class SortedSet<T> maintains a set of objects in sorted order—no duplicates are al-
lowed. The objects placed in a SortedSet must implement the IComparable<T> interface.
For classes that do not implement this interface, you can still compare their objects using an
object that implements the IComparer<T> interface. This interface’s Comparemethod com-
pares its two arguments and returns 0 if they’re equal, a negative integer if the first object is
less than the second, or a positive integer if the first object is greater than the second.

Our Employee hierarchy classes do not implement IComparable<T>. Let’s assume we
wish to sort Employees by social security number. We can implement the following class
to compare any two Employees:

Method Compare returns the result of comparing the two Employees social security num-
bers using string method CompareTo.

Now consider the following statement, which creates a SortedSet:

When the type argument does not implement IComparable<T>, you must supply an ap-
propriate IComparer<T> object to compare the objects that will be placed in the Sorted-
Set. Since, we’re creating a SortedSet of SalariedEmployees, the compiler expects the
IComparer<T> object to implement the IComparer<SalariedEmployee>. Instead, we pro-
vided an object that implements IComparer<Employee>. The compiler allows us to pro-
vide an IComparer for a base-class type where an IComparer for a derived-class type is
expected because interface IComparer<T> supports contravariance.

Web Resources
For a list of covariant and contravariant interface types, visit

It’s also possible to create your own variant types. For information on this, visit

class EmployeeComparer : IComparer< Employee >
{

int IComparer< Employee >.Compare(Employee a, Employee b)
{

return a.SocialSecurityNumber.CompareTo(
b.SocialSecurityNumber);

} // end method Compare
} // end class EmployeeComparer

SortedSet< SalariedEmployee > set =
new SortedSet< SalariedEmployee >(new EmployeeComparer());

msdn.microsoft.com/en-us/library/dd799517.aspx#VariantList

msdn.microsoft.com/en-us/library/dd997386.aspx

21.7 Wrap-Up 843

21.7 Wrap-Up
This chapter introduced the .NET Framework collection classes. You learned about the
hierarchy of interfaces that many of the collection classes implement. You saw how to use
class Array to perform array manipulations. You learned that the System.Collections
and System.Collections.Generic namespaces contain many nongeneric and generic
collection classes, respectively. We presented the nongeneric classes ArrayList, Stack and
Hashtable as well as generic classes SortedDictionary and LinkedList. In doing so, we
discussed data structures in greater depth. We discussed dynamically expandable collec-
tions, hashing schemes, and two implementations of a dictionary. You saw the advantages
of generic collections over their nongeneric counterparts.

You also learned how to use enumerators to traverse these data structures and obtain
their contents. We demonstrated the foreach statement with many of the classes of the
Framework Class Library, and explained that this works by using enumerators “behind-
the-scenes” to traverse the collections.

In Chapter 22, we begin our discussion of databases, which organize data in such a
way that the data can be selected and updated quickly. We introduce Structured Query
Language (SQL) for writing simple database queries. We then introduce LINQ to SQL,
which allows you to write LINQ queries that are automatically converted into SQL que-
ries. These SQL queries are then used to query the database.

Summary
Section 21.1 Introduction
• The prepackaged data-structure classes provided by the .NET Framework are known as collec-

tion classes—they store collections of data.

• With collection classes, instead of creating data structures to store these sets of items, the pro-
grammer simply uses existing data structures, without concern for how they’re implemented.

Section 21.2 Collections Overview
• The .NET Framework collections provide high-performance, high-quality implementations of

common data structures and enable effective software reuse.

• In earlier versions of C#, the .NET Framework primarily provided the collection classes in the
System.Collections namespace to store and manipulate object references.

• The .NET Framework’s System.Collections.Generic namespace contains collection classes
that take advantage of .NET’s generics capabilities.

Section 21.3 Class Array and Enumerators
• All arrays implicitly inherit from abstract base class Array (namespace System).

• The static Array method Sort sorts an array.

• The static Array method Copy copies elements from one array to another.

• The static Array method BinarySearch performs binary searches on an array. This method as-
sumes that it receives a sorted array.

• A collection’s GetEnumerator method returns an enumerator that can iterate over the collection.

• All enumerators have methods MoveNext and Reset and property Current.

• MoveNext moves the enumerator to the next element in the collection. MoveNext returns true if
there’s at least one more element in the collection; otherwise, the method returns false.

844 Chapter 21 Collections

• Read-only property Current returns the object at the current location in the collection.

• If a collection is modified after an enumerator is created for that collection, the enumerator im-
mediately becomes invalid.

• The foreach statement implicitly obtains an enumerator via the GetEnumeratormethod and uses
the enumerator’s MoveNext method and Current property to traverse the collection. This can be
done with any collection that implements the IEnumerable interface—not just arrays.

Section 21.4.1 Class ArrayList
• In most programming languages, conventional arrays have a fixed size.

• The .NET Framework’s ArrayList collection class enhances the functionality of conventional
arrays and provides dynamic resizing of the collection.

• ArrayLists store references to objects.

• ArrayList has a constructor that can initialize the contents of an ArrayList with the elements of
any ICollection passed to it. Many of the collection classes have such a constructor.

• The Count and Capacity properties correspond, respectively, to the current number of elements
in the ArrayList and the maximum number of elements that can be stored without allocating
more memory to the ArrayList.

• Method IndexOf returns the position of a value in an ArrayList, or -1 if the element isn’t found.

• We can access an element of an ArrayList by following the ArrayList variable name with square
brackets ([]) containing the desired index of the element.

• The Remove method removes the first occurrence of the specified object. All subsequent elements
shift toward the beginning of the ArrayList to fill the emptied position.

Section 21.4.2 Class Stack
• Class Stack has methods Push and Pop to perform the basic stack operations.

• The non-generic Stack class can store only references to objects, so value-type items are implicitly
boxed before they’re added to the Stack.

• Method Peek returns the value of the top stack element but does not remove the element.

• Attempting to Peek or Pop an empty Stack causes an InvalidOperationException.

Section 21.4.3 Class Hashtable
• Hashing is a high-speed scheme for converting keys to unique array indices. The .NET Frame-

work provides class Hashtable to enable programmers to employ hashing.

• Class Hashtable can accept any object as a key.

• Method ContainsKey determines whether a key is in the hash table.

• Hashtable method Add creates a new entry in the hash table, with the first argument as the key
and the second as the value.

• We can use the Hashtable’s indexer to obtain and set the key’s associated value in the hash table.

• Hashtable property Keys gets an ICollection that contains all the keys.

• If you use a foreach statement with a Hashtable, the iteration variable is of type Dictionary-
Entry, which has properties Key and Value for retrieving the key and value of the current element.

Section 21.5.1 Generic Class SortedDictionary
• A dictionary is a collection of key–value pairs. A hash table is one way to implement a dictionary.

• Generic class SortedDictionary does not use a hash table, but instead stores its key–value pairs
in a binary search tree.

Terminology 845

• Generic class SortedDictionary takes two type arguments—the first specifies the type of key and
the second the type of value.

• When the compiler knows the type that the data structure contains, there’s no need to downcast
when we need to use the type-specific methods.

• Invoking the get accessor of a SortedDictionary indexer with a key that does not exist in the
collection causes a KeyNotFoundException. This behavior is different from that of the Hashtable
indexer’s get accessor, which would return null.

Section 21.5.2 Generic Class LinkedList
• The LinkedList class is a doubly linked list—we can navigate the list both backward and forward

with nodes of generic class LinkedListNode.

• Each node contains property Value and read-only properties Previous and Next.

• The LinkedList class’s enumerator loops over the values of the nodes, not the nodes themselves.

• One LinkedListNode cannot be a member of more than one LinkedList. Any attempt to add a
node from one LinkedList to another generates an InvalidOperationException.

• Method Find performs a linear search on the list and returns the first node that contains a value
equal to the passed argument.

• Method Remove deletes a node from a LinkedList.

Section 21.6 Covariance and Contravariance for Generic Types
• C# supports covariance and contravariance of generic interface and delegate types.

• Assigning an array of a derived-class type to an array variable of a base-class type is an example of
covariance.

• Covariance now works with several generic interface types, including IEnumerable<T>.

• Covariance in generic collections works only with reference types in the same class hierarchy.

• Using a cast operator to assign an array variable of a base-class type to an array variable of a de-
rived-class type is an example of contravariance.

• Class SortedSet maintains a set of objects in sorted order—no duplicates are allowed.

• The objects placed in a SortedSet must be comparable to determine their sorting order. Objects
are comparable if their classes implement the IComparable<T> interface.

• For classes that do not implement IComparable<T>, you can compare the objects using an object
that implements the IComparer<T> interface. This interface’s Compare method compares its two
arguments and returns 0 if they are equal, a negative integer if the first object is less than the sec-
ond, or a positive integer if the first object is greater than the second.

• Providing an IComparer for a base-class type where an IComparer for a derived-class type is ex-
pected is allowed because interface IComparer<T> supports contravariance.

Terminology
Add method of class ArrayList
Add method of class Hashtable
AddLast method of class LinkedList
ArgumentException

Array class
ArrayList class
BinarySearch method of class Array
BinarySearch method of class ArrayList

capacity
Capacity property of class ArrayList
Clear method of class Array
Clear method of class ArrayList
collection
collection class
collision
Contains method of class ArrayList

846 Chapter 21 Collections

Contains method of class Stack
ContainsKey method of class Hashtable
contravariance
Copy method of interface ICollection
Count property of interface ICollection
covariance
CreateInstance method of class Array
Current property of interface IEnumerator
dictionary
DictionaryEntry structure
enumerator
Find method of class LinkedList
First property of class LinkedList
GetEnumerator method of interface

IEnumerable

GetHashCode method of class object
hash function
hash table
hashing
Hashtable class
ICollection interface
IComparable<T> interface
IComparer<T> interface
IDictionary interface
IEnumerable interface
IEnumerator interface
IList interface
IndexOf method of class Array
IndexOf method of class ArrayList
int indexer of class ArrayList
InvalidOperationException

KeyNotFoundException

Keys property of interface IDictionary

Last property of class LinkedList
LastIndexOf method of class Array
LinkedList generic class
LinkedListNode generic class
load factor
MoveNext method of interface IEnumerator
Next property of class LinkedListNode
Peek method of class Stack
Pop method of class Stack
Previous property of class LinkedListNode
Push method of class Stack
Queue class
Remove method of class ArrayList
Remove method of class LinkedList
RemoveAt method of class ArrayList
RemoveRange method of class ArrayList
Reset method of interface IEnumerator
Sort method of class Array
Sort method of class ArrayList
SortedDictionary generic class
SortedList class
SortedSet class
space/time trade-off
Stack class
System.Collections namespace
System.Collections.Generic namespace
System.Collections.Specialized namespace
ToLower method of class string
ToUpper method of class string
TrimToSize method of class ArrayList
Value property of class LinkedListNode
Values property of interface IDictionary

Self-Review Exercises
21.1 Fill in the blanks in each of the following statements:

a) A(n) is used to walk through a collection but cannot remove elements from
the collection during the iteration.

b) Class provides the capabilities of an arraylike data structure that can resize it-
self dynamically.

c) An element in an ArrayList can be accessed by using the ArrayList’s .
d) IEnumerator method advances the enumerator to the next item.
e) If the collection it references has been altered since the enumerator’s creation, calling

method Reset will cause a(n) .

21.2 State whether each of the following is true or false. If false, explain why.
a) Class Stack is in the System.Collections namespace.
b) A Hashtable stores key–value pairs.
c) A class implementing interface IEnumerator must define only methods MoveNext and

Reset, and no properties.

Answers to Self-Review Exercises 847

d) Values of simple types may be stored directly in an ArrayList.
e) An ArrayList can contain duplicate values.
f) A Hashtable can contain duplicate keys.
g) A LinkedList can contain duplicate values.
h) Dictionary is an interface.
i) Enumerators can change the values of elements but cannot remove them.
j) With hashing, as the load factor increases, the chance of collisions decreases.

Answers to Self-Review Exercises
21.1 a) enumerator (or foreach statement). b) ArrayList. c) indexer. d) MoveNext.
e) InvalidOperationException.

21.2 a) True. b) True. c) False. The class must also implement property Current. d) False. An
ArrayList stores only objects. Autoboxing occurs when adding a value type to the ArrayList. You
can prevent boxing by instead using generic class List with a value type. e) True. f) False. A
Hashtable cannot contain duplicate keys. g) True. h) False. Dictionary is a class; IDictionary is an
interface. i) False. An enumerator cannot be used to change the values of elements. j) False. With
hashing, as the load factor increases, there are fewer available slots relative to the total number of
slots, so the chance of selecting an occupied slot (a collision) with a hashing operation increases.

Exercises
21.3 (Collections Terminology) Define each of the following terms:

a) ICollection

b) Array

c) IList

d) load factor
e) Hashtable collision
f) space/time trade-off in hashing
g) Hashtable

21.4 (ArrayList Methods) Explain briefly the operation of each of the following methods of class
ArrayList:

a) Add

b) Insert

c) Remove

d) Clear

e) RemoveAt

f) Contains

g) IndexOf

h) Count

i) Capacity

21.5 (ArrayList Insertion Performance) Explain why inserting additional elements into an Array-
List object whose current size is less than its capacity is a relatively fast operation and why inserting
additional elements into an ArrayList object whose current size is at capacity is relatively slow.

21.6 (Inheritance Negatives) In our implementation of a stack in Fig. 19.13, we were able to
quickly extend a linked list to create class StackInheritance. The .NET Framework designers chose
not to use inheritance to create their Stack class. What are the negative aspects of inheritance, par-
ticularly for class Stack?

21.7 (Collections Short Questions) Briefly answer the following questions:
a) What happens when you add a simple type value to a nongeneric collection?

848 Chapter 21 Collections

b) Can you display all the elements in an IEnumerable object without explicitly using an
enumerator? If yes, how?

21.8 (Enumerator Members) Explain briefly the operation of each of the following enumerator-
related methods:

a) GetEnumerator

b) Current

c) MoveNext

21.9 (HashTable Methods and Properties) Explain briefly the operation of each of the following
methods and properties of class Hashtable:

a) Add

b) Keys

c) Values

d) ContainsKey

21.10 (True/False) Determine whether each of the following statements is true or false. If false, ex-
plain why.

a) Elements in an array must be sorted in ascending order before a BinarySearch may be
performed.

b) Method First gets the first node in a LinkedList.
c) Class Array provides static method Sort for sorting array elements.

21.11 (LinkedList without Duplicates) Write an app that reads in a series of first names and stores
them in a LinkedList. Do not store duplicate names. Allow the user to search for a first name.

21.12 (Generic SortedDictionary) Modify the app in Fig. 21.8 to count the number of occur-
rences of each letter rather than of each word. For example, the string "HELLO THERE" contains two
Hs, three Es, two Ls, one O, one T and one R. Display the results.

21.13 (SortedDictionary of Colors) Use a SortedDictionary to create a reusable class for choos-
ing from some of the predefined colors in class Color (in the System.Drawing namespace). The
names of the colors should be used as keys, and the predefined Color objects should be used as val-
ues. Place this class in a class library that can be referenced from any C# app. Use your new class in
a Windows app that allows the user to select a color, then changes the background color of the Form.

21.14 (Duplicate Words in a Sentence) Write an app that determines and displays the number of
duplicate words in a sentence. Treat uppercase and lowercase letters the same. Ignore punctuation.

21.15 (Using a Generic List) Recall from Fig. 21.2 that class List is the generic equivalent of class
ArrayList. Write an app that inserts 25 random integers from 0 to 100 in order into an object of class
List. The app should calculate the sum of the elements and the floating-point average of the elements.

21.16 (Reversing a LinkedList) Write an app that creates a LinkedList object of 10 characters,
then creates a second list object containing a copy of the first list, but in reverse order.

21.17 (Prime Numbers and Prime Factorization) Write an app that takes a whole-number input
from a user and determines whether it’s prime. If the number is not prime, display the unique prime
factors of the number. Remember that a prime number’s factors are only 1 and the prime number
itself. Every number that’s not prime has a unique prime factorization. For example, consider the
number 54. The prime factors of 54 are 2, 3, 3 and 3. When the values are multiplied together, the
result is 54. For the number 54, the prime factors output should be 2 and 3.

21.18 (Bucket Sort with LinkedList<int>) In Exercise 18.7, you performed a bucket sort of ints
by using a two-dimensional array, where each row of the array represented a bucket. If you use a
dynamically expanding data structure to represent each bucket, you do not have to write code that
keeps track of the number of ints in each bucket. Rewrite your solution to use a one-dimensional
array of LinkedList< int > buckets.

22Databases and LINQ

Now go, write it before them in
a table, and note it in a book,
that it may be for the time to
come for ever and ever.
—Isaiah 30:8

It is a capital mistake to
theorize before one has data.
—Arthur Conan Doyle

O b j e c t i v e s
In this chapter you’ll:

� Learn about the relational
database model.

� Use an ADO.NET Entity Data
Model to create classes for
interacting with a database
via LINQ to Entities.

� Use LINQ to retrieve and
manipulate data from a
database.

� Add data sources to projects.

� Use the IDE’s drag-and-drop
capabilities to display
database tables in apps.

� Use data binding to move
data seamlessly between GUI
controls and databases.

� Create Master/Detail views
that enable you to select a
record and display its details.

850 Chapter 22 Databases and LINQ

22.1 Introduction
A database is an organized collection of data. A database management system (DBMS)
provides mechanisms for storing, organizing, retrieving and modifying data. Today’s most
popular DBMSs manage relational databases, which organize data simply as tables with
rows and columns.

Some popular proprietary DBMSs are Microsoft SQL Server, Oracle, Sybase and
IBM DB2. PostgreSQL and MySQL are popular open-source DBMSs that can be down-
loaded and used freely by anyone. In this chapter, we use Microsoft’s free SQL Server
Express, which is installed with Visual Studio. It can also be downloaded separately from
Microsoft (www.microsoft.com/express/sql).

SQL Server Express
SQL Server Express provides many features of Microsoft’s full (fee-based) SQL Server
product, but has some limitations, such as a maximum database size of 10GB. A SQL
Server Express database file can be easily migrated to a full version of SQL Server—we did
this with our deitel.com website once our database became too large for SQL Server Ex-
press. You can learn more about the SQL Server versions at bit.ly/SQLServerEditions.
The version of SQL Server Express that’s bundled with Visual Studio Express 2012 for
Windows Desktop is called SQL Server Express 2012 LocalDB. It’s meant for develop-
ment and testing of apps on your computer.

Structured Query Language (SQL)
A language called Structured Query Language (SQL)—pronounced “sequel”—is an in-
ternational standard used with relational databases to perform queries (that is, to request
information that satisfies given criteria) and to manipulate data. For years, programs that
accessed a relational database passed SQL queries as strings to the database management
system, then processed the results.

22.1 Introduction
22.2 Relational Databases
22.3 A Books Database
22.4 LINQ to Entities and the ADO.NET

Entity Framework
22.5 Querying a Database with LINQ

22.5.1 Creating the ADO.NET Entity Data
Model Class Library

22.5.2 Creating a Windows Forms Project
and Configuring It to Use the Entity
Data Model

22.5.3 Data Bindings Between Controls and
the Entity Data Model

22.6 Dynamically Binding Query Results
22.6.1 Creating the Display Query Results

GUI

22.6.2 Coding the Display Query Results
App

22.7 Retrieving Data from Multiple Tables
with LINQ

22.8 Creating a Master/Detail View App
22.8.1 Creating the Master/Detail GUI
22.8.2 Coding the Master/Detail App

22.9 Address Book Case Study
22.9.1 Creating the Address Book App’s

GUI
22.9.2 Coding the Address Book App

22.10 Tools and Web Resources
22.11 Wrap-Up

Summary | Terminology | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

www.microsoft.com/express/sql

22.2 Relational Databases 851

LINQ to Entities and the ADO.NET Entity Framework
A logical extension of querying and manipulating data in databases is to perform similar
operations on any sources of data, such as arrays, collections (like the Items collection of
a ListBox) and files. Chapter 9 introduced LINQ to Objects and used it to manipulate data
stored in arrays. LINQ to Entities allows you to manipulate data stored in a relational da-
tabase—in our case, a SQL Server Express database. As with LINQ to Objects, the IDE
provides IntelliSense for your LINQ to Entities queries.

The ADO.NET Entity Framework (commonly referred to simply as EF) enables
apps to interact with data in various forms, including data stored in relational databases.
You’ll use the ADO.NET Entity Framework and Visual Studio to create a so-called entity
data model that represents the database, then use LINQ to Entities to manipulate objects
in the entity data model. Though, you’ll manipulate data in a SQL Server Express database
in this chapter, the ADO.NET Entity Framework works with most popular database man-
agement systems. Behind the scenes, the ADO.NET Entity Framework generates SQL
statements that interact with a database.

This chapter introduces general concepts of relational databases, then implements sev-
eral database apps using the ADO.NET Entity Framework, LINQ to Entities and the
IDE’s tools for working with databases. In later chapters, you’ll see other practical database
and LINQ to Entities apps, such as a web-based guestbook and a web-based bookstore.
Databases are at the heart of most “industrial strength” apps.

LINQ to SQL vs. LINQ to Entities
In the previous edition of this book, we discussed LINQ to SQL. Microsoft stopped fur-
ther development on LINQ to SQL in 2008 in favor of the newer and more powerful
LINQ to Entities and the ADO.NET Entity Framework.

Online SQL Introduction
In prior editions of this book, this chapter included an introduction to SQL. We’ve moved
this introduction to book’s website at www.deitel.com/books/csharphtp5/, because we
now perform all of the database interactions using LINQ.

22.2 Relational Databases
A relational database organizes data in tables. Figure 22.1 illustrates a sample Employees
table that might be used in a personnel system. The table stores the attributes of employees.
Tables are composed of rows (also called records) and columns (also called fields) in which
values are stored. This table consists of six rows (one per employee) and five columns (one
per attribute). The attributes are the employee’s ID, name, department, salary and loca-
tion. The ID column of each row is the table’s primary key—a column (or group of col-
umns) requiring a unique value that cannot be duplicated in other rows. This guarantees
that each primary key value can be used to identify one row. A primary key composed of
two or more columns is known as a composite key. Good examples of primary-key col-
umns in other apps are a book’s ISBN number in a book information system or a part num-
ber in an inventory system—values in each of these columns must be unique. LINQ to
Entities requires every table to have a primary key to support updating the data in tables. The
rows in Fig. 22.1 are displayed in ascending order by primary key. But they could be listed
in descending order or in no particular order at all.

www.deitel.com/books/csharphtp5/

852 Chapter 22 Databases and LINQ

Each column represents a different data attribute. Some column values may be dupli-
cated between rows. For example, three different rows in the Employees table’s Depart-
ment column contain the number 413, indicating that these employees work in the same
department.

Selecting Data Subsets
You can use LINQ to Entities to define queries that select subsets of the data from a table.
For example, a program might select data from the Employees table to create a query result
that shows where each department is located, in ascending order by Department number
(Fig. 22.2).

22.3 A Books Database
We now consider a simple Books database that stores information about some Deitel
books. First, we overview the database’s tables. A database’s tables, their fields and the re-
lationships among them are collectively known as a database schema. The ADO.NET
Entity Framework uses a database’s schema to define classes that enable you to interact
with the database. Sections 22.5–22.7 show how to manipulate the Books database. The
database file—Books.mdf—is provided with this chapter’s examples. SQL Server database
files have the .mdf (“master data file”) file-name extension.

Authors Table of the Books Database
The database consists of three tables: Authors, Titles and AuthorISBN. The Authors ta-
ble (described in Fig. 22.3) consists of three columns that maintain each author’s unique
ID number, first name and last name, respectively. Figure 22.4 contains the data from the
Authors table.

Fig. 22.1 | Employees table sample data.

Fig. 22.2 | Distinct Department and Location data from the Employees table.

23603

24568

34589

35761

47132

78321

Jones

Kerwin

Larson

Myers

Neumann

Stephens

ID

Primary key

Row

Column

Name

413

413

642

611

413

611

Department

1100

2000

1800

1400

9000

8500

Salary

New Jersey

New Jersey

Los Angeles

Orlando

New Jersey

Orlando

Location

Table Employees

413
611
642

New Jersey
Orlando
Los Angeles

Department Location

22.3 A Books Database 853

Titles Table of the Books Database
The Titles table (described in Fig. 22.5) consists of four columns that maintain informa-
tion about each book in the database, including its ISBN, title, edition number and copy-
right year. Figure 22.6 contains the data from the Titles table.

Column Description

AuthorID Author’s ID number in the database. In the Books database, this integer column
is defined as an identity column, also known as an autoincremented column—
for each row inserted in the table, the AuthorID value is increased by 1 automati-
cally to ensure that each row has a unique AuthorID. This is the primary key.

FirstName Author’s first name (a string).

LastName Author’s last name (a string).

Fig. 22.3 | Authors table of the Books database.

AuthorID FirstName LastName

1 Paul Deitel

2 Harvey Deitel

3 Abbey Deitel

4 Dan Quirk

5 Michael Morgano

Fig. 22.4 | Data from the Authors table of the Books database.

Column Description

ISBN ISBN of the book (a string). The table’s primary key. ISBN is an abbrevia-
tion for “International Standard Book Number”—a numbering scheme that
publishers worldwide use to give every book a unique identification number.

Title Title of the book (a string).

EditionNumber Edition number of the book (an integer).

Copyright Copyright year of the book (a string).

Fig. 22.5 | Titles table of the Books database.

ISBN Title EditionNumber Copyright

0132151006 Internet & World Wide Web How to Program 5 2012

0132575663 Java How to Program 9 2012

Fig. 22.6 | Data from the Titles table of the Books database. (Part 1 of 2.)

854 Chapter 22 Databases and LINQ

AuthorISBN Table of the Books Database
The AuthorISBN table (described in Fig. 22.7) consists of two columns that maintain
ISBNs for each book and their corresponding authors’ ID numbers. This table associates
authors with their books. The AuthorID column is a foreign key—a column in this table
that matches the primary-key column in another table (that is, AuthorID in the Authors
table). The ISBN column is also a foreign key—it matches the primary-key column (that is,
ISBN) in the Titles table. A database might consist of many tables. A goal when designing
a database is to minimize the amount of duplicated data among the database’s tables. For-
eign keys, which are specified when a database table is created in the database, link the data
in multiple tables. Together the AuthorID and ISBN columns in this table form a composite
primary key. Every row in this table uniquely matches one author to one book’s ISBN.
Figure 22.8 contains the data from the AuthorISBN table of the Books database.

013299044X C How to Program 7 2013

0132990601 Simply Visual Basic 2010 4 2013

0133406954 Visual Basic 2012 How to Program 6 2014

0133379337 Visual C# 2012 How to Program 5 2014

0136151574 Visual C++ 2008 How to Program 2 2008

0133378713 C++ How to Program 9 2014

0132121360 Android for Programmers: An App-Driven

Approach

1 2012

Column Description

AuthorID The author’s ID number, a foreign key to the Authors table.

ISBN The ISBN for a book, a foreign key to the Titles table.

Fig. 22.7 | AuthorISBN table of the Books database.

AuthorID ISBN AuthorID ISBN

1 0132151006 (continued)

1 0132575663 1 0133379337

1 013299044X 1 0136151574

1 0132990601 1 0133378713

1 0133406954 1 0132121360

(continued) 2 0132151006

Fig. 22.8 | Data from the AuthorISBN table of the Books database. (Part 1 of 2.)

ISBN Title EditionNumber Copyright

Fig. 22.6 | Data from the Titles table of the Books database. (Part 2 of 2.)

22.3 A Books Database 855

Every foreign-key value must appear as another table’s primary-key value so the
DBMS can ensure that the foreign key value is valid. For example, the DBMS ensures that
the AuthorID value for a particular row of the AuthorISBN table (Fig. 22.8) is valid by
checking that there is a row in the Authors table with that AuthorID as the primary key.

Foreign keys also allow related data in multiple tables to be selected from those tables—
this is known as joining the data. There is a one-to-many relationship between a primary
key and a corresponding foreign key (for example, one author can write many books and
one book can be written by many authors). This means that a foreign key can appear many
times in its own table but only once (as the primary key) in another table. For example, the
ISBN 0132151006 can appear in several rows of AuthorISBN (because this book has several
authors) but only once in Titles, where ISBN is the primary key.

Entity-Relationship Diagram for the Books Database
Figure 22.9 is an entity-relationship (ER) diagram for the Books database. This diagram
shows the tables in the database and the relationships among them. The first compartment
in each box contains the table’s name. The names in italic font are primary keys—AuthorID

in the Authors table, AuthorID and ISBN in the AuthorISBN table, and ISBN in the Titles
table. Every row must have a value in the primary-key column (or group of columns), and
the value of the key must be unique in the table; otherwise, the DBMS will report an error.
The names AuthorID and ISBN in the AuthorISBN table are both italic—together these
form a composite primary key for the AuthorISBN table.

2 0132575663 (continued)

2 013299044X 2 0132121360

2 0132990601 3 0132151006

2 0133406954 3 0132990601

2 0133379337 3 0132121360

2 0136151574 3 0133406954

2 0133378713 4 0136151574

(continued) 5 0132121360

Fig. 22.9 | Entity-relationship diagram for the Books database.

AuthorID ISBN AuthorID ISBN

Fig. 22.8 | Data from the AuthorISBN table of the Books database. (Part 2 of 2.)

1 1
Titles

Copyright

EditionNumber

Title

ISBN

AuthorISBN

ISBN

AuthorID

Authors

LastName

FirstName

AuthorID

856 Chapter 22 Databases and LINQ

The lines connecting the tables in Fig. 22.9 represent the relationships among the
tables. Consider the line between the Authors and AuthorISBN tables. On the Authors end
of the line, there’s a 1, and on the AuthorISBN end, an infinity symbol (∞) . This indicates
a one-to-many relationship—for each author in the Authors table, there can be an arbitrary
number of ISBNs for books written by that author in the AuthorISBN table (that is, an
author can write any number of books). Note that the relationship line links the AuthorID
column in the Authors table (where AuthorID is the primary key) to the AuthorID column
in the AuthorISBN table (where AuthorID is a foreign key)—the line between the tables
links the primary key to the matching foreign key.

The line between the Titles and AuthorISBN tables illustrates a one-to-many relation-
ship—one book can be written by many authors. Note that the line between the tables
links the primary key ISBN in table Titles to the corresponding foreign key in table
AuthorISBN. The relationships in Fig. 22.9 illustrate that the sole purpose of the Author-
ISBN table is to provide a many-to-many relationship between the Authors and Titles

tables—an author can write many books, and a book can have many authors.

22.4 LINQ to Entities and the ADO.NET Entity
Framework
When using the ADO.NET Entity Framework, you interact with the database via classes
that the IDE generates from the database schema. You’ll initiate this process by adding a
new ADO.NET Entity Data Model to your project (as you’ll see in Section 22.5.1).

Classes Generated in the Entity Data Model
For the Authors and Titles tables in the Books database, the IDE creates two classes each
in the data model:

• The first class represents a row of the table and contains properties for each col-
umn in the table. Objects of this class—called row objects—store the data from
individual rows of the table. The IDE uses the singular version of a table’s plural
name as the row class’s name. For the Books database’s Authors table, the row
class’s name is Author, and for the Titles table, it’s Title.

• The second class represents the table itself. An object of this class stores a collec-
tion of row objects that correspond to all of the rows in the table. The table classes
for the Books database are named Authors and Titles.

Once generated, the entity data model classes have full IntelliSense support in the IDE.
Section 22.7 demonstrates queries that use the relationships among the Books database’s
tables to join data.

Relationships Between Tables in the Entity Data Model
You’ll notice that we did not mention the Books database’s AuthorISBN table. Recall that
this table links:

• each author in the Authors table to that author’s books in the Titles table, and

• each book in the Titles table to the book’s authors in the Authors table.

Relationships between tables are taken into account in the entity data model’s generated
classes. For example, the Author row class contains a navigation property named Titles

22.5 Querying a Database with LINQ 857

which you can use to get the Title objects that represent all the books written by that au-
thor. The IDE automatically adds the “s” to “Title” to indicate that this property repre-
sents a collection of Title objects. Similarly, the Title row class contains a navigation
property named Authors, which you can use to get the Author objects that represent a giv-
en book’s authors.

DbContext Class
A DbContext (namespace System.Data.Entity) manages the data flow between the pro-
gram and the database. When the IDE generates the entity data model’s row and table class-
es, it also creates a derived class of DbContext that is specific to the database being
manipulated. For the Books database, this derived class has properties for the Authors and
Titles tables. As you’ll see, these can be used as data sources for manipulating data in
LINQ queries and in GUIs. Any changes made to the data managed by the DbContext can
be saved back to the database using the DbContext’s SaveChanges method.

IQueryable<T> Interface
LINQ to Entities works through the IQueryable<T> interface, which inherits from the in-
terface IEnumerable<T> introduced in Chapter 9. When a LINQ to Entities query on an
IQueryable<T> object executes against the database, the results are loaded into objects of
the corresponding entity data model classes for convenient access in your code.

Using Extension Methods to Manipulate IQueryable<T> Objects
Recall that extension methods add functionality to an existing class without modifying the
class’s source code. In Chapter 9, we introduced several LINQ extension methods, includ-
ing First, Any, Count, Distinct, ToArray and ToList. These methods, which are defined
as static methods of class Enumerable (namespace System.Linq), can be applied to any
object that implements the IEnumerable<T> interface, such as arrays, collections and the
results of LINQ to Objects queries.

In this chapter, we use a combination of the LINQ query syntax and LINQ extension
methods to manipulate database contents. The extension methods we use are defined as
static methods of class Queryable (namespace System.Linq) and can be applied to any
object that implements the IQueryable<T> interface—these include various entity data
model objects and the results of LINQ to Entities queries.

22.5 Querying a Database with LINQ
In this section, we demonstrate how to connect to a database, query it and display the results
of the query. There is little code in this section—the IDE provides visual programming
tools and wizards that simplify accessing data in apps. These tools establish database con-
nections and create the objects necessary to view and manipulate the data through Win-
dows Forms GUI controls—a technique known as data binding.

For the examples in Sections 22.5–22.8, we’ll create one solution that contains several
projects. One will be a reusable class library containing the ADO.NET Entity Data Model
for interacting with the Books database. The other projects will be Windows Forms apps
that use the ADO.NET Entity Data Model in the class library to manipulate the database.

Our first example performs a simple query on the Books database from Section 22.3.
We retrieve the entire Authors table, ordered by the authors’ last name, then first name.

858 Chapter 22 Databases and LINQ

We then use data binding to display the data in a DataGridView—a control from
namespace System.Windows.Forms that can display data from a data source in tabular
format. The basic steps we’ll perform are:

• Create the ADO.NET entity data model classes for manipulating the database.

• Add the entity data model object that represents the Authors table as a data source.

• Drag the Authors table data source onto the Design view to create a GUI for dis-
playing the table’s data.

• Add code to the Form’s code-behind file to allow the app to interact with the da-
tabase.

The GUI for the program is shown in Fig. 22.10. All of the controls in this GUI are
automatically generated when we drag a data source that represents the Authors table onto
the Form in Design view. The BindingNavigator toolbar at the top of the window is a col-
lection of controls that allow you to navigate through the records in the DataGridView that
fills the rest of the window. The BindingNavigator controls also allow you to add records,
delete records, modify existing records and save your changes to the database. You can add
a new record by pressing the Add new () button, then entering the new author’s first and
last name. You can delete an existing record by selecting an author (either in the
DataGridView or via the controls on the BindingNavigator) and pressing the Delete ()
button. You can edit an existing record by clicking the first name or last name field for that
record and typing the new value. To save your changes to the database, simply click the
Save Data () button. Empty values are not allowed in the Authors table of the Books
database, so if you attempt to save a record that does not contain a value for both the first
name and last name an exception occurs.

22.5.1 Creating the ADO.NET Entity Data Model Class Library
This section presents the steps required to create the entity data model from an existing
database. A model describes the data that you’ll be manipulating—in our case, the data rep-
resented by the tables in the Books database.

Fig. 22.10 | GUI for the Display Authors Table app.

GUI controls for the
BindingNavigator

DataGridView with
the Authors table’s

column names

Move first

Move previous

Current position

Move next

Move last

Add new

Delete

Save Data

You can add a new record by
typing in this row of the

DataGridView

22.5 Querying a Database with LINQ 859

Step 1: Creating a Class Library Project for the ADO.NET Entity Data Model
Select FILE > New Project… to display the New Project dialog, then select Class Library
from the Visual C# templates and name the project BooksExamples. Click OK to create the
project, then delete the Class1.cs file from the Solution Explorer.

Step 2: Adding the ADO.NET Entity Data Model to the Class Library
To interact with the database, you’ll add an ADO.NET entity data model to the class li-
brary project. This will also configure the connection to the database.

1. Adding the ADO.NET Entity Data Model. Right click the BooksExamples project
in the Solution Explorer, then select Add > New Item… to display the Add New Item
dialog (Fig. 22.11). From the Data category select ADO.NET Entity Data Model and
name the model BooksModel.edmx—this file will contain the information about
the entity data model you’re about to create. Click Add to add the entity data model
to the class library and display the Entity Data Model Wizard dialog.

2. Choosing the Model Contents. The Choose Model Contents step in the Entity Data
Model Wizard dialog (Fig. 22.12) enables you to specify the entity data model’s
contents. The model in these examples will consist of data from the Books data-
base, so select Generate from Database and click Next > to display the Choose Your
Data Connection step.

3. Choosing the Data Connection. In the Choose Your Data Connection step, click
New Connection… to display the Connection Properties dialog (Fig. 22.13). (If
the Choose Data Source dialog box appears, select Microsoft SQL Server, then
click OK.) The Data source: TextBox should contain Microsoft SQL Server Data-
base File (SqlClient). (If it does not, click Change… to display a dialog where you
can change the Data source.) Click Browse… to locate and select the Books.mdf
file in the Databases directory included with this chapter’s examples. You can
click Test Connection to verify that the IDE can connect to the database through

Fig. 22.11 | Selecting ADO.NET Entity Data Model in the Add New Item Dialog.

860 Chapter 22 Databases and LINQ

SQL Server Express. Click OK to create the connection. Figure 22.14 shows the
Entity connection string for the Books.mdf database. This string contains the in-
formation that the ADO.NET Entity Framework requires to connect to the da-
tabase at runtime. Click Next >. A dialog will appear asking if you’d like to add
the database file to your project. Click Yes to move to the next step.

i

Fig. 22.12 | Entity Data Model Wizard dialog’s Choose Model Contents step.

i

Fig. 22.13 | Connection Properties dialog.

22.5 Querying a Database with LINQ 861

4. Choosing the Database Objects to Include in the Model. In the Choose Your Data-
base Objects and Settings step, you’ll specify the parts of the database that should
be used in the ADO.NET Entity Data Model. Select the Tables node as shown
in Fig. 22.15, then click Finish.

5. Viewing the Entity Data Model Diagram in the Model Designer. At this point, the
IDE creates the entity data model and displays a diagram (Fig. 22.16) in the model
designer. The diagram contains Author and Title entities—these represent authors
and titles in the database and the properties of each. Notice that the IDE renamed
the Title column of the Titles table as Title1 to avoid a naming conflict with
the class Title that represents a row in the table. The line between the entities in-
dicates a relationship between authors and titles—this relationship is implemented
in the Books database as the AuthorISBN table. The asterisk (*) at each end of the
line indicates a many-to-many relationship—an author can be an author for many
titles and a title can have many authors. The Navigation Properties section in the
Author entity contains the Titles property, which connects an author to all titles
written by that author. Similarly, the Navigation Properties section in the Title en-
tity contains the Authors property, which connects a title to all of its authors.

6. Building the Class Library. Select BUILD > Build Solution to build the class library
that you’ll reuse in the next several examples—this will compile the entity data
model classes that were generated by the IDE. When you build the class library,

Fig. 22.14 | Choose Your Data Connection step after selecting Books.mdf.

Error-Prevention Tip 22.1
SQL Server Express LocalDB allows only one program at a time to connect to a database
file, so ensure that no other program is using the file before connecting to the database.

862 Chapter 22 Databases and LINQ

the IDE generates the classes that you can use to interact with the database. These
include a class for each table you selected from the database and a derived class of
DbContext named BooksEntities that enables you to programmatically interact
with the database. [Note: Building the project causes the IDE to execute a script
that creates and compiles the entity data model classes. A security warning dialog
appears indicating that this script could harm your computer. Click OK to allow
the script to execute. The warning is intended primarily for cases in which you
download from the Internet Visual Studio templates that execute scripts.]

22.5.2 Creating a Windows Forms Project and Configuring It to Use the
Entity Data Model
Recall that the next several examples will all be part of one solution containing several proj-
ects—the class library project with our reusable model and individual Windows Forms apps

Fig. 22.15 | Selecting the database’s tables to include in the ADO.NET Entity Data Model.

i

Fig. 22.16 | Entity data model diagram for the Author and Title entities.

22.5 Querying a Database with LINQ 863

for each example. In this section, you’ll create a new Windows Forms app and configure it
to be able to use the entity data model that you created in the preceding section.

Step 1: Creating the Project
To add a new Windows Forms project to the existing solution:

1. Right click the solution name in Solution Explorer and select Add > New Project…
to display the Add New Project dialog.

2. Select Windows Forms Application, name the project DisplayTable and click OK.

3. Change the name of the Form1.cs source file to DisplayAuthorsTable.cs. The
IDE updates the Form’s class name to match the source file. Set the Form’s Text
property to Display Authors Table.

4. Configure the solution so that this new project will execute when you select
DEBUG > Start Debugging (or press F5). To do so, right click the DisplayTable
project’s name in the Solution Explorer, then select Set as Startup Project.

Step 2: Adding a Reference to the BooksExamples Class Library
To use the entity data model classes for data binding, you must first add a reference to the
class library you created in Section 22.5.1—this allows the new project to use that class
library. Each project you create typically contains references to several .NET class libraries
(called assemblies) by default—for example, a Windows Forms project contains a reference
to the System.Windows.Forms library. When you compile a class library, the IDE creates
a .dll file (known as an assembly) containing the library’s components. To add a reference
to the class library containing the entity data model’s classes:

1. Right click the DisplayTable project’s References node in the Solution Explorer
and select Add Reference….

2. In the left column of the Reference Manager dialog that appears, select Solution
to display the other projects in this solution, then in center of the dialog select
BooksExamples and click OK. BooksExamples should now appear in the projects
References node.

Step 3: Adding References to System.Data.Entity and EntityFramework

You’ll also need references to the System.Data.Entity and EntityFramework libraries to
use the ADO.NET Entity Framework. To add a reference to System.Data.Entity, repeat
Step 2 for adding a reference to the BooksExamples library, but in the left column of the
Reference Manager dialog that appears, select Assemblies then locate System.Data.Entity,
ensure that its checkbox is checked and click OK. System.Data.Entity should now appear
in the projects References node.

The EntityFramework library was added by the IDE to the BooksExamples class
library project when we created the entity data model, but the EntityFramework library is
also required in each app that will use the entity data model. To add a reference to the
EntityFramework library:

1. Right click the solution name in the Solution Explorer and select Manage NuGet
Packages for Solution… to display the Manage NuGet Packages dialog.

864 Chapter 22 Databases and LINQ

2. In the dialog that appears, click Manage to display the Select Projects dialog, then
select the DisplayTable project and click OK.

3. Click Close to close the Manage NuGet Packages dialog. EntityFramework
should now appear in the projects References node.

Step 4: Adding the Connection String to the Windows Forms App
Each app that will use the entity data model also requires the connection string that tells the
Entity Framework how to connect to the database. The connection string is stored in the
BooksExamples class library’s App.Config file. In the Solution Explorer, open the Books-
Examples class library’s App.Config file then copy lines 7–9, which have the format:

Next, open the App.Config file in the DisplayTable project and paste the connection
string information after the line containing </entityFramework> and before the line con-
taining </configuration>. Save the App.Config file.

22.5.3 Data Bindings Between Controls and the Entity Data Model
You’ll now use the IDE’s drag-and-drop GUI design capabilities to create the GUI for in-
teracting with the Books database. You must write a small amount of code to enable the
autogenerated GUI to interact with the entity data model. You’ll now perform the steps to
display the contents of the Authors table in a GUI.

Step 1: Adding a Data Source for the Authors Table
To use the entity data model classes for data binding, you must first add them as a data
source. To do so:

1. Select VIEW > Other Windows > Data Sources to display the Data Sources win-
dow at the left side of the IDE, then in that window click the Add New Data
Source… link to display the Data Source Configuration Wizard.

2. The Entity Data Model classes are used to create objects representing the tables in
the database, so we’ll use an Object data source. In the dialog, select Object and
click Next >. Expand the tree view as shown in Fig. 22.17 and ensure that Author
is checked. An object of this class will be used as the data source.

3. Click Finish.

The Authors table in the database is now a data source from which a data bound GUI
control can obtain data. In the Data Sources window (Fig. 22.18), you can see the Author
class that you added in the previous step. Properties representing columns of the database’s
Authors table should appear below it, as well as a Titles navigation property representing
the relationship between the database’s Authors and Titles tables.

Step 2: Creating GUI Elements
Next, you’ll use the Design view to create a DataGridView control that can display the
Authors table’s data. To do so:

1. Switch to Design view for the DisplayAuthorsTable class.

<connectionStrings>
Connection string information appears here

</connectionStrings>

22.5 Querying a Database with LINQ 865

2. Click the Author node in the Data Sources window—it should change to a drop-
down list. Open the drop-down by clicking the down arrow and ensure that the
DataGridView option (which is the default) is selected—this is the GUI control
that will be used to display and interact with the data.

3. Drag the Author node from the Data Sources window onto the Form in Design view.
You’ll need to resize the Form to fit the DataGridView.

The IDE creates a DataGridView (Fig. 22.19) with column names representing all the
properties for an Author, including the Titles navigation property. The IDE also creates
a BindingNavigator that contains Buttons for moving between entries, adding entries, de-
leting entries and saving changes to the database. The IDE also generates a BindingSource

(authorBindingSource), which handles the transfer of data between the data source and
the data-bound controls on the Form. Nonvisual components such as the BindingSource
and the non-visual aspects of the BindingNavigator appear in the component tray—the

Fig. 22.17 | Selecting the Author class as the data source.

Fig. 22.18 | Data Sources window showing the Author class as a data source.

866 Chapter 22 Databases and LINQ

gray region below the Form in Design view. The IDE names the BindingNavigator and
BindingSource (authorBindingNavigator and authorBindingSource, respectively)
based on the data source’s name (Author). We use the default names for automatically gen-
erated components throughout this chapter to show exactly what the IDE creates.

To make the DataGridView occupy the entire window below the BindingNavigator,
select the DataGridView, then use the Properties window to set the Dock property to Fill.
You can stretch the window horizontally to see all the DataGridView columns. We do not
use the Titles column in this example, so with the DataGridView selected, click Edit Col-
umns… in the Properties window to display the Edit Columns dialog. Select Titles in the
Selected Columns list, then click Remove to remove that column.

Step 3: Connecting the Data Source to the authorBindingSource
The final step is to connect the data source to the authorBindingSource, so that the app
can interact with the database. Figure 22.20 shows the code needed to obtain data from
the database and to save any changes that the user makes to the data back into the database.

Fig. 22.19 | Component tray holds nonvisual components in Design view.

1 // Fig. 22.20: DisplayAuthorsTable.cs
2 // Displaying data from a database table in a DataGridView.
3 using System;
4 using System.Data.Entity;
5 using System.Data.Entity.Validation;

Fig. 22.20 | Displaying data from a database table in a DataGridView. (Part 1 of 3.)

Objects in the
component tray

(the gray area
below the Form)

GUI controls for the
BindingNavigator

DataGridView with
the Authors table’s

column names

22.5 Querying a Database with LINQ 867

6 using System.Linq;
7 using System.Windows.Forms;
8
9 namespace DisplayTable

10 {
11 public partial class DisplayAuthorsTable : Form
12 {
13 // constructor
14 public DisplayAuthorsTable()
15 {
16 InitializeComponent();
17 } // end constructor
18
19 // Entity Framework DbContext
20
21
22
23 // load data from database into DataGridView
24 private void DisplayAuthorsTable_Load(object sender, EventArgs e)
25 {
26 // load Authors table ordered by LastName then FirstName
27
28
29
30
31
32 // specify DataSource for authorBindingSource
33
34 } // end method DisplayAuthorsTable_Load
35
36 // click event handler for the Save Button in the
37 // BindingNavigator saves the changes made to the data
38 private void authorBindingNavigatorSaveItem_Click(
39 object sender, EventArgs e)
40 {
41
42
43
44 // try to save changes
45 try

46 {
47
48 } // end try
49 catch()
50 {
51 MessageBox.Show("FirstName and LastName must contain values",
52 "Entity Validation Exception");
53 } // end catch
54 } // end method authorBindingNavigatorSaveItem_Click
55 } // end class DisplayAuthorsTable
56 } // end namespace DisplayTable

Fig. 22.20 | Displaying data from a database table in a DataGridView. (Part 2 of 3.)

private BooksExamples.BooksEntities dbcontext =
new BooksExamples.BooksEntities();

dbcontext.Authors
.OrderBy(author => author.LastName)
.ThenBy(author => author.FirstName)
.Load();

authorBindingSource.DataSource = dbcontext.Authors.Local;

Validate(); // validate the input fields
authorBindingSource.EndEdit(); // complete current edit, if any

dbcontext.SaveChanges(); // write changes to database file

DbEntityValidationException

868 Chapter 22 Databases and LINQ

Creating the DbContext Object
As mentioned in Section 22.4, a DbContext object interacts with the database on the app’s
behalf. The BooksEntities class (a derived class of DbContext) was automatically gener-
ated by the IDE when you created the entity data model classes to access the Books data-
base (Section 22.5.1). Lines 20–21 create an object of this class named dbcontext.

DisplayAuthorsTable_Load Event Handler
You can create the Form’s Load event handler (lines 24–34) by double clicking the Form’s
title bar in Design view. In this app, we allow data to move between the DbContext and
the database by using LINQ to Entities extension methods to extract data from the Books-
Entities’s Authors property (lines 27–30), which corresponds to the Authors table in the
database. The expression

indicates that we wish to get data from the Authors table.
The OrderBy extension method call

indicates that the rows of the table should be retrieved in ascending order by the authors’
last names. The argument to OrderBy is a lambda expression that defines a simple, anon-
ymous method. A lambda expression begins with a parameter list—author in this case, is
an object of the Author entity data model class. The lambda expression infers the lambda
parameter’s type from dbcontext.Authors, which contains Author objects. The parame-
ter list is followed by the => lambda operator (read as “goes to”) and an expression that
represents the body of the function. The value produced by the expression—a given au-
thor’s last name—is implicitly returned by the lambda expression. You do not specify a
return type for the lambda expression—the return type is inferred from the return value.
As we encounter lambda expressions in this chapter, we’ll discuss the syntax we use. You
can learn more about lambda expressions at

When there are multiple authors with the same last name, we’d like them to be listed
in ascending order by first name as well. The ThenBy extension method call

dbcontext.Authors

.OrderBy(author => author.LastName)

msdn.microsoft.com/en-us/library/bb397687.aspx

.ThenBy(author => author.FirstName)

Fig. 22.20 | Displaying data from a database table in a DataGridView. (Part 3 of 3.)

22.6 Dynamically Binding Query Results 869

enables you to order results by an additional column. This is applied to the Author objects
that have already been ordered by last name.

Finally, line 30 calls the Load extension method (defined in class DBExtensions from
the namespace System.Data.Entity). This method executes the LINQ to Entities query
and loads the results into memory. This data is tracked by the BookEntities DbContext
in local memory so that any changes made to the data can eventually be saved into the
database. Lines 27–30 are equivalent to using the following statement:

Line 33 sets the authorBindingSource’s DataSource property to the Local property
of the dbcontext.Authors object. In this case, the Local property is an ObservableCol-

lection<Author> that represents the query results that were loaded into memory by lines
27–30. When a BindingSource’s DataSource property is assigned an ObservableCollec-

tion<T> (namespace System.Collections.ObjectModel), the GUI that’s bound to the
BindingSource is notified of any changes to the data so the GUI can be updated accord-
ingly. In addition, changes made by the user to the data in the GUI will be tracked so the
DbContext can eventually save those changes to the database.

authorBindingNavigatorSaveItem_Click Event Handler: Saving Modifications
to the Database
If the user modifies the data in the DataGridView, we’d also like to save the modifications
in the database. By default, the BindingNavigator’s Save Data Button () is disabled.
To enable it, right click this Button’s icon in the BindingNavigator and select Enabled.
Then, double click the icon to create its Click event handler (lines 38–54).

Saving the data entered in the DataGridView back to the database is a three-step process.
First, all controls on the form are validated (line 41) by calling the DisplayTableForm’s
inherited Validate method—if any control has an event handler for the Validating event,
it executes. You typically handle this event to determine whether a control’s contents are
valid. Next, line 42 calls EndEdit on the authorBindingSource, which forces it to save any
pending changes into the BooksEntities model in memory. Finally, line 47 calls Save-
Changes on the BooksEntities object (dbcontext) to store any changes into the database.
We placed this call in a try statement, because the Authors table does not allow empty values
for the first name and last name—these rules were configured when we originally created the
database. When SaveChanges is called, any changes stored into the Authors table must sat-
isfy the table’s rules. If any of the changes do not, a DBEntityValidationException occurs.

22.6 Dynamically Binding Query Results
Now that you’ve seen how to display an entire database table in a DataGridView, we show
how to perform several different queries and display the results in a DataGridView. This
app only reads data from the entity data model, so we disabled the buttons in the Bind-
ingNavigator that enable the user to add and delete records. Later, we’ll explain why we
do not support modifying the database in this example.

The Display Query Results app (Fig. 22.21) allows the user to select a query from the
ComboBox at the bottom of the window, then displays the results of the query.

(from author in dbcontext.Authors
orderby author.LastName, author.FirstName
select author).Load();

870 Chapter 22 Databases and LINQ

22.6.1 Creating the Display Query Results GUI
Perform the following steps to build the Display Query Results app’s GUI.

Step 1: Creating the Project
Perform the steps in Section 22.5.2 to create a new Windows Forms Application project
named DisplayQueryResult in the same solution as the DisplayTable app. Rename the
Form1.cs source file to TitleQueries.cs. Set the Form’s Text property to Display Query
Results. Be sure to set the DisplayQueryResult project as the startup project.

Step 2: Creating a DataGridView to Display the Titles Table
Follow Steps 1 and 2 in Section 22.5.3 to create the data source and the DataGridView.
For this example, select the Title class (rather than Author) as the data source, and drag
the Title node from the Data Sources window onto the form. Remove the Authors column
from the DataGridView as it will not be used in this example.

Fig. 22.21 | Sample execution of the Display Query Results app.

a) Results of the
“All titles” query,
which shows the

contents of the
Titles table
ordered by the

book titles

b) Results of the
“Titles with 2014
copyright” query

c) Results of the
“Titles ending
with ’How to

Program’” query

22.6 Dynamically Binding Query Results 871

Step 3: Adding a ComboBox to the Form
In Design view, add a ComboBox named queriesComboBox below the DataGridView on the
Form. Users will select which query to execute from this control. Set the ComboBox’s Dock
property to Bottom and the DataGridView’s Dock property to Fill.

Next, you’ll add the names of the queries to the ComboBox. Open the ComboBox’s String
Collection Editor by right clicking the ComboBox and selecting Edit Items…. You can also
access the String Collection Editor from the ComboBox’s smart tag menu. A smart tag menu
provides you with quick access to common properties you might set for a control (such as
the Multiline property of a TextBox), so you can set these properties directly in Design
view, rather than in the Properties window. You can open a control’s smart tag menu by
clicking the small arrowhead () that appears in the control’s upper-right corner in Design
view when the control is selected. In the String Collection Editor, add the following three
items to queriesComboBox—one for each of the queries we’ll create:

1. All titles

2. Titles with 2014 copyright

3. Titles ending with "How to Program"

22.6.2 Coding the Display Query Results App
Next you’ll create the code for this app (Fig. 22.22).

Customizing the Form’s Load Event Handler
Create the TitleQueries_Load event handler (lines 22–29) by double clicking the title bar
in Design view. When the Form loads, it should display the complete list of books from the
Titles table, sorted by title. Line 24 calls the Load extension method on the BookEnti-
ties DbContext’s Titles property to load the Titles table’s contents into memory. Rath-
er than defining the same LINQ query as in lines 40–41, we can programmatically cause
the queriesComboBox_SelectedIndexChanged event handler to execute simply by setting
the queriesComboBox’s SelectedIndex to 0 (line 28).

1 // Fig. 22.22: TitleQueries.cs
2 // Displaying the result of a user-selected query in a DataGridView.
3 using System;
4 using System.Data.Entity;
5 using System.Linq;
6 using System.Windows.Forms;
7
8 namespace DisplayQueryResult
9 {

10 public partial class TitleQueries : Form
11 {
12 public TitleQueries()
13 {
14 InitializeComponent();
15 } // end constructor
16

Fig. 22.22 | Displaying the result of a user-selected query in a DataGridView. (Part 1 of 2.)

872 Chapter 22 Databases and LINQ

17 // Entity Framework DbContext
18 private BooksExamples.BooksEntities dbcontext =
19 new BooksExamples.BooksEntities();
20
21 // load data from database into DataGridView
22 private void TitleQueries_Load(object sender, EventArgs e)
23 {
24
25
26 // set the ComboBox to show the default query that
27 // selects all books from the Titles table
28
29 } // end method TitleQueries_Load
30
31 // loads data into titleBindingSource based on user-selected query
32 private void queriesComboBox_SelectedIndexChanged(
33 object sender, EventArgs e)
34 {
35 // set the data displayed according to what is selected
36 switch (queriesComboBox.SelectedIndex)
37 {
38 case 0: // all titles
39 // use LINQ to order the books by title
40
41
42 break;
43 case 1: // titles with 2014 copyright
44 // use LINQ to get titles with 2014
45 // copyright and sort them by title
46
47
48
49
50 break;
51 case 2: // titles ending with "How to Program"
52 // use LINQ to get titles ending with
53 // "How to Program" and sort them by title
54
55
56
57
58
59 break;
60 } // end switch
61
62
63 } // end method queriesComboBox_SelectedIndexChanged
64 } // end class TitleQueries
65 } // end namespace DisplayQueryResult

Fig. 22.22 | Displaying the result of a user-selected query in a DataGridView. (Part 2 of 2.)

dbcontext.Titles.Load(); // load Titles table into memory

queriesComboBox.SelectedIndex = 0;

titleBindingSource.DataSource =
dbcontext.Titles.Local.OrderBy(book => book.Title1);

titleBindingSource.DataSource =
dbcontext.Titles.Local

.Where(book => book.Copyright == "2014")

.OrderBy(book => book.Title1);

titleBindingSource.DataSource =
dbcontext.Titles.Local

.Where(book =>
book.Title1.EndsWith("How to Program"))

.OrderBy(book => book.Title1);

titleBindingSource.MoveFirst(); // move to first entry

22.6 Dynamically Binding Query Results 873

queriesComboBox_SelectedIndexChanged Event Handler
Next you must write code that executes the appropriate query each time the user chooses
a different item from queriesComboBox. Double click queriesComboBox in Design view to
generate a queriesComboBox_SelectedIndexChanged event handler (lines 32–63) in the
TitleQueries.cs file. In the event handler, add a switch statement (lines 36–60). Each
case in the switch will change the titleBindingSource’s DataSource property to the re-
sults of a query that returns the correct set of data. The data bindings created by the IDE
automatically update the titleDataGridView each time we change its DataSource. The
MoveFirst method of the BindingSource (line 62) moves to the first row of the result each
time a query executes. The results of the queries in lines 40–41, 46–49 and 54–58 are
shown in Fig. 22.21(a), (b) and (c), respectively. Because we do not modify the data in this
app, each of the queries is performed on the in-memory representation of the Titles table,
which is accessible through dbcontext.Titles.Local.

Ordering the Books By Title
Lines 40–41 invoke the OrderBy extension method on dbcontext.Titles.Local to order
the Title objects by their Title1 property values. As we mentioned previously, the IDE
renamed the Title column of the database’s Titles table as Title1 in the generated Ti-
tle entity data model class to avoid a naming conflict with the class’s name. Recall that
Local returns an ObservableCollection<T> containing the row objects of the specified
table—in this case, Local returns an ObservableCollection<Title>. When you invoke
OrderBy on an ObservableCollection<T>, the method returns an IEnumerable<T>. We
assign that object to the titleBindingSource’s DataSource property. When the Data-
Source property changes, the DataGridView iterates through the contents of the IEnumer-
able<T> and displays the data.

Selecting Books with 2014 Copyright
Lines 46–49 filter the titles displayed by using the Where extension method with the lamb-
da expression

as an argument. This lambda expression takes one Title object (named book) as its pa-
rameter and uses it to check whether the given Title’s Copyright property (a string in
the database) is equal to 2014. A lambda expression that’s used with the Where extension
method must return a bool value. Only Title objects for which this lambda expression
returns true will be selected. We use OrderBy to order the results by the Title1 property
so the books are displayed in ascending order by title. The type of the lambda’s book pa-
rameter is inferred from dbcontext.Titles.Local, which contains Title objects. As soon
as the titleBindingSource’s DataSource property changes, the DataGridView is updated
with the query results.

Selecting Books with Titles That End in “How to Program”
Lines 54–58 filter the titles displayed by using the Where extension method with the lamb-
da expression

book => book.Copyright == "2014"

book => book.Title1.EndsWith("How to Program")

874 Chapter 22 Databases and LINQ

as an argument. This lambda expression takes one Title object (named book) as its pa-
rameter and uses it to check whether the given Title’s Title1 property value ends with
"How to Program". The expression books.Title1 returns the string stored in that prop-
erty, then we use the string class’s EndsWith method to perform the test. We order the re-
sults by the Title1 property so the books are displayed in ascending order by title.

22.7 Retrieving Data from Multiple Tables with LINQ
In this section, you’ll perform LINQ to Entities queries using the LINQ query syntax that
was introduced in Chapter 9. In particular, you’ll learn how to obtain query results that
combine data from multiple tables (Fig. 22.23).

Fig. 22.23 | Outputs from the Joining Tables with LINQ app. (Part 1 of 2.)

a) List of authors and
the ISBNs of the

books they’ve
authored; sort the

authors by last name
then first name

b) List of authors and
the titles of the
book’s they’ve

authored; sort the
authors by last name
then first name; for a
given author, sort the

titles alphabetically

22.7 Retrieving Data from Multiple Tables with LINQ 875

The Joining Tables with LINQ app uses LINQ to Entities to combine and organize data
from multiple tables, and shows the results of queries that perform the following tasks:

• Get a list of all the authors and the ISBNs of the books they’ve authored, sorted
by last name then first name (Fig. 22.23(a)).

• Get a list of all the authors and the titles of the books they’ve authored, sorted by
last name then first; for each author sort the titles alphabetically (Fig. 22.23(b)).

• Get a list of all the book titles grouped by author, sorted by last name then first;
for a given author sort the titles alphabetically (Fig. 22.23(c)).

GUI for the Joining Tables with LINQ App
For this example (Fig. 22.24–Fig. 22.27), perform the steps in Section 22.5.2 to create a
new Windows Forms Application project named JoinQueries in the same solution as the
previous examples. Rename the Form1.cs source file to JoiningTableData.cs. Set the
Form’s Text property to Joining Tables with LINQ. Be sure to set the JoinQueries project
as the startup project. We set the following properties for the outputTextBox:

• Font property: Set to Lucida Console to display the output in a fixed-width font.

• Anchor property: Set to Top, Bottom, Left, Right so that you can resize the win-
dow and the outputTextBox will resize accordingly.

• Scrollbars property: Set to Vertical, so that you can scroll through the output.

Creating the DbContext
The code uses the entity data model classes to combine data from the tables in the Books
database and display the relationships between the authors and books in three different
ways. We split the code for class JoiningTableData into several figures (Figs. 22.24–
22.27) for presentation purposes. As in previous examples, the DbContext object
(Fig. 22.24, lines 19–20) allows the program to interact with the database.

Fig. 22.23 | Outputs from the Joining Tables with LINQ app. (Part 2 of 2.)

c) List of titles
grouped by author;
sort the authors by
last name then first

name; for a given
author, sort the titles

alphabetically

876 Chapter 22 Databases and LINQ

Combining Author Names with the ISBNs of the Books They’ve Written
The first query (Fig. 22.25, lines 24–27) joins data from two tables and returns a list of
author names and the ISBNs representing the books they’ve written, sorted by LastName
then FirstName. The query takes advantage of the properties in the entity data model
classes that were created based on foreign-key relationships between the database’s tables.
These properties enable you to easily combine data from related rows in multiple tables.

1 // Fig. 22.24: JoiningTableData.cs
2 // Using LINQ to perform a join and aggregate data across tables.
3 using System;
4 using System.Linq;
5 using System.Windows.Forms;
6
7 namespace JoinQueries
8 {
9 public partial class JoiningTableData : Form

10 {
11 public JoiningTableData()
12 {
13 InitializeComponent();
14 } // end constructor
15
16 private void JoiningTableData_Load(object sender, EventArgs e)
17 {
18 // Entity Framework DbContext
19 BooksExamples.BooksEntities dbcontext =
20 new BooksExamples.BooksEntities();
21

Fig. 22.24 | Creating the BooksDataContext for querying the Books database.

22 // get authors and ISBNs of each book they co-authored
23 var authorsAndISBNs =
24
25
26
27
28
29 outputTextBox.AppendText("Authors and ISBNs:");
30
31 // display authors and ISBNs in tabular format
32 foreach (var element in authorsAndISBNs)
33 {
34 outputTextBox.AppendText(
35 String.Format("\r\n\t{0,-10} {1,-10} {2,-10}",
36 element.FirstName, element.LastName, element.ISBN));
37 } // end foreach
38

Fig. 22.25 | Getting a list of authors and the ISBNs of the books they’ve authored.

from author in dbcontext.Authors
from book in author.Titles
orderby author.LastName, author.FirstName
select new { author.FirstName, author.LastName, book.ISBN };

22.7 Retrieving Data from Multiple Tables with LINQ 877

The first from clause (line 24) gets each author from the Authors table. The second
from clause (line 25) uses the generated Titles property of the Author class to get the
ISBNs for the current author. The entity data model uses the foreign-key information
stored in the database’s AuthorISBN table to get the appropriate ISBNs. The combined
result of the two from clauses is a collection of all the authors and the ISBNs of the books
they’ve authored. The two from clauses introduce two range variables into the scope of this
query—other clauses can access both range variables to combine data from multiple tables.
Line 26 orders the results by the author’s LastName, then FirstName. Line 27 creates a
new anonymous type that contains the FirstName and LastName of an author from the
Authors table with the ISBN of a book in the Titles table written by that author.

Anonymous Types
As you know, anonymous types allow you to create simple classes used to store data without
writing a class definition. An anonymous type declaration (line 27)—known formally as an
anonymous object-creation expression—is similar to an object initializer (Section 10.13). The
anonymous type declaration begins with the keyword new followed by a member-initializer
list in braces ({}). No class name is specified after the new keyword. The compiler generates
a class definition based on the anonymous object-creation expression. This class contains the
properties specified in the member-initializer list—FirstName, LastName and ISBN. All
properties of an anonymous type are public. Anonymous type properties are read-only—you
cannot modify a property’s value once the object is created. Each property’s type is inferred
from the values assigned to it. The class definition is generated automatically by the compil-
er, so you don’t know the class’s type name (hence the term anonymous type). Thus, you
must use implicitly typed local variables to store references to objects of anonymous types (e.g.,
line 32). Though we are not using it here, the compiler defines a ToString method when
creating the anonymous type’s class definition. The method returns a string in curly braces
containing a comma-separated list of PropertyName = value pairs. The compiler also provides
an Equals method, which compares the properties of the anonymous object that calls the
method and the anonymous object that it receives as an argument.

Combining Author Names with the Titles of the Books They’ve Written
The second query (Fig. 22.26, lines 41–45) gives similar output, but uses the foreign-key
relationships to get the title of each book that an author wrote.

39 // get authors and titles of each book they co-authored
40 var authorsAndTitles =
41
42
43
44
45
46
47 outputTextBox.AppendText("\r\n\r\nAuthors and titles:");
48
49 // display authors and titles in tabular format
50 foreach (var element in authorsAndTitles)
51 {

Fig. 22.26 | Getting a list of authors and the titles of the books they’ve authored. (Part 1 of 2.)

from book in dbcontext.Titles
from author in book.Authors
orderby author.LastName, author.FirstName, book.Title1
select new { author.FirstName, author.LastName,

book.Title1 };

878 Chapter 22 Databases and LINQ

The first from clause (line 41) gets each book from the Titles table. The second from
clause (line 42) uses the generated Authors property of the Title class to get only the
authors for the current book. The entity data model uses the foreign-key information
stored in the database’s AuthorISBN table to get the appropriate authors. The author

objects give us access to the names of the current book’s authors. The select clause (lines
44–45) uses the author and book range variables introduced earlier in the query to get the
FirstName and LastName of each author from the Authors table and the title of each book
from the Titles table.

Organizing Book Titles by Author
Most queries return results with data arranged in a relational-style table of rows and col-
umns. The last query (Fig. 22.27, lines 60–66) returns hierarchical results. Each element
in the results contains the name of an Author and a list of Titles that the author wrote.
The LINQ query does this by using a nested query in the select clause. The outer query
iterates over the authors in the database. The inner query takes a specific author and re-
trieves all titles that the author wrote. The select clause (lines 62–66) creates an anony-
mous type with two properties:

• The property Name (line 62) combines each author’s name, separating the first
and last names by a space.

• The property Titles (line 63) receives the result of the nested query, which re-
turns the title of each book written by the current author.

In this case, we’re providing names for each property in the new anonymous type. When
you create an anonymous type, you can specify the name for each property by using the
format name = value.

52 outputTextBox.AppendText(
53 String.Format("\r\n\t{0,-10} {1,-10} {2}",
54 element.FirstName, element.LastName, element.Title1));
55 } // end foreach
56

57 // get authors and titles of each book
58 // they co-authored; group by author
59 var titlesByAuthor =
60
61
62
63
64
65
66
67
68 outputTextBox.AppendText("\r\n\r\nTitles grouped by author:");
69

Fig. 22.27 | Getting a list of titles grouped by authors. (Part 1 of 2.)

Fig. 22.26 | Getting a list of authors and the titles of the books they’ve authored. (Part 2 of 2.)

from author in dbcontext.Authors
orderby author.LastName, author.FirstName
select new { Name = author.FirstName + " " + author.LastName,

Titles =
from book in author.Titles
orderby book.Title1
select book.Title1 };

22.8 Creating a Master/Detail View App 879

The range variable book in the nested query iterates over the current author’s books
using in the Titles property. The Title1 property of a given book returns the Title
column from that row of the Titles table in the database.

The nested foreach statements (lines 71–81) use the properties of the anonymous
type created by the query to output the hierarchical results. The outer loop displays the
author’s name and the inner loop displays the titles of all the books written by that author.

22.8 Creating a Master/Detail View App
Figure 22.28 demonstrates a so-called master/detail view—one part of the GUI (the master)
allows you to select an entry, and another part (the details) displays detailed information
about that entry. When the app first loads, it displays the name of the first author in the data
source and that author’s books (Fig. 22.28(a)). When you use the buttons on the Binding-
Navigator to change authors, the app displays the details of the books written by the corre-
sponding author (Fig. 22.28(b)). This app only reads data from the entity data model, so we
disabled the buttons in the BindingNavigator that enable the user to add and delete records.

70 // display titles written by each author, grouped by author
71 foreach (var author in titlesByAuthor)
72 {
73 // display author's name
74 outputTextBox.AppendText("\r\n\t" + author.Name + ":");
75
76 // display titles written by that author
77 foreach (var title in)
78 {
79 outputTextBox.AppendText("\r\n\t\t" + title);
80 } // end inner foreach
81 } // end outer foreach
82 } // end method JoiningTableData_Load
83 } // end class JoiningTableData
84 } // end namespace JoinQueries

Fig. 22.28 | Master/Detail app. (Part 1 of 2.)

Fig. 22.27 | Getting a list of titles grouped by authors. (Part 2 of 2.)

author.Titles

a) Master/Detail app
displaying books for

the first author in the
data source

880 Chapter 22 Databases and LINQ

When you run the app, experiment with the BindingNavigator’s controls. The DVD-play-
er-like buttons of the BindingNavigator allow you to change the currently displayed row.

22.8.1 Creating the Master/Detail GUI
You’ve seen that the IDE can automatically generate the BindingSource, BindingNavi-
gator and GUI elements when you drag a data source onto the Form. You’ll now use two
BindingSources—one for the master list of authors and one for the titles associated with
a given author. Both will be generated by the IDE.

Step 1: Creating the Project
Follow the instructions in Section 22.5.2 to create and configure a new Windows Forms
Application project called MasterDetail. Name the source file Details.cs and set the
Form’s Text property to Master/Detail.

Step 2: Adding a Data Source for the Authors Table
Follow the steps in Section 22.5.3 to add a data source for the Authors table. Although
you’ll be displaying records from the Titles table for each author, you do not need to add
a data source for that table. The title information will be obtained from the Titles navi-
gation property in the Author entity data model class.

Step 3: Creating GUI Elements
Next, you’ll use the Design view to create the GUI components by dragging-and-dropping
items from the Data Sources window onto the Form. In the earlier sections, you dragged
an object from the Data Sources window to the Form to create a DataGridView. The IDE
allows you to specify the type of control(s) that it will create when you drag and drop an
object from the Data Sources window onto a Form. To do so:

1. Switch to Design view for the Details class.

2. Click the Author node in the Data Sources window—it should change to a drop-
down list. Open the drop-down by clicking the down arrow and select the Details

Fig. 22.28 | Master/Detail app. (Part 2 of 2.)

b) Master/Detail app
displaying books for

the third author in the
data source

22.8 Creating a Master/Detail View App 881

option—this indicates that we’d like to generate Label–TextBox pairs that repre-
sent each column of the Authors table.

3. Drag the Author node from the Data Sources window onto the Form in Design view.
This creates the authorBindingSource, the authorBindingNavigator and the La-
bel–TextBox pairs that represent each column in the table. Initially, the controls
appear as shown in Fig. 22.29. We rearranged the controls as shown in Fig. 22.28.

4. By default, the Titles navigation property is implemented in the entity data
model classes as a HashSet<Title>. To bind the data to GUI controls properly,
you must change this to an ObservableCollection<Title>. To do this, expand
the class library project’s BooksModel.edmx node in the Solution Explorer, then ex-
pand the BooksModel.tt node and open Author.cs in the editor. Add a using
statement for the namespace System.Collections.ObjectModel. Then, in the
Author constructor change HashSet to ObservableCollection. Right click the
class library project in the Solution Explorer and select Build to recompile the class.

5. Next, click the Titles node that’s nested in the Author node in the Data Sources
window—it should change to a drop-down list. Open the drop-down by clicking
the down arrow and ensure that the DataGridView option is selected—this is the
GUI control that will be used to display the data from the Titles table that cor-
responds to a given author.

6. Drag the Titles node onto the Form in Design view. This creates the titlesBind-
ingSource and the DataGridView. This control is only for viewing data, so set its
ReadOnly property to True using the Properties window. Because we dragged the
Titles node from the Author node in the Data Sources window, the DataGridView
will automatically display the books for the currently selected author once we
bind the author data to the authorBindingSource.

We used the DataGridView’s Anchor property to anchor it to all four sides of the Form. We
also set the Form’s Size and MinimumSize properties to 550, 300 to set the Form’s initial
size and minimum size, respectively. The completed GUI is shown in Fig. 22.30.

22.8.2 Coding the Master/Detail App
The code to display an author and the corresponding books (Fig. 22.31) is straightforward.
Lines 17–18 create the DbContext. The Form’s Load event handler (lines 22–32) orders the
Author objects by LastName (line 26) and FirstName (line 27), then loads them into mem-
ory (line 28). Next, line 31 assigns dbcontext.Authors.Local to the authorBinding-

Source’s DataSource property. At this point:

• the BindingNavigator displays the number of Author objects and indicates that
the first one in the results is selected,

Fig. 22.29 | Details representation of an Author.

882 Chapter 22 Databases and LINQ

• the TextBoxes display the currently selected Author’s AuthorID, FirstName and
LastName property values, and

• the currently selected Author’s titles are automatically assigned to the titlesBind-
ingSource’s DataSource, which causes the DataGridView to display those titles.

Now, when you use the BindingNavigator to change the selected Author, the correspond-
ing titles are displayed in the DataGridView.

Fig. 22.30 | Finished design of the Master/Detail app.

1 // Fig. 22.31: Details.cs
2 // Using a DataGridView to display details based on a selection.
3 using System;
4 using System.Data.Entity;
5 using System.Linq;
6 using System.Windows.Forms;
7
8 namespace MasterDetail
9 {

10 public partial class Details : Form
11 {
12 public Details()
13 {
14 InitializeComponent();
15 } // end constructor
16
17 // Entity Framework DbContext
18 BooksExamples.BooksEntities dbcontext =
19 new BooksExamples.BooksEntities();
20

Fig. 22.31 | Using a DataGridView to display details based on a selection. (Part 1 of 2.)

22.9 Address Book Case Study 883

22.9 Address Book Case Study
Our final example (Fig. 22.32) implements a simple AddressBook app that enables users
to perform the following tasks on the database AddressBook.mdf (which is included in the
directory with this chapter’s examples):

• Insert new contacts

• Find contacts whose last names begin with the specified letters

• Update existing contacts

• Delete contacts

We populated the database with six fictional contacts.
Rather than displaying a database table in a DataGridView, this app presents the

details of one contact at a time in several TextBoxes. The BindingNavigator at the top of
the window allows you to control which row of the table is displayed at any given time.
The BindingNavigator also allows you to add a contact and delete a contact—but only

21 // initialize data sources when the Form is loaded
22 private void Details_Load(object sender, EventArgs e)
23 {
24 // load Authors table ordered by LastName then FirstName
25
26
27
28
29
30 // specify DataSource for authorBindingSource
31
32 } // end method Details_Load
33 } // end class Details
34 } // end namespace MasterDetail

Fig. 22.32 | Manipulating an address book. (Part 1 of 2.)

Fig. 22.31 | Using a DataGridView to display details based on a selection. (Part 2 of 2.)

dbcontext.Authors
.OrderBy(author => author.LastName)
.ThenBy(author => author.FirstName)
.Load();

authorBindingSource.DataSource = dbcontext.Authors.Local;

a) Use the BindingNavigator’s
controls to navigate through the

contacts in the database

884 Chapter 22 Databases and LINQ

when browsing the complete contact list. When you filter the contacts by last name, the
app disables the Add new () and Delete () buttons (we’ll explain why shortly). Clicking
Browse All Entries enables these buttons again. Adding a row clears the TextBoxes and sets
the TextBox to the right of Address ID to zero to indicate that the TextBoxes now represent
a new record. When you save a new entry, the Address ID field is automatically changed
from zero to a unique ID number by the database. No changes are made to the underlying
database unless you click the Save Data () button.

22.9.1 Creating the Address Book App’s GUI
We discuss the app’s code momentarily. First you’ll set up the entity data model and a
Windows Forms app.

Step 1: Creating a Class Library Project for the Entity Data Model
Perform the steps in Section 22.5.1 to create a Class Library project named AddressExam-
ple that contains an entity data model for the AddressBook.mdf database, which contains
only an Addresses table with AddressID, FirstName, LastName, Email and PhoneNumber
columns. Name the entity data model AddressModel.edmx. The AddressBook.mdf data-
base is located in the Databases folder with this chapter’s examples.

Fig. 22.32 | Manipulating an address book. (Part 2 of 2.)

b) Type a search string in the
Last Name: TextBox then press
Find to locate contacts whose last

names begin with that string;
only two names start with “Br” so

the BindingNavigator indicates
two matching records

Displaying the first of
two matching contacts
for the current search

c) Click Browse All Entries
to clear the search string

and allow browsing of all
contacts in the database

You can now browse
through all six contacts

22.9 Address Book Case Study 885

Step 2: Creating a Windows Forms Application Project for AddressBook App
Perform the steps in Section 22.5.2 to create a new Windows Forms Application project
named AddressBook in the AddressExample solution. Set the Form’s filename to Con-

tacts.cs, then set the Form’s Text property to Address Book. Set the AddressBook project
as the solution’s startup project.

Step 3: Adding the Address Object as a Data Source
Add the entity data model’s Address object as a data source, as you did with the Author
object in Step 1 of Section 22.5.3.

Step 4: Displaying the Details of Each Row
In Design view, select the Address node in the Data Sources window. Click the Address
node’s down arrow and select the Details option to indicate that the IDE should create a
set of Label–TextBox pairs to show the details of a single record at a time.

Step 5: Dragging the Address Data-Source Node to the Form
Drag the Address node from the Data Sources window to the Form. This automatically
creates a BindingNavigator and the Labels and TextBoxes corresponding to the columns
of the database table. The fields are placed in alphabetical order. Reorder the components,
using Design view, so they’re in the order shown in Fig. 22.32. You’ll also want to change
the tab order of the controls. To do so, select VIEW > Tab Order then click the TextBoxes
from top to bottom in the order they appear in Fig. 22.32.

Step 5: Making the AddressID TextBox ReadOnly

The AddressID column of the Addresses table is an autoincremented identity column, so
users should not be allowed to edit the values in this column. Select the TextBox for the
AddressID and set its ReadOnly property to True using the Properties window.

Step 6: Adding Controls to Allow Users to Specify a Last Name to Locate
While the BindingNavigator allows you to browse the address book, it would be more
convenient to be able to find a specific entry by last name. To add this functionality to the
app, we must create controls to allow the user to enter a last name and provide event han-
dlers to perform the search.

Add a Label named findLabel, a TextBox named findTextBox, and a Button named
findButton. Place these controls in a GroupBox named findGroupBox, then set its Text
property to Find an entry by last name. Set the Text property of the Label to Last Name:
and set the Text property of the Button to Find.

Step 7: Allowing the User to Return to Browsing All Rows of the Database
To allow users to return to browsing all the contacts after searching for contacts with a spe-
cific last name, add a Button named browseAllButton below the findGroupBox. Set the
Text property of browseAllButton to Browse All Entries.

22.9.2 Coding the Address Book App
The Contacts.cs code-behind file is split into several figures (Figs. 22.33–22.37) for pre-
sentation purposes.

886 Chapter 22 Databases and LINQ

Method RefreshContacts

As we showed in previous examples, we must connect the addressBindingSource that
controls the GUI with the DbContext that interacts with the database. In this example, we
declare the AddressEntities DbContext object at line 20 of Fig. 22.33, but create it and
initiate the data binding in the RefreshContacts method (lines 23–43), which is called
from several other methods in the app. When this method is called, if dbcontext is not
null, we call its Dispose method, then create a new AddressEntities DbContext at line
30. We do this so we can re-sort the data in the entity data model. If we maintained one
dbcontext.Addresses object in memory for the duration of the program and the user
changed a person’s last name or first name, the records would still remain in their original
order in the dbcontext.Addresses object, even if that order is incorrect. Lines 34–37 or-
der the Address objects by LastName, then FirstName and load the objects into memory.
Then line 40 sets the addressBindingSource’s DataSource property to dbcontext.Ad-

dresses.Local to bind the data in memory to the GUI.

1 // Fig. 22.33: Contact.cs
2 // Manipulating an address book.
3 using System;
4 using System.Data;
5 using System.Data.Entity;
6 using System.Data.Entity.Validation;
7 using System.Linq;
8 using System.Windows.Forms;
9

10 namespace AddressBook
11 {
12 public partial class Contacts : Form
13 {
14 public Contacts()
15 {
16 InitializeComponent();
17 } // end constructor
18
19 // Entity Framework DbContext
20
21
22 // fill our addressBindingSource with all rows, ordered by name
23 private void RefreshContacts()
24 {
25 // Dispose old DbContext, if any
26
27
28
29 // create new DbContext so we can reorder records based on edits
30
31
32 // use LINQ to order the Addresses table contents
33 // by last name, then first name

Fig. 22.33 | Creating the BooksDataContext and defining method RefreshContacts for use
in other methods. (Part 1 of 2.)

private AddressExample.AddressBookEntities dbcontext = null;

if (dbcontext != null)
dbcontext.Dispose();

dbcontext = new AddressExample.AddressBookEntities();

22.9 Address Book Case Study 887

Method Contacts_Load

Method Contacts_Load (Fig. 22.34) calls RefreshContacts (line 48) so that the first re-
cord is displayed when the app starts. As before, you create the Load event handler by dou-
ble clicking the Form’s title bar.

Method addressBindingNavigatorSaveItem_Click

Method addressBindingNavigatorSaveItem_Click (Fig. 22.35) saves the changes to the
database when the BindingNavigator’s Save Data Button is clicked. (Remember to enable
this button.) The AddressBook database requires values for the first name, last name,
phone number and e-mail. If a field is empty when you attempt to save, a DbEntityVal-
idationException exception occurs. We call RefreshContacts after saving to re-sort the
data and move back to the first element.

34
35
36
37
38
39 // specify DataSource for addressBindingSource
40
41 addressBindingSource.MoveFirst(); // go to first result
42 findTextBox.Clear(); // clear the Find TextBox
43 } // end method RefreshContacts
44

45 // when the form loads, fill it with data from the database
46 private void Contacts_Load(object sender, EventArgs e)
47 {
48
49 } // end method Contacts_Load
50

Fig. 22.34 | Calling RefreshContacts to fill the TextBoxes when the app loads.

51 // Click event handler for the Save Button in the
52 // BindingNavigator saves the changes made to the data
53 private void addressBindingNavigatorSaveItem_Click(
54 object sender, EventArgs e)
55 {
56 Validate(); // validate input fields
57 addressBindingSource.EndEdit(); // complete current edit, if any
58
59 // try to save changes
60 try

61 {

Fig. 22.35 | Saving changes to the database when the user clicks Save Data. (Part 1 of 2.)

Fig. 22.33 | Creating the BooksDataContext and defining method RefreshContacts for use
in other methods. (Part 2 of 2.)

dbcontext.Addresses
.OrderBy(entry => entry.LastName)
.ThenBy(entry => entry.FirstName)
.Load();

addressBindingSource.DataSource = dbcontext.Addresses.Local;

RefreshContacts(); // fill binding with data from database

888 Chapter 22 Databases and LINQ

Method findButton_Click

Method findButton_Click (Fig. 22.36) uses LINQ query syntax (lines 79–83) to select
only people whose last names start with the characters in the findTextBox. The query sorts
the results by last name then first name. In LINQ to Entities, you cannot bind a LINQ que-
ry’s results directly to a BindingSource’s DataSource. So, line 86 calls the query object’s
ToList method to get a List representation of the filtered data and assigns the List to the
BindingSource’s DataSource. When you convert the query result to a List, only changes
to existing records in the DbContext are tracked by the DbContext—any records that you
add or remove while viewing the filtered data would be lost. For this reason we disabled the
Add new and Delete buttons when the data is filtered. When you enter a last name and click
Find, the BindingNavigator allows the user to browse only the rows containing the match-
ing last names. This is because the data source bound to the Form’s controls (the result of
the LINQ query) has changed and now contains only a limited number of rows.

62 dbcontext.SaveChanges(); // write changes to database file
63 } // end try
64 catch (DbEntityValidationException)
65 {
66 MessageBox.Show("Columns cannot be empty",
67 "Entity Validation Exception");
68 } // end catch
69
70
71 } // end method addressBindingNavigatorSaveItem_Click
72

73 // use LINQ to create a data source that contains only people
74 // with last names that start with the specified text
75 private void findButton_Click(object sender, EventArgs e)
76 {
77 // use LINQ to filter contacts with last names that
78 // start with findTextBox contents
79
80
81
82
83
84
85 // display matching contacts
86
87 addressBindingSource.MoveFirst(); // go to first result
88
89 // don't allow add/delete when contacts are filtered
90 bindingNavigatorAddNewItem.Enabled = false;
91 bindingNavigatorDeleteItem.Enabled = false;
92 } // end method findButton_Click
93

Fig. 22.36 | Finding the contacts whose last names begin with a specified String.

Fig. 22.35 | Saving changes to the database when the user clicks Save Data. (Part 2 of 2.)

RefreshContacts(); // change back to initial unfiltered data

var lastNameQuery =
from address in dbcontext.Addresses
where address.LastName.StartsWith(findTextBox.Text)
orderby address.LastName, address.FirstName
select address;

addressBindingSource.DataSource = lastNameQuery.ToList();

22.10 Tools and Web Resources 889

Method browseAllButton_Click

Method browseAllButton_Click (Fig. 22.37) allows users to return to browsing all the
rows after searching for specific rows. Double click browseAllButton to create a Click
event handler. The event handler enables the Add new and Delete buttons then calls
RefreshContacts to restore the data source to the full list of people (in sorted order) and
clear the findTextBox.

22.10 Tools and Web Resources
Our LINQ Resource Center at www.deitel.com/LINQ contains many links to additional
information, including blogs by Microsoft LINQ team members, sample chapters, tutori-
als, videos, downloads, FAQs, forums, webcasts and other resource sites.

A useful tool for learning LINQ is LINQPad (www.linqpad.net), which allows you
to execute and view the results of any C# or Visual Basic expression, including LINQ que-
ries. It also supports the ADO.NET Entity Framework and LINQ to Entities.

This chapter is meant as an introduction to databases, the ADO.NET Entity Frame-
work and LINQ to Entities. Microsoft’s Entity Framework site

provides lots of additional information on working with the ADO.NET Entity Frame-
work and LINQ to Entities, including tutorials, videos and more.

22.11 Wrap-Up
This chapter introduced the relational database model, the ADO.NET Entity Framework,
LINQ to Entities and the Visual Studio 2012’s visual programming tools for working with
databases. You examined the contents of a simple Books database and learned about the
relationships among the tables in the database. You used LINQ to Entities and the entity
data model classes generated by the IDE to retrieve data from, add new data to, delete data
from and update data in a SQL Server Express database.

We discussed the entity data model classes automatically generated by the IDE, such
as the DbContext class that manages an app’s interactions with a database. You learned
how to use the IDE’s tools to connect to databases and to generate entity data model
classes based on an existing database’s schema. You then used the IDE’s drag-and-drop
capabilities to automatically generate GUIs for displaying and manipulating database data.

94 // reload addressBindingSource with all rows
95 private void browseAllButton_Click(object sender, EventArgs e)
96 {
97 // allow add/delete when contacts are not filtered
98 bindingNavigatorAddNewItem.Enabled = true;
99 bindingNavigatorDeleteItem.Enabled = true;
100
101 } // end method browseButton_Click
102 } // end class Contacts
103 } // end namespace AddressBook

Fig. 22.37 | Allowing the user to browse all contacts.

msdn.microsoft.com/en-us/data/aa937723

RefreshContacts(); // change back to initial unfiltered data

www.deitel.com/LINQ
www.linqpad.net

890 Chapter 22 Databases and LINQ

In the next chapter, we demonstrate how to build web apps using Microsoft’s
ASP.NET web forms technology, which is similar similar to building Windows Forms
apps, but in the context of web pages. We introduce the concept of a three-tier app, which
is divided into three pieces that can reside on the same computer or be distributed among
separate computers across a network such as the Internet. One of these tiers—the infor-
mation tier—typically stores data in a database.

Summary
Section 22.1 Introduction
• A database is an organized collection of data.

• A database management system (DBMS) provides mechanisms for storing, organizing, retrieving
and modifying data.

• SQL Server Express provides most of the features of Microsoft’s full (fee-based) SQL Server
product, but has some limitations, such as a maximum database size.

• A SQL Server Express database can be easily migrated to a full version of SQL Server.

• The ADO.NET Entity Framework and LINQ to Entities allow you to manipulate relational
data stored in a relational database, such as a SQL Server Express database.

Section 22.2 Relational Databases
• A relational database organizes data simply in tables.

• Tables are composed of rows and columns (also called fields) in which values are stored.

• A column (or group of columns) of each row is the table’s primary key—a column (or group of
columns) requiring a unique value that cannot be duplicated in other rows. This guarantees that
a primary key value can be used to uniquely identify a row.

• A primary key composed of two or more columns is known as a composite key.

• Each column represents a different data attribute.

• Rows are unique (by primary key) within a table, but some column values may be duplicated be-
tween rows.

Section 22.3 A Books Database
• A database’s tables, their fields and the relationships between them are collectively known as a

database schema.

• A foreign key is a column in one table that matches the primary-key column in another table.

• Foreign keys, which are specified when a database table is created, link the data in multiple tables.

• Every foreign-key value must appear as another table’s primary-key value so the DBMS can en-
sure that the foreign-key value is valid.

• Foreign keys also allow related data in multiple tables to be selected from those tables—this is
known as joining the data.

• There’s a one-to-many relationship between a primary key and a corresponding foreign key—a for-
eign key can appear many times in its own table but only once (as the primary key) in another table.

• An entity-relationship (ER) diagram shows the tables in a database and their relationships.

• Every row must have a value in the primary-key column, and the value of the key must be unique
in the table.

Summary 891

Section 22.4 LINQ to Entities and the ADO.NET Entity Framework
• With the ADO.NET Entity Framework, you interact with the database via classes that the IDE

generates from the database schema when you add a new ADO.NET Entity Data Model to your
project.

• The IDE creates two classes for a table. The first class represents a row of the table and contains
properties for each table column. Objects of this class are called row objects and store the data
from individual rows of the table. The IDE uses the singular version of a table’s plural name as
the row class’s name. The second class represents the table itself. An object of this class stores a
collection of row objects that correspond to all of the rows in the table.

• The entity data model classes have full IntelliSense support in the IDE.

• Navigation properties in row classes represent the relationships between tables.

• A DbContext (namespace System.Data.Entity) manages the data flow between the program and
the database. When the IDE generates the entity data model’s row and table classes, it also creates
a derived class of DbContext that is specific to the database being manipulated. This class contains
properties that represent the database’s tables.These can be used as data sources for manipulating
data in LINQ queries and in GUIs.

• Changes made to the data managed by a DbContext can be saved back to the database using the
DbContext’s SaveChanges method.

• LINQ to Entities works through the IQueryable<T> interface, which inherits from the interface
IEnumerable<T>. When a LINQ to Entities query on an IQueryable<T> object executes against
the database, the results are loaded into objects of the corresponding entity data model classes for
convenient access in your code.

• The extension methods used with LINQ to Entities are defined as static methods of class Que-
ryable (namespace System.Linq) and can be applied to any object that implements the IQuery-
able<T> interface—these include various entity data model objects and the results of LINQ to
Entities queries.

Section 22.5 Querying a Database with LINQ
• The IDE provides visual programming tools and wizards that simplify accessing data in your

projects. These tools establish database connections and create the objects necessary to view and
manipulate the data through the GUI—a technique known as data binding.

• A DataGridView (namespace System.Windows.Forms) displays data from a data source in tabular
format.

• A BindingNavigator is a collection of controls that allow you to navigate through the records
displayed in a GUI. The BindingNavigator controls also allow you to add records, delete records
and save your changes to the database.

Section 22.5.1 Creating the ADO.NET Entity Data Model Class Library
• An entity data model describes as C# classes the data that you’ll be manipulating.

• To interact with a database, you add an ADO.NET entity data model to the project (typically a
class library project for reuse). This will also configure the connection to the database.

• The ADO.NET entity data model’s .edmx file contains information about the entity data model.

• When configuring the model, you create a connection to the database and choose the model’s
contents from the database.

• The entity connection string contains the information that the ADO.NET Entity Framework
requires to connect to the database at runtime.

• SQL Server Express allows only one program at a time to connect to a database file.

892 Chapter 22 Databases and LINQ

• The entity data model diagram contains the selected database objects and shows the relationships
between them.

Section 22.5.2 Creating a Windows Forms Project and Configuring It to Use the En-
tity Data Model
• To use the entity data model classes from a class library for data binding, you must first add a

reference to the class library to your project. You’ll also need to add references to the System.Da-
ta.Entity and EntityFramework libraries.

• The EntityFramework library is added by the IDE when you create the entity data model, but
it’s also required in each app that will use the entity data model. To add a reference to the Enti-
tyFramework library: Right click the solution name in the Solution Explorer and select Manage
NuGet Packages for Solution… to display the Manage NuGet Packages dialog. In the dialog that
appears, click Manage to display the Select Projects dialog, then select your project project and
click OK. Click Close to close the Manage NuGet Packages dialog.

• Each app that will use an entity data model also requires the connection string that tells the En-
tity Framework how to connect to the database. The connection string is stored in the App.Con-
fig file of the project in which the entity data model is defined and must be copied into the
App.Config file of the project that uses the entity data model.

Section 22.5.3 Data Bindings Between Controls and the Entity Data Model
• You must write code to enable the autogenerated GUI to interact with the entity data model.

• To use the entity data model classes for data binding, you must first add them as a data source.

• Select VIEW > Other Windows > Data Sources to display the Data Sources window at the left side
of the IDE, then in that window click the Add New Data Source… link to display the Data Source

Configuration Wizard. The entity data model classes are used to create objects representing the ta-
bles in the database, so use an Object data source. Select the object(s) you need from the model
and click Finish. You can now drag the data source objects onto the Form in Design view to gen-
erate a GUI.

• The default GUI for a table is a DataGridView with column names representing all the properties
of the data source object. The IDE also creates a BindingNavigator that contains Buttons for
moving between entries, adding entries, deleting entries and saving changes to the database. The
IDE also generates a BindingSource, which handles the transfer of data between the data source
and the data-bound controls on the Form.

• Nonvisual components such as the BindingSource and the non-visual aspects of the BindingNav-
igator appear in the component tray—the gray region below the Form in Design view.

• The IDE names the BindingNavigator and BindingSource based on the data source’s name.

• To edit the columns displayed in a DataGridView, select it, then click Edit Columns… in the Prop-
erties window to display the Edit Columns dialog.

• To complete the data binding, you must create an object of the entity data model’s DbContext
derived class and use it to obtain data.

• The OrderBy extension method orders rows in ascending order by the property specified in its
lambda expression argument.

• A lambda expression represents an anonymous function. It begins with a parameter list. The
lambda expression infers the lambda parameter’s type. The parameter list is followed by the =>
lambda operator (read as “goes to”) and an expression that represents the body of the function.

Summary 893

The value produced by the expression is implicitly returned by the lambda expression. The re-
turn type is inferred from the return value.

• The ThenBy extension method enables you to order results by an additional column.

• The Load extension method (defined in class DBExtensions from the namespace System.Da-

ta.Entity) loads data into memory. This data is tracked by the DbContext in local memory so
that any changes made to the data can eventually be saved into the database.

• The Local property of a DbContext property is an ObservableCollection<Author> that repre-
sents the data in memory.

• When a BindingSource’s DataSource property is assigned an ObservableCollection<T>

(namespace System.Collections.ObjectModel), the GUI that’s bound to the BindingSource is
notified of any changes to the data so the GUI can be updated accordingly. In addition, changes
made by the user to the data in the GUI will be tracked so the DbContext can eventually save
those changes to the database.

• Calling EndEdit on the BindingSource forces it to save any pending changes into the DbContext
model in memory.

• Calling SaveChanges on the DbContext object stores any changes into the database.

Section 22.6 Dynamically Binding Query Results
• The data bindings created by the IDE automatically update a DataGridView each time its Bind-
ingSource’s DataSource changes.

• The MoveFirst method of the BindingSource moves to the first row of the data source.

• When you invoke OrderBy on an ObservableCollection<T>, the method returns an IEnumera-

ble<T>.

• A lambda expression that’s used with the Where extension method must return a bool value.

Section 22.7 Retrieving Data from Multiple Tables with LINQ
• To join data from multiple tables you use the properties that the entity data model contains based

on foreign-key relationships between the database’s tables. These properties enable you to easily
access related rows in other tables.

• Most queries return result with data arranged in relational-style rows and columns. With LINQ
to Entities you can create queries that return hierarchical results in which each item in the result
contains a collection of other items.

• Use anonymous types to create simple classes used to store data without writing a class definition.

• An anonymous type declaration—also called an anonymous object-creation expression—begins
with the keyword new followed by a member-initializer list.

• The compiler generates a new class definition based on the anonymous object-creation expres-
sion, containing the properties specified in the member-initializer list.

• All properties of an anonymous type are public.

• Properties of anonymous types are read-only.

• Each property’s type is inferred from the value assigned to it.

• Objects of anonymous types are stored in implicitly typed local variables.

• The compiler defines the ToString method when creating the anonymous type’s class definition.
The method returns a string of comma-separated PropertyName = value pairs in curly braces.

• The Equals method, generated for any anonymous type, compares the properties of the anony-
mous object that calls the method and the anonymous object that it receives as an argument.

894 Chapter 22 Databases and LINQ

Section 22.8 Creating a Master/Detail View App
• In a master/detail view, one part of the GUI (the master) allows you to select an entry, and an-

other part (the details) displays detailed information about that entry.

• The IDE allows you to specify the type of control(s) that it will create when you drag and drop
an object from the Data Sources window onto a Form. To do so, click a data source object’s node
in the Data Sources window—it should change to a drop-down list from which you can select
the controls to use on the GUI. The Details option indicates that the IDE should generate Label–
TextBox pairs that represent each column of the data source object.

• Dragging a navigation property from a data source object in the Data Sources window creates a
BindingSource and a GUI for the items in another table that are associated with the data source
object. The items in this second BindingSource will automatically update based on the currently
selected master object.

Section 22.9 Address Book Case Study
• If the data in the DbContext needs to be reordered, you’ll need to call Dispose on the existing

one, then create a new DbContext.

• You cannot bind a LINQ to Entities query’s results directly to a BindingSource’s DataSource.

• When you convert a query result to a List, only changes to existing records in the DbContext are
tracked by the DbContext—any records that you add or remove while viewing the filtered data
in a List would be lost.

Terminology
ADO.NET Entity Framework
anonymous method
autoincremented database column
BindingNavigator class
BindingSource class
column of a database table
composite key
connection to a database
data binding
Data Sources window
Data Source Configuration Wizard window
database
database management system (DBMS)
database schema
database table
DataGridView class
DataSource property of class BindingSource
DbContext class
EndEdit method of class BindingSource
entity data model
entity-relationship (ER) diagram
Enumerable class
field in a database table
foreign key
identity column in a database table
IQueryable<T> interface
joining database tables

lambda expression
lambda operator =>
LINQ to Entities
Load extension method of class DBExtensions
many-to-many relationship
master/detail view
Microsoft SQL Server Express
MoveFirst method of class BindingSource
navigation property
Object data source
ObservableCollection<T> class
one-to-many relationship
OrderBy extension method of class Queryable
primary key
query
Queryable class
relational database
row object
row of a database table
SaveChanges method of a DbContext
smart tag menu
Structured Query Language (SQL)
System.Data.Entity

table in a database
ThenBy extension method of class Queryable
Where extension method of class Queryable

Self-Review Exercises 895

Self-Review Exercises
22.1 Fill in the blanks in each of the following statements:

a) A table in a relational database consists of and in which values are
stored.

b) The uniquely identifies each row in a relational database table.
c) A relational database can be manipulated with the ADO.NET Entity Framework via an

object of a derived class of , which contains properties for accessing each table
in the database.

d) The control (presented in this chapter) displays data in rows and columns that
correspond to the rows and columns of a data source.

e) Merging data from multiple relational database tables is called the data.
f) A(n) is a column (or group of columns) in a relational database table that

matches the primary-key column (or group of columns) in another table.
g) A(n) object serves as an intermediary between a data source and its corre-

sponding data-bound GUI control.
h) The property of a control specifies where it gets the data it displays.

22.2 State whether each of the following is true or false. If false, explain why.
a) Providing the same value for a foreign key in multiple rows causes the DBMS to report

an error.
b) Providing a foreign-key value that does not appear as a primary-key value in another

table is an error.
c) The result of a query can be sorted in ascending or descending order.
d) A BindingNavigator object can extract data from a database.
e) A DbContext automatically saves changes made back to the database.

Answers to Self-Review Exercises
22.1 a) rows, columns. b) primary key. c) DbContext. d) DataGridView. e) joining. f) foreign key.
g) BindingSource. h) DataSource.

22.2 a) False. Multiple rows can have the same value for a foreign key. Providing the same value
for the primary key in multiple rows causes the DBMS to report an error, because duplicate primary
keys would prevent each row from being identified uniquely. b) True. c) True. d) False. A Binding-

Navigator allows users to browse and manipulate data displayed by another GUI control. A DbCon-

text can extract data from a database. e) False. You must call the SaveChanges method of the
DbContext to save the changes made back to the database.

Exercises
22.3 (Display Authors Table App Modification) Modify the app in Section 22.5 to contain a Text-
Box and a Button that allow the user to search for specific authors by last name. Include a Label to
identify the TextBox. Using the techniques presented in Section 22.9, create a LINQ query and
change the DataSource property of authorBindingSource to contain only the specified authors. Al-
so, provide a Button that enables the user to return to browsing the complete set of authors.

22.4 (Display Query Results App Modification) Modify the app in Section 22.6 to contain a Text-
Box and a Button that allow the user to perform a search of the book titles in the Titles table of the
Books database. Use a Label to identify the TextBox. When the user clicks the Button, the app
should execute and display the result of a query that selects all the rows in which the search term
entered by the user in the TextBox appears anywhere in the Title column. For example, if the user
enters the search term “Visual,” the DataGridView should display the rows for Simply Visual Basic

896 Chapter 22 Databases and LINQ

2010, Visual Basic 2012 How to Program, Visual C# 2012 How to Program and Visual C++ 2008
How to Program. If the user enters “Simply,” the DataGridView should display only the row for Sim-
ply Visual Basic 2012. [Hint: Use the Contains method of the String class.] Also, provide a Button
that enables the user to return to browsing the complete set of titles.

22.5 (Joining Tables with LINQ App Modification) Create an app like the one in Section 22.7 that
uses the Books database and displays the results of the following queries:

a) Get a list of all the titles and the authors who wrote them. Sort the results by title.
b) Get a list of all the titles and the authors who wrote them. Sort the results by title. For

each title sort the authors alphabetically by last name, then first name.
c) Get a list of all the authors grouped by title, sorted by title; for a given title sort the au-

thor names alphabetically by last name then first name.

22.6 (Baseball Database App) Build an app that executes a query against the Players table of
the Baseball database included in the Databases folder with this chapter’s examples. Display the
table in a DataGridView, and add a TextBox and Button to allow the user to search for a specific play-
er by last name. Use a Label to identify the TextBox. Clicking the Button should execute the appro-
priate query. Also, provide a Button that enables the user to return to browsing the complete set of
players.

22.7 (Baseball Database App Modification) Modify Exercise 22.6 to allow the user to locate
players with batting averages in a specific range. Add a minimumTextBox for the minimum batting
average (0.000 by default) and a maximumTextBox for the maximum batting average (1.000 by de-
fault). Use a Label to identify each TextBox. Add a Button for executing a query that selects rows
from the Players table in which the BattingAverage column is greater than or equal to the specified
minimum value and less than or equal to the specified maximum value.

23Web App Development with
ASP.NET

If any man will draw up his
case, and put his name at the
foot of the first page, I will give
him an immediate reply. Where
he compels me to turn over the
sheet, he must wait my leisure.
—Lord Sandwich

O b j e c t i v e s
In this chapter you’ll learn:

� Web app development using
ASP.NET.

� To handle the events from a
Web Form’s controls.

� To use validation controls to
ensure that data is in the
correct format before it’s sent
from a client to the server.

� To maintain user-specific
information.

� To create a data-driven web
app using ASP.NET and the
ADO.NET Entity Framework.

898 Chapter 23 Web App Development with ASP.NET

23.1 Introduction
In this chapter, we introduce web-app development with Microsoft’s ASP.NET technol-
ogy. Web-based apps create web content for web-browser clients.

We present several examples that demonstrate web-app development using Web
Forms, web controls (also called ASP.NET server controls) and Visual C# programming.
Web Form files have the filename extension .aspx and contain the web page’s GUI. You
customize Web Forms by adding web controls including labels, textboxes, images, buttons
and other GUI components. The Web Form file represents the web page that’s sent to the
client browser. We often refer to Web Form files as ASPX files.

An ASPX file created in Visual Studio has a corresponding class written in a .NET
language—we use Visual C# in this book. This class contains event handlers, initialization
code, utility methods and other supporting code. The file that contains this class is called
the code-behind file and provides the ASPX file’s programmatic implementation.

Software Used in This Chapter
To develop the code and GUIs in this chapter, we used Microsoft’s Visual Studio Express
2012 for Web—a free IDE designed for developing ASP.NET web apps. The full version
of Visual Studio 2012 includes the functionality of Visual Studio Express 2012 for Web,
so the instructions we present in this chapter also apply to Visual Studio 2012. See the Be-
fore You Begin section that follows the Preface for additional information on downloading
and installing the software for this chapter.

Online Chapter—Web App Development with ASP.NET: A Deeper Look
In the online Chapter 29, Web App Development with ASP.NET: A Deeper Look, we
present several additional web-app development topics, including:

• master pages to maintain a uniform look-and-feel across the pages in a web app

• creating password-protected websites with registration and login capabilities

23.1 Introduction
23.2 Web Basics
23.3 Multitier App Architecture
23.4 Your First Web App

23.4.1 Building the WebTime App
23.4.2 Examining WebTime.aspx’s Code-

Behind File
23.5 Standard Web Controls: Designing a

Form
23.6 Validation Controls
23.7 Session Tracking

23.7.1 Cookies
23.7.2 Session Tracking with

HttpSessionState

23.7.3 Options.aspx: Selecting a
Programming Language

23.7.4 Recommendations.aspx:
Displaying Recommendations Based
on Session Values

23.8 Case Study: Database-Driven
ASP.NET Guestbook

23.8.1 Building a Web Form that Displays
Data from a Database

23.8.2 Modifying the Code-Behind File for
the Guestbook App

23.9 Online Case Study: ASP.NET AJAX
23.10 Online Case Study: Password-

Protected Books Database App
23.11 Wrap-Up

Summary | Terminology | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

23.2 Web Basics 899

• using the Web Site Administration Tool to specify which parts of a website are pass-
word protected

• using ASP.NET AJAX to quickly and easily improve the user experience for your
web apps, giving them responsiveness comparable to that of desktop apps.

23.2 Web Basics
In this section, we discuss what occurs when a user requests a web page in a browser. In its
simplest form, a web page is nothing more than an HTML (HyperText Markup Language)
document (with the extension .html or .htm) that describes to a web browser the docu-
ment’s content and how to format it.

HTML documents normally contain hyperlinks that link to different pages or to other
parts of the same page. When the user clicks a hyperlink, a web server locates the requested
web page and sends it to the user’s web browser. Similarly, the user can type the address of
a web page into the browser’s address field and press Enter to view the specified page.

In this chapter, we develop web apps using visual development techniques that are
similar to those you used with Windows Forms in Chapters 14–15. To take full advantage
of web app development, you’ll also want to learn HTML5, CSSS and JavaScript—topics
that we cover in our textbook Internet & World Wide Web How to Program, 5/e. You can
learn more about this book at deitel.com/books/iw3htp5.

URIs and URLs
URIs (Uniform Resource Identifiers) identify resources on the Internet. URIs that start with
http:// are called URLs (Uniform Resource Locators). Common URLs refer to files, direc-
tories or server-side code that performs tasks such as database lookups, Internet searches
and business application processing. If you know the URL of a publicly available resource
anywhere on the web, you can enter that URL into a web browser’s address field and the
browser can access that resource.

Parts of a URL
A URL contains information that directs a browser to the resource that the user wishes to
access. Web servers make such resources available to web clients. Popular web servers include
Microsoft’s Internet Information Services (IIS), Apache’s HTTP Server and Nginx.1

Let’s examine the components of the URL

The http:// indicates that the HyperText Transfer Protocol (HTTP) should be used to
obtain the resource. HTTP is the web protocol that enables clients and servers to commu-
nicate. Next in the URL is the server’s fully qualified hostname (www.deitel.com)—the
name of the web server computer on which the resource resides. This computer is referred
to as the host, because it houses and maintains resources. The hostname www.deitel.com
is translated into an IP (Internet Protocol) address—a numerical value that uniquely
identifies the server on the Internet. A Domain Name System (DNS) server maintains a
database of hostnames and their corresponding IP addresses, and performs the translations
automatically.

1. w3techs.com/.

http://www.deitel.com/books/downloads.html

http://www.deitel.com/books/downloads.html
www.deitel.com
www.deitel.com

900 Chapter 23 Web App Development with ASP.NET

The remainder of the URL (/books/downloads.html) specifies the resource’s loca-
tion (/books) and name (downloads.html) on the web server. The location could repre-
sent an actual directory on the web server’s file system. For security reasons, however, the
location is typically a virtual directory. The web server translates the virtual directory into
a real location on the server, thus hiding the resource’s true location.

Making a Request and Receiving a Response
When given a URL, a web browser uses HTTP to retrieve the web page found at that ad-
dress. Figure 23.1 shows a web browser sending a request to a web server. Figure 23.2
shows the web server responding to that request.

23.3 Multitier App Architecture
Web-based apps are multitier apps (sometimes referred to as n-tier apps). Multitier apps
divide functionality into separate tiers (that is, logical groupings of functionality). Al-
though tiers can be located on the same computer, the tiers of web-based apps commonly
reside on separate computers for security and scalability. Figure 23.3 presents the basic ar-
chitecture of a three-tier web-based app.

Fig. 23.1 | Client requesting a resource from a web server.

Fig. 23.2 | Client receiving a response from the web server.

After it receives
the request, the
web server
searches its
system for the
resource

b)

The request is
sent from the
web client to the
web server

a)

Web server

Internet

Web client

The server
responds to the
request with
the resource's
contents

Web server

Internet

Web client

23.3 Multitier App Architecture 901

Information Tier
The bottom tier (also called the information tier) maintains the app’s data. This tier typ-
ically stores data in a relational database management system. For example, a retail store
might have a database for storing product information, such as descriptions, prices and
quantities in stock. The same database also might contain customer information, such as
user names, billing addresses and credit card numbers. This tier can contain multiple da-
tabases, which together comprise the data needed for an app.

Business Logic
The middle tier implements business logic, controller logic and presentation logic to
control interactions between the app’s clients and its data. The middle tier acts as an in-
termediary between data in the information tier and the app’s clients. The middle-tier
controller logic processes client requests (such as requests to view a product catalog) and
retrieves data from the database. The middle-tier presentation logic then processes data
from the information tier and presents the content to the client. Web apps present data to
clients as web pages.

Business logic in the middle tier enforces business rules and ensures that data is reliable
before the server app updates the database or presents the data to users. Business rules dic-
tate how clients can and cannot access app data, and how apps process data. For example,
a business rule in the middle tier of a retail store’s web-based app might ensure that all
product quantities remain positive. A client request to set a negative quantity in the bottom
tier’s product information database would be rejected by the middle tier’s business logic.

Client Tier
The top tier, or client tier, is the app’s user interface, which gathers input and displays
output. Users interact directly with the app through the user interface (typically viewed in

Fig. 23.3 | Three-tier architecture.

Web server
Middle tier

(Business logic tier)

Bottom tier
(Information tier)

Top tier
(Client tier)

Browser

XHTML

LINQ

Business logic
implemented in
ASP.NET

User interface

DBMS
Database

902 Chapter 23 Web App Development with ASP.NET

a web browser), keyboard and mouse. In response to user actions (for example, clicking a
hyperlink), the client tier interacts with the middle tier to make requests and to retrieve
data from the information tier. The client tier then displays to the user the data retrieved
from the middle tier. The client tier never directly interacts with the information tier.

23.4 Your First Web App
Our first example displays the web server’s time of day in a browser window (Fig. 23.4).
When this app executes—that is, a web browser requests the app’s web page—the web
server executes the app’s code, which gets the current time and displays it in a Label. The
web server then returns the result to the web browser that made the request, and the web
browser renders the web page containing the time. We executed this app in both the Inter-
net Explorer and Firefox web browsers to show you that the web page renders identically in
different browsers—the page should look the same in most Web browsers.

Testing the App in Your Default Web Browser
To test this app in your default web browser, perform the following steps:

1. Open Visual Studio Express For Web.

2. Select Open Web Site… from the FILE menu.

3. In the Open Web Site dialog (Fig. 23.5), ensure that File System is selected, then
navigate to this chapter’s examples, select the WebTime folder and click the Open
Button.

4. Select WebTime.aspx in the Solution Explorer, then type Ctrl + F5 to execute the
web app.

Fig. 23.4 | WebTime web app running in both Internet Explorer and Firefox.

23.4 Your First Web App 903

Testing the App in a Selected Web Browser
If you wish to execute the app in another web browser, you can copy the web page’s ad-
dress from your default browser’s address field and paste it into another browser’s address
field, or you can perform the following steps:

1. In the Solution Explorer, right click WebTime.aspx and select Browse With… to
display the Browse With dialog (Fig. 23.6).

Fig. 23.5 | Open Web Site dialog.

Fig. 23.6 | Selecting another web browser to execute the web app.

904 Chapter 23 Web App Development with ASP.NET

2. From the Browsers list, select the browser in which you’d like to test the web app
and click the Browse Button.

If the browser you wish to use is not listed, you can use the Browse With dialog to add items
to or remove items from the list of web browsers.

23.4.1 Building the WebTime App
Now that you’ve tested the app, let’s create it in Visual Studio Express For Web.

Step 1: Creating the Web Site Project
Select FILE > New Web Site... to display the New Web Site dialog (Fig. 23.7). In the left
column of this dialog, ensure that Visual C# is selected, then select ASP.NET Empty Web
Site in the middle column. At the bottom of the dialog you can specify the location and
name of the web app.

The Web location: ComboBox provides the following options:

• File System: Creates a new website for testing on your local computer. Such web-
sites execute on your local machine in IIS Express and can be accessed only by
web browsers running on the same computer. IIS Express is a version of Micro-
soft’s Internet Information Services (IIS) web server that allows you to test your
web apps locally. You can later publish your website to a production IIS web serv-
er for access via a local network or the Internet. Each example in this chapter uses
the File System option, so select it now.

• HTTP: Creates a new website on an IIS web server and uses HTTP to allow you
to put your website’s files on the server. IIS is Microsoft’s software that’s used to
run production websites. If you own a website and have your own web server, you
might use this to build a new website directly on that server computer. You must
be an Administrator on the computer running IIS to use this option.

Fig. 23.7 | Creating an ASP.NET Web Site in Visual Studio Express For Web.

23.4 Your First Web App 905

• FTP: Uses File Transfer Protocol (FTP) to allow you to put your website’s files
on the server. The server administrator must first create the website on the server
for you. FTP is commonly used by so-called “hosting providers” to allow website
owners to share a server computer that runs many websites.

Change the name of the web app from WebSite1 to WebTime, then click OK to create the
website.

Step 2: Adding a Web Form to the Website and Examining the Solution Explorer
A Web Form represents one page in a web app—we’ll often use the terms “page” and
“Web Form” interchangeably. A Web Form contains a web app’s GUI. To create the
WebTime.aspx Web Form:

1. Right click the project name in the Solution Explorer and select Add > Add New
Item... to display the Add New Item dialog (Fig. 23.8).

2. In the left column, ensure that Visual C# is selected, then select Web Form in the
middle column.

3. In the Name: TextBox, change the file name to WebTime.aspx, then click the Add
Button.

After you add the Web Form, the IDE opens it in Source view by default (Fig. 23.9).
This view displays the markup for the Web Form. As you become more familiar with
ASP.NET and building web sites in general, you might use Source view to perform high
precision adjustments to your design (in HTML and/or CSS) or to program in the
JavaScript language that executes in web browsers. For the purposes of this chapter, we’ll
keep things simple by working exclusively in Design mode. To switch to Design mode, you
can click the Design Button at the bottom of the code editor window.

Fig. 23.8 | Adding a new Web Form to the website with the Add New Item dialog.

906 Chapter 23 Web App Development with ASP.NET

The Solution Explorer
The Solution Explorer (Fig. 23.10) shows the contents of the website. We expanded the
node for WebTime.aspx to show you its code-behind file WebTime.aspx.cs. Visual Studio
Express For Web’s Solution Explorer contains a Nest Related Files button that organizes
each Web Form and its code-behind file.

If the ASPX file is not open in the IDE, you can open it in Design mode by double
clicking it in the Solution Explorer then selecting the Design tab, or by right clicking it in
the Solution Explorer and selecting View Designer. To open the code-behind file in the code
editor, you can double click it in the Solution Explorer or

• select the ASPX file in the Solution Explorer, then click the View Code () Button

• right click the ASPX file in the Solution Explorer, then select View Code

• right click the code-behind file in the Solution Explorer and select Open

The Toolbox
Figure 23.11 shows the Toolbox displayed in the IDE when the project loads. Part (a) dis-
plays the beginning of the Standard list of web controls, and part (b) displays the remain-

Fig. 23.9 | Web Form in Source view.

Fig. 23.10 | Solution Explorer window for an Empty Web Site project after adding the
Web Form WebTime.aspx.

Source mode shows only
the Web Form’s markup

Split mode allows you to
view the Web Form’s markup

and design at the same time

Design mode allows you to
build a Web Form using

similar techniques to building
a Windows Form

Nest Related Files

ASPX page represents the
app’s user interface

Code-behind file that
contains the app’s

business logic

View Code

23.4 Your First Web App 907

ing web controls and the list of other control groups. We discuss specific controls listed in
Fig. 23.11 as they’re used throughout the chapter. Many of the controls have similar or
identical names to Windows Forms controls presented earlier in the book.

The Web Forms Designer
Figure 23.12 shows the initial Web Form in Design mode. You can drag and drop controls
from the Toolbox onto the Web Form. You can also type at the current cursor location to
add so-called static text to the web page. In response to such actions, the IDE generates the
appropriate markup in the ASPX file.

Step 3: Changing the Title of the Page
Before designing the Web Form’s content, you’ll change its title to Simple Web Form Ex-
ample. This title is typically displayed in the web browser’s title bar or on the browser tab
that is displaying the page (see Fig. 23.4). It’s also used by search engines like Google and

Fig. 23.11 | Toolbox in Visual Studio Express For Web.

Fig. 23.12 | Design mode of the Web Forms Designer.

a) Expanded Standard
list of web controls

b) Remaining web
controls form the

Standard list and
collapsed lists of

other controls

Cursor’s current
location in the
Web Form’s
HTML Markup

Cursor
appears here

by default

908 Chapter 23 Web App Development with ASP.NET

Bing when they index real websites for searching. Every page should have a title. To change
the title:

1. Ensure that the ASPX file is open in Design view.

2. In the Properties window’s drop-down list, view the Web Form’s properties by
selecting DOCUMENT, which represents the Web Form. A web page is often called
a document.

3. Modify the page’s Title property by setting it to Simple Web Form Example.

Designing a Page
Designing a Web Form is similar to designing a Windows Form. To add controls to the
page, drag-and-drop them from the Toolbox onto the Web Form in Design view. The Web
Form itself and the control’s you add to the Web Form are objects that have properties,
methods and events. You can set these properties visually using the Properties window,
programmatically in the code-behind file or by editing the markup directly in the .aspx
file. You can also type text directly on a Web Form at the cursor location.

Controls and other elements are placed sequentially on a Web Form one after another
in the order in which you drag-and-drop them onto the Web Form. The cursor indicates
the insertion point in the page. If you want to position a control between existing text or
controls, you can drop the control at a specific position between existing page elements.
You can also rearrange controls with drag-and-drop actions in Design view. The positions
of controls and other elements are relative to the Web Form’s upper-left corner. This type
of layout is known as relative positioning and it allows the browser to move elements and
resize them based on the size of the browser window. Relative positioning is the default,
and we’ll use it throughout this chapter.

For precise control over the location and size of elements, you can use absolute posi-
tioning in which controls are located exactly where you drop them on the Web Form. If
you wish to use absolute positioning:

1. Select TOOLS > Options…., to display the Options dialog.

2. Expand the HTML Designer node, select the CSS Styling node and ensure that the
checkbox labeled Change positioning to absolute for controls added using Toolbox,
paste or drag and drop is selected.

Step 4: Adding Text and a Label

You’ll now add some text and a Label to the Web Form. Perform the following steps to
add the text:

1. Ensure that the Web Form is open in Design mode.

2. Type the following text at the current cursor location:

3. Select the text you just typed, then select Heading 1 from the Block Format Combo-
Box (Fig. 23.13) in the IDE’s Formatting toolbar. This formats the text as a first-
level heading that typically appears in a larger bold font. In more complex pages,
headings help you specify the relative importance of parts of the content—like
chapters in a book and sections in a chapter.

Current time on the Web server:

23.4 Your First Web App 909

4. Click to the right of the text you just typed and press the Enter key to start a new
paragraph in the page. The Web Form should now appear as in Fig. 23.14.

5. Next, drag a Label control from the Toolbox into the new paragraph or double
click the Label control in the Toolbox to insert the Label at the current cursor
position.

6. Using the Properties window, set the Label’s (ID) property to timeLabel. This
specifies the variable name that will be used to programmatically change the
Label’s Text.

7. Because, the Label’s Text will be set programmatically, delete the current value
of the Label’s Text property. When a Label does not contain text, its name is
displayed in square brackets in Design view (Fig. 23.15) as a placeholder for de-
sign and layout purposes. This text is not displayed at execution time.

Fig. 23.13 | Changing the text to Heading 1 heading.

Fig. 23.14 | WebTime.aspx after inserting text and a new paragraph.

Block Format ComboBox on the Formatting toolbar

The cursor is
positioned here after

inserting a new
paragraph by

pressing Enter

910 Chapter 23 Web App Development with ASP.NET

Step 5: Formatting the Label
Formatting in a web page is performed with CSS (Cascading Style Sheets). The details of
CSS are beyond the scope of this book. However, it’s easy to use CSS to format text and
elements in a Web Form via the tools built into Visual Studio Express For Web. In this
example, we’d like to change the Label’s background color to black, its foreground color to
yellow and make its text size larger. To format the Label, perform the following steps:

1. Click the Label in Design view to ensure that it’s selected.

2. Select VIEW > CSS Properties to display the CSS Properties window at the left side
of the IDE (Fig. 23.16).

3. Right click below Applied Rules and select New Style… to display the New Style
dialog (Fig. 23.17).

4. Type the new style’s name in the Selector: ComboBox—we chose .timeStyle

since this will be the style used to format the time that’s displayed in the page.
Styles that apply to specific elements must be named with a dot (.) preceding the
name. Such a style is called a CSS class.

5. Each item you can set in the New Style dialog is known as a CSS attribute. To
change timeLabel’s foreground color, select the Font category from the Category
list, then select the yellow color swatch for the color attribute.

6. Next, change the font-size attribute to xx-large.

Fig. 23.15 | WebTime.aspx after adding a Label.

Fig. 23.16 | CSS Properties window.

Label control
currently selected in

Design view

23.4 Your First Web App 911

7. To change timeLabel’s background color, select the Background category, then se-
lect the black color swatch for the background-color attribute.

The New Style dialog should now appear as shown in Fig. 23.18. Click the OK Button to
apply the style to the timeLabel so that it appears as shown in Fig. 23.19. Also, notice that
the Label’s CssClass property is now set to timeStyle in the Properties window.

Step 6: Adding Page Logic
Now that you’ve designed the GUI, you’ll write code in the code-behind file to obtain the
server’s time and display it on the Label. Open WebTime.aspx.cs by double clicking it in
the Solution Explorer. In this example, you’ll add an event handler to the code-behind file
to handle the Web Form’s Init event, which occurs when the page is requested by a web
browser. The event handler for this event—named Page_Init—initializes the page. The
only initialization required for this example is to set the timeLabel’s Text property to the
time on the web server computer. The code-behind file initially contains a Page_Load
event handler. To create the Page_Init event handler, simply rename Page_Load as
Page_Init. Then complete the event handler by inserting the following code in its body:

Step 7: Setting the Start Page and Running the Program
To ensure that WebTime.aspx loads when you execute this app, right click it in the Solution
Explorer and select Set As Start Page. You can now run the program in one of several ways.
At the beginning of Fig. 23.4, you learned how to view the Web Form by typing Ctrl + F5.

Fig. 23.17 | New Style dialog.

// display the server's current time in timeLabel
timeLabel.Text = DateTime.Now.ToString("hh:mm:ss");

Font category allows you to
style an element’s font

Background category allows
you to specify an element’s

background color or
background image

New style’s name

The new style will be
applied to the currently

selected element in the page

Preview of what the
style will look like

912 Chapter 23 Web App Development with ASP.NET

You can also right click an ASPX file in the Solution Explorer and select View in Browser.
Both of these techniques execute IIS Express, open your default web browser and load the
page into the browser, thus running the web app. IIS Express stops when you exit Visual
Studio Express For Web.

If problems occur when running your app, you can run it in debug mode by selecting
DEBUG > Start Debugging, by clicking the Start Debugging Button () or by typing F5 to
view the web page in a web browser with debugging enabled. You cannot debug a web app
unless debugging is explicitly enabled in the app’s Web.config file—a file that’s generated
when you create an ASP.NET web app. This file stores the app’s configuration settings.
You’ll rarely need to manually modify Web.config. The first time you select DEBUG >
Start Debugging in a project, a dialog appears and asks whether you want the IDE to
modify the Web.config file to enable debugging. After you click OK, the IDE executes the
app. You can stop debugging by selecting DEBUG > Stop Debugging.

Fig. 23.18 | New Style dialog after changing the Label’s style.

Fig. 23.19 | Design view after changing the Label’s style.

Bold category
names indicate the
categories in which

CSS attribute
values have been

changed

23.4 Your First Web App 913

Regardless of how you execute the web app, the IDE will compile the project before
it executes. In fact, ASP.NET compiles your web page whenever it changes between
HTTP requests. For example, suppose you browse the page, then modify the ASPX file or
add code to the code-behind file. When you reload the page, ASP.NET recompiles the
page on the server before returning the response to the browser. This important behavior
ensures that clients always see the latest version of the page. You can manually compile an
entire website by selecting Build Web Site from the DEBUG menu in Visual Studio Express
For Web.

23.4.2 Examining WebTime.aspx’s Code-Behind File
Figure 23.20 presents the code-behind file WebTime.aspx.cs. Line 5 begins the declara-
tion of class WebTime. A class declaration can span multiple source-code files—the separate
portions of the class declaration in each file are known as partial classes. The partial

modifier indicates that the code-behind file is part of a larger class. Like Windows Forms
apps, the rest of the class’s code is generated for you based on your visual interactions to
create the app’s GUI in Design mode. That code is stored in other source code files as par-
tial classes with the same name. The compiler assembles all the partial classes that have the
same into a single class declaration.

Line 5 indicates that WebTime inherits from class Page in namespace System.Web.UI.
This namespace contains classes and controls for building web-based apps. Class Page rep-
resents the default capabilities of each page in a web app—all pages inherit directly or indi-
rectly from this class.

Lines 8–12 define the Page_Init event handler, which initializes the page in response
to the page’s Init event. The only initialization required for this page is to set the time-
Label’s Text property to the time on the web server computer. The statement in line 11
retrieves the current time (DateTime.Now) and formats it as hh:mm:ss. For example, 9 AM
is formatted as 09:00:00, and 2:30 PM is formatted as 02:30:00. As you’ll see, variable
timeLabel represents an ASP.NET Label control. The ASP.NET controls are defined in
namespace System.Web.UI.WebControls.

1 // Fig. 23.20: WebTime.aspx.cs
2 // Code-behind file for a page that displays the web server’s time.
3 using System;
4
5 public partial class WebTime : System.Web.UI.Page
6 {
7 // initializes the contents of the page
8
9 {

10 // display the server's current time in timeLabel
11 timeLabel.Text =
12 } // end method Page_Init
13 } // end class WebTime

Fig. 23.20 | Code-behind file for a page that displays the web server’s time.

protected void Page_Init(object sender, EventArgs e)

DateTime.Now.ToString("hh:mm:ss");

914 Chapter 23 Web App Development with ASP.NET

23.5 Standard Web Controls: Designing a Form
This section introduces some of the web controls located in the Standard section of the
Toolbox (Fig. 23.11). Figure 23.21 summarizes the controls used in the next example.

A Form Gathering User Input
Figure 23.22 depicts a form for gathering user input. This example does not perform any
tasks—that is, no action occurs when the user clicks Register. As an exercise, we ask you
to provide the functionality. Here we focus on the steps for adding these controls to a Web
Form and for setting their properties. Subsequent examples demonstrate how to handle
the events of many of these controls. To execute this app:

1. Select Open Web Site… from the FILE menu.

2. In the Open Web Site dialog, ensure that File System is selected, then navigate to
this chapter’s examples, select the WebControls folder and click the Open Button.

3. Select WebControls.aspx in the Solution Explorer, then type Ctrl + F5 to execute
the web app in your default web browser.

Step 1: Creating the Web Site
To begin, follow the steps in Section 23.4.1 to create an Empty Web Site named WebCon-
trols, then add a Web Form named WebControls.aspx to the project. Set the docu-
ment’s Title property to "Web Controls Demonstration". Right click WebControls.aspx
in the Solution Explorer and select Set As Start Page to ensure that this page loads when
you execute the app.

Step 2: Adding the Images to the Project
The images used in this example are located in the images folder with this chapter’s exam-
ples. Before you can display this app’s images in the Web Form, they must be added to
your project. To add the images folder to your project:

1. Open Windows Explorer.

2. Locate and open this chapter’s examples folder (ch23).

3. Drag the images folder from Windows Explorer into Visual Studio Express For
Web’s Solution Explorer window and drop the folder on the name of your project.

The IDE will automatically copy the folder and its contents into your project.

Web control Description

TextBox Gathers user input and displays text.

Button Triggers an event when clicked.

HyperLink Displays a hyperlink.

DropDownList Displays a drop-down list of choices from which a user can select an item.

RadioButtonList A group of radio buttons.

Image Displays images (for example, PNG, GIF and JPG).

Fig. 23.21 | Commonly used web controls.

23.5 Standard Web Controls: Designing a Form 915

Step 3: Adding Text and an Image to the Form
Next, you’ll begin creating the page. Perform the following steps:

1. First create the page’s heading. At the current cursor position on the page, type
the text "Registration Form", then use the Block Format ComboBox in the IDE’s
toolbar to change the text to Heading 3 format.

2. Press Enter to start a new paragraph, then type the text "Please fill in all
fields and click the Register button.".

3. Press Enter to start a new paragraph, then double click the Image control in the
Toolbox. This control inserts an image into a web page, at the current cursor po-
sition. Set the Image’s (ID) property to userInformationImage. The ImageUrl

property specifies the location of the image to display. In the Properties window,
click the ellipsis for the ImageUrl property to display the Select Image dialog. Se-
lect the images folder under Project folders: to display the list of images. Then
select the image user.png.

4. Click OK to display the image in Design view, then click to the right of the Image
and press Enter to start a new paragraph.

Fig. 23.22 | Web Form that demonstrates web controls.

Image control

TextBox control

DropDownList control

HyperLink control

RadioButtonList control

Button control

Heading 3 paragraph

Paragraph of plain text

A table containing four
Images and four TextBoxes

916 Chapter 23 Web App Development with ASP.NET

Step 4: Adding a Table to the Form
Form elements are sometimes placed in tables for layout purposes—like the elements that
represent the first name, last name, e-mail and phone information in Fig. 23.22. Next,
you’ll create a table with two rows and two columns in Design mode.

1. Select Table > Insert Table to display the Insert Table dialog (Fig. 23.23). This di-
alog allows you to configure the table’s options.

2. Under Size, ensure that the values of Rows and Columns are both 2—these are
the default values.

3. Click OK to close the Insert Table dialog and create the table.

By default, the contents of a table cell are aligned vertically in the middle of the cell.

After creating the table, controls and text can be added to particular cells to create a
neatly organized layout. Next, add Image and TextBox controls to each the four table cells
as follows:

1. Click the table cell in the first row and first column of the table, then double click
the Image control in the Toolbox. Set its (ID) property to firstNameImage and
set its ImageUrl property to the image fname.png.

2. Next, double click the TextBox control in the Toolbox. Set its (ID) property to
firstNameTextBox. As in Windows Forms, a TextBox control allows you to ob-
tain text from the user and display text to the user.

Fig. 23.23 | Insert Table dialog.

23.5 Standard Web Controls: Designing a Form 917

3. Repeat this process in the first row and second column, but set the Image’s (ID)
property to lastNameImage and its ImageUrl property to the image lname.png,
and set the TextBox’s (ID) property to lastNameTextBox.

4. Repeat Steps 1 and 2 in the second row and first column, but set the Image’s (ID)
property to emailImage and its ImageUrl property to the image email.png, and
set the TextBox’s (ID) property to emailTextBox.

5. Repeat Steps 1 and 2 in the second row and second column, but set the Image’s
(ID) property to phoneImage and its ImageUrl property to the image phone.png,
and set the TextBox’s (ID) property to phoneTextBox.

Step 5: Creating the Publications Section of the Page
This section contains an Image, some text, a DropDownList control and a HyperLink con-
trol. Perform the following steps to create this section:

1. Click below the table, then use the techniques you’ve already learned in this sec-
tion to add an Image named publicationsImage that displays the publica-

tions.png image.

2. Click to the right of the Image, then press Enter and type the text "Which book
would you like information about?" in the new paragraph.

3. Hold the Shift key and press Enter to create a new line in the current paragraph,
then double click the DropDownList control in the Toolbox. Set its (ID) property
to booksDropDownList. This control is similar to the Windows Forms ComboBox
control, but doesn’t allow users to type text. When a user clicks the drop-down
list, it expands and displays a list from which the user can make a selection.

4. You can add items to the DropDownList using the ListItem Collection Editor by
clicking the ellipsis next to the DropDownList’s Items property in the Properties
window, or by using the DropDownList Tasks smart-tag menu. To open this menu,
click the small arrowhead that appears in the upper-right corner of the control in
Design mode (Fig. 23.24). Visual Studio Express 2012 for Web displays smart-tag
menus for many ASP.NET controls to facilitate common tasks. Clicking Edit
Items... in the DropDownList Tasks menu opens the ListItem Collection Editor,
which allows you to add ListItem elements to the DropDownList. Add items for
"Visual Basic 2012 How to Program", "Visual C# 2012 How to Program", "Java

Fig. 23.24 | DropDownList Tasks smart-tag menu.

918 Chapter 23 Web App Development with ASP.NET

How to Program" and "C++ How to Program" by clicking the Add Button four times.
For each item, select it, then set its Text property to one of the four book titles.

5. Click to the right of the DropDownList and press Enter to start a new paragraph,
then double click the HyperLink control in the Toolbox to add a hyperlink to the
web page. Set its (ID) property to booksHyperLink and its Text property to "Click
here to view more information about our books". Set the NavigateUrl property
to http://www.deitel.com. This specifies the resource or web page that will be re-
quested when the user clicks the HyperLink. Setting the Target property to _blank
specifies that the requested web page should open in a new tab or browser window.
By default, HyperLink controls cause pages to open in the same browser window.

Step 6: Completing the Page
Next you’ll create the Operating System section of the page and the Register Button. This
section contains a RadioButtonList control, which provides a series of radio buttons from
which the user can select only one. The RadioButtonList Tasks smart-tag menu provides
an Edit Items… link to open the ListItem Collection Editor so that you can create the items
in the list. Perform the following steps:

1. Click to the right of the HyperLink control and press Enter to create a new para-
graph, then add an Image named osImage that displays the os.png image.

2. Click to the right of the Image and press Enter to create a new paragraph, then
add a RadioButtonList. Set its (ID) property to osRadioButtonList. Use the
ListItem Collection Editor to add the items shown in Fig. 23.22.

3. Finally, click to the right of the RadioButtonList and press Enter to create a new
paragraph, then add a Button. A Button web control represents a button that
triggers an action when clicked. Set its (ID) property to registerButton and its
Text property to Register. As stated earlier, clicking the Register button in this
example does not do anything.

You can now execute the app (Ctrl + F5) to see the Web Form in your browser.

23.6 Validation Controls
This section introduces a different type of web control, called a validation control or valida-
tor, which determines whether the data in another web control is in the proper format. For
example, validators can determine whether a user has provided information in a required
field or whether a zip-code field contains exactly five digits. Validators provide a mechanism
for validating user input on the client and the server. When the page is sent to the client, the
validator is converted into JavaScript that performs the validation in the client web browser.
JavaScript is a scripting language that enhances the functionality of web pages and is typically
executed on the client. Unfortunately, some client browsers might not support scripting or
the user might disable it. For this reason, you should always perform validation on the server.
ASP.NET validation controls can function on the client, on the server or both.

Validating Input in a Web Form
The Web Form in Fig. 23.25 prompts the user to enter a name, e-mail address and phone
number. A website could use a form like this to collect contact information from visitors.

http://www.deitel.com

23.6 Validation Controls 919

After the user enters any data, but before the data is sent to the web server, validators en-
sure that the user entered a value in each field and that the e-mail address and phone-num-
ber values are in an acceptable format. In this example, (555) 123-4567, 555-123-4567
and 123-4567 are all considered valid phone numbers. Once the data is submitted, the
web server responds by displaying a message that repeats the submitted information. A real
business app would typically store the submitted data in a database or in a file on the serv-
er. We simply send the data back to the client to demonstrate that the server received the
data. To execute this app:

1. Select Open Web Site… from the FILE menu.

2. In the Open Web Site dialog, ensure that File System is selected, then navigate to
this chapter’s examples, select the Validation folder and click the Open Button.

3. Select Validation.aspx in the Solution Explorer, then type Ctrl + F5 to execute
the web app in your default web browser.

In the sample output:

• Fig. 23.25(a) shows the initial Web Form.

• Fig. 23.25(b) shows the result of submitting the form before typing any data in
the TextBoxes.

• Fig. 23.25(c) shows the results after entering data in each TextBox, but specifying
an invalid e-mail address and invalid phone number.

• Fig. 23.25(d) shows the results after entering valid values for all three TextBoxes
and submitting the form.

Step 1: Creating the Web Site
To begin, follow the steps in Section 23.4.1 to create an Empty Web Site named Valida-
tion, then add a Web Form named Validation.aspx to the project. Set the document’s
Title property to "Demonstrating Validation Controls". To ensure that Valida-
tion.aspx loads when you execute this app, right click it in the Solution Explorer and select
Set As Start Page.

Fig. 23.25 | Validators in a Web Form that retrieves user contact information. (Part 1 of 2.)

a) Initial Web Form

920 Chapter 23 Web App Development with ASP.NET

Fig. 23.25 | Validators in a Web Form that retrieves user contact information. (Part 2 of 2.)

b) Web Form after the user presses the
Submit Button without having entered

any data in the TextBoxes; each
TextBox is followed by an error message
that was displayed by a validation control

RequiredFieldValidator
controls

c) Web Form after the user enters a name,
an invalid e-mail address and an invalid
phone number in the TextBoxes, then

presses the Submit Button; the
validation controls display error messages

in response to the invalid e-mail and
phone number values

RegularExpressionValidator
controls

d) The Web Form after the user enters
valid values for all three TextBoxes and

presses the Submit Button

outputLabel is displayed once the
user provides valid form input and

submits the form

23.6 Validation Controls 921

Step 2: Creating the GUI
To create the page, perform the following steps:

1. Type "Please fill in all the fields in the following form:", then use the
Block Format ComboBox in the IDE’s toolbar to change the text to Heading 3 for-
mat and press Enter to create a new paragraph.

2. Insert a three-row and two-column table. You’ll add elements to the table mo-
mentarily.

3. Click below the table and add a Button. Set its (ID) property to submitButton
and its Text property to Submit. By default, a Button control in a Web Form
sends the contents of the form back to the server for processing. Select the Button
then use the Block Format ComboBox in the IDE’s toolbar to wrap the Button in
a Paragraph format—this places additional space above and below the Button.

4. Click to the right of the Button, then press Enter to create a new paragraph. Add
a Label. Set its (ID) property to outputLabel and clear its Text property—you’ll
set it programmatically when the user clicks the submitButton. Set the outputLa-
bel’s Visible property to false, so the Label does not appear in the client’s
browser when the page loads for the first time. You’ll programmatically display
this Label after the user submits valid data.

Next you’ll add text and controls to the table you created in Step 2 above. Perform the
following steps:

1. In the left column, type the text "Name:" in the first row, "E-mail:" in the sec-
ond row and "Phone:" in the third row.

2. In the right column of the first row, add a TextBox and set its (ID) property to
nameTextBox.

3. In the right column of the second row, add a TextBox and set its (ID) property
to emailTextBox. Set its TextMode property to Email—this produces an HTML5
e-mail input field when the web page is rendered in the client web browser. Click
to the right of the TextBox and type the text "email@domain.com" to show an ex-
ample of what the user should enter in that TextBox.

4. In the right column of the third row, add a TextBox and set its (ID) property to
phoneTextBox. Set its TextMode property to Phone—this produces an HTML5
phone input field when the web page is rendered in the client web browser. Click
to the right of the TextBox and type the text "(555) 555-1234" to show an ex-
ample of what the user should enter in that TextBox.

Step 3: Using RequiredFieldValidator Controls
We use three RequiredFieldValidator controls (found in the Validation section of the
Toolbox) to ensure that the name, e-mail address and phone number TextBoxes are not
empty when the form is submitted. A RequiredFieldValidator makes an input control a
required field. If such a field is empty, validation fails. Add a RequiredFieldValidator as
follows:

1. Click to the right of the nameTextBox in the table and press Enter to move to the
next line.

922 Chapter 23 Web App Development with ASP.NET

2. Add a RequiredFieldValidator, set its (ID) to nameRequiredFieldValidator
and set the ForeColor property to Red.

3. Set the validator’s ControlToValidate property to nameTextBox to indicate that
this validator verifies the nameTextBox’s contents.

4. Set the validator’s ErrorMessage property to "Please enter your name". This is
displayed on the Web Form only if the validation fails.

5. Set the validator’s Display property to Dynamic, so the validator occupies space
on the Web Form only when validation fails. When this occurs, space is allocated
dynamically, causing the controls below the validator to shift downward to ac-
commodate the ErrorMessage, as seen in Fig. 23.25(a)–(c).

Repeat these steps to add two more RequiredFieldValidators in the second and third
rows of the table. Set their (ID) properties to emailRequiredFieldValidator and phone-
RequiredFieldValidator, respectively, and set their ErrorMessage properties to "Please
enter your email address" and "Please enter your phone number", respectively.

Step 4: Using RegularExpressionValidator Controls
This example also uses two RegularExpressionValidator controls to ensure that the e-
mail address and phone number entered by the user are in a valid format. Visual Studio
Express 2012 for Web provides several predefined regular expressions that you can simply
select to take advantage of this powerful validation control. Add a RegularExpression-
Validator as follows:

1. Click to the right of the emailRequiredFieldValidator in the second row of the
table and add a RegularExpressionValidator, then set its (ID) to emailRegu-
larExpressionValidator and its ForeColor property to Red.

2. Set the ControlToValidate property to emailTextBox to indicate that this vali-
dator verifies the emailTextBox’s contents.

3. Set the validator’s ErrorMessage property to "Please enter an e-mail address
in a valid format".

4. Set the validator’s Display property to Dynamic, so the validator occupies space
on the Web Form only when validation fails.

Repeat the preceding steps to add another RegularExpressionValidator in the third row
of the table. Set its (ID) property to phoneRegularExpressionValidator and its Er-
rorMessage property to "Please enter a phone number in a valid format", respectively.

A RegularExpressionValidator’s ValidationExpression property specifies the reg-
ular expression that validates the ControlToValidate’s contents. Clicking the ellipsis next
to property ValidationExpression in the Properties window displays the Regular Expres-
sion Editor dialog, which contains a list of Standard expressions for phone numbers, zip
codes and other formatted information. For the emailRegularExpressionValidator, we
selected the standard expression Internet e-mail address. If the user enters text in the
emailTextBox that does not have the correct format and either clicks in a different text
box or attempts to submit the form, the ErrorMessage text is displayed in red.

For the phoneRegularExpressionValidator, we selected U.S. phone number to
ensure that a phone number contains an optional three-digit area code either in paren-

23.6 Validation Controls 923

theses and followed by an optional space or without parentheses and followed by a
required hyphen. After an optional area code, a phone number must contain three digits,
a hyphen and another four digits. For example, (555) 123-4567, 555-123-4567 and 123-
4567 are all valid phone numbers.

Submitting the Web Form’s Contents to the Server
If all five validators are successful (that is, each TextBox is filled in, and the e-mail address
and phone number provided are valid), clicking the Submit button sends the form’s data
to the server. As shown in Fig. 23.25(d), the server then responds by displaying the sub-
mitted data in the outputLabel.

Examining the Code-Behind File for a Web Form That Receives User Input
Figure 23.26 shows the code-behind file for this app. Notice that this code-behind file
does not contain any implementation related to the validators. We’ll say more about this
soon. In this example, we respond to the page’s Load event to process the data submitted
by the user. Like the Init event, the Load event occurs each time the page loads into a web
browser—the difference is that on a postback you cannot access the posted data in the con-
trols from the Init handler. The event handler for this event is Page_Load (lines 8–33).
The event handler for the Load event is created for you when you add a new Web Form.
To complete the event handler, insert the code from Fig. 23.26.

1 // Fig. 23.26: Validation.aspx.cs
2 // Code-behind file for the form demonstrating validation controls.
3 using System;
4
5 public partial class Validation : System.Web.UI.Page
6 {
7 // Page_Load event handler executes when the page is loaded
8 protected void Page_Load(object sender, EventArgs e)
9 {

10 // disable unobtrusive validation
11
12
13
14 // if this is not the first time the page is loading
15 // (i.e., the user has already submitted form data)
16 if ()
17 {
18
19
20 // if the form is valid
21 if ()
22 {
23 // retrieve the values submitted by the user
24 string name = nameTextBox.Text;
25 string email = emailTextBox.Text;
26 string phone = phoneTextBox.Text;
27

Fig. 23.26 | Code-behind file for the form demonstrating validation controls. (Part 1 of 2.)

UnobtrusiveValidationMode =
System.Web.UI.UnobtrusiveValidationMode.None;

IsPostBack

Validate(); // validate the form

IsValid

924 Chapter 23 Web App Development with ASP.NET

ASP.NET 4.5 Unobtrusive Validation
Prior to ASP.NET 4.5, when you used the validation controls presented in this section,
ASP.NET would embed substantial amounts of JavaScript code in a web page to perform
the work of the validation controls in the client web browser. ASP.NET 4.5 now uses
unobtrusive validation, which significantly reduces the amount of JavaScript that gets em-
bedded into the web page—this, in turn, can improve the performance of your website by
making pages load faster. When you create an ASP.NET Web Forms website, everything
you need for unobtrusive validation is normally configured for you—unless you create an
ASP.NET Empty Web Site, as we’ve done for the examples in this chapter so far. To enable
this app to execute correctly in the web browser, lines 11–12 disable unobtrusive valida-
tion. In the online Chapter 29, Web App Development with ASP.NET: A Deeper Look,
we’ll create a website in which unobtrusive validation is properly enabled.

Differentiating Between the First Request to a Page and a Postback
Web programmers using ASP.NET often design their web pages so that the current page
reloads when the user submits the form; this enables the program to receive input, process
it as necessary and display the results in the same page when it’s loaded the second time.
These pages usually contain a form that, when submitted, sends the values of all the con-
trols to the server and causes the current page to be requested again. This event is known
as a postback. Line 16 uses the IsPostBack property of class Page to determine whether
the page is being loaded due to a postback. The first time that the web page is requested,
IsPostBack is false, and the page displays only the form for user input. When the post-
back occurs (from the user clicking Submit), IsPostBack is true.

Server-Side Web Form Validation
Server-side Web Form validation must be implemented programmatically. Line 18 calls the
current Page’s Validate method to validate the information in the request. This validates
the information as specified by the validation controls in the Web Form. Line 21 uses the
IsValid property of class Page to check whether the validation succeeded. If this property
is set to true (that is, validation succeeded and the Web Form is valid), then we display
the Web Form’s information. Otherwise, the web page loads without any changes, except
that any validator that failed now displays its ErrorMessage.

28 // show the the submitted values
29 outputLabel.Text = "Thank you for your submission
" +
30 "We received the following information:
";
31 outputLabel.Text +=
32 String.Format("Name: {0}{1}E-mail:{2}{1}Phone:{3}",
33 name, "
", email, phone);
34 outputLabel.Visible = true; // display the output message
35 } // end if
36 } // end if
37 } // end method Page_Load
38 } // end class Validation

Fig. 23.26 | Code-behind file for the form demonstrating validation controls. (Part 2 of 2.)

23.7 Session Tracking 925

Processing the Data Entered by the User
Lines 24–26 retrieve the values of nameTextBox, emailTextBox and phoneTextBox. When
data is posted to the web server, the data that the user entered is accessible to the web app
through the web controls’ properties. Next, lines 29–33 set outputLabel’s Text to display
a message that includes the name, e-mail and phone information that was submitted to the
server. In lines 29, 30 and 33, notice the use of
 rather than \n to start new lines in
the outputLabel—
 is the markup for a line break in a web page. Line 34 sets the
outputLabel’s Visible property to true, so the user can see the thank-you message and
submitted data when the page reloads in the client web browser.

23.7 Session Tracking
Originally, critics accused the Internet and e-businesses of failing to provide the custom-
ized service typically experienced in “brick-and-mortar” stores. To address this problem,
businesses established mechanisms by which they could personalize users’ browsing expe-
riences, tailoring content to individual users. Businesses can achieve this level of service by
tracking each customer’s movement through the Internet and combining the collected
data with information provided by the consumer, including billing information, personal
preferences, interests and hobbies.

Personalization
Personalization makes it possible for businesses to communicate effectively with their cus-
tomers and also improves users’ ability to locate desired products and services. Companies
that provide content of particular interest to users can establish relationships with custom-
ers and build on those relationships over time. Furthermore, by targeting consumers with
personal offers, recommendations, advertisements, promotions and services, businesses
create customer loyalty. Websites can use sophisticated technology to allow visitors to cus-
tomize home pages to suit their individual needs and preferences. Similarly, online shop-
ping sites often store personal information for customers, tailoring notifications and
special offers to their interests. Such services encourage customers to visit sites more fre-
quently and make purchases more regularly.

Privacy
A trade-off exists between personalized business service and protection of privacy. Some
consumers embrace tailored content, but others fear the possible adverse consequences if
the info they provide to businesses is released or collected by tracking technologies. Con-
sumers and privacy advocates ask: What if the business to which we give personal data sells
or gives that information to other organizations without our knowledge? What if we do
not want our actions on the Internet—a supposedly anonymous medium—to be tracked
and recorded by unknown parties? What if unauthorized parties gain access to sensitive
private data, such as credit-card numbers or medical history? These are questions that must
be addressed by programmers, consumers, businesses and lawmakers alike.

Recognizing Clients
To provide personalized services to consumers, businesses must be able to recognize clients
when they request information from a site. As we’ve discussed, the request–response sys-
tem on which the web operates is facilitated by HTTP. Unfortunately, HTTP is a stateless

926 Chapter 23 Web App Development with ASP.NET

protocol—it does not provide information that would enable web servers to maintain state
information regarding particular clients. This means that web servers cannot determine
whether a request comes from a particular client or whether the same or different clients
generate a series of requests.

To circumvent this problem, sites can provide mechanisms by which they identify indi-
vidual clients. A session represents a unique client on a website. If the client leaves a site and
then returns later, the client will still be recognized as the same user. When the user closes
the browser, the session typically ends. To help the server distinguish among clients, each
client must identify itself to the server. Tracking individual clients is known as session
tracking. One popular session-tracking technique uses cookies (discussed in Section 23.7.1);
another uses ASP.NET’s HttpSessionState object (used in Section 23.7.2). Additional ses-
sion-tracking techniques are beyond this book’s scope.

23.7.1 Cookies
Cookies provide you with a tool for personalizing web pages. A cookie is a piece of data
stored by web browsers in a small text file on the user’s computer. A cookie maintains in-
formation about the client during and between browser sessions. The first time a user visits
the website, the user’s computer might receive a cookie from the server; this cookie is then
reactivated each time the user revisits that site. The collected information is intended to
be an anonymous record containing data that’s used to personalize the user’s future visits
to the site. For example, cookies in a shopping app might store unique identifiers for users.
When a user adds items to an online shopping cart or performs another task resulting in
a request to the web server, the server receives a cookie containing the user’s unique iden-
tifier. The server then uses the unique identifier to locate the shopping cart and perform
any necessary processing.

In addition to identifying users, cookies also can indicate users’ shopping preferences.
When a Web Form receives a request from a client, the Web Form can examine the
cookie(s) it sent to the client during previous communications, identify the user’s prefer-
ences and immediately display products of interest to the client.

Every HTTP-based interaction between a client and a server includes a header con-
taining information either about the request (when the communication is from the client
to the server) or about the response (when the communication is from the server to the
client). When a Web Form receives a request, the header includes information such as the
request type and any cookies that have been sent previously from the server to be stored
on the client machine. When the server formulates its response, the header information
contains any cookies the server wants to store on the client computer and other informa-
tion, such as the type of data in the response.

The expiration date of a cookie determines how long the cookie remains on the client’s
computer. If you do not set an expiration date for a cookie, the web browser maintains the
cookie for the duration of the browsing session. Otherwise, the web browser maintains the
cookie until the expiration date occurs. Cookies are deleted when they expire.

Portability Tip 23.1
Users may disable cookies in their web browsers to help ensure their privacy. Such users
will experience difficulty using web apps that depend on cookies to maintain state infor-
mation.

23.7 Session Tracking 927

23.7.2 Session Tracking with HttpSessionState

The next web app demonstrates session tracking using class HttpSessionState. When you
execute this app, the Options.aspx page (Fig. 23.27(a)), which is the app’s Start Page, al-
lows the user to select a programming language from a group of radio buttons. [Note: You
might need to right click Options.aspx in the Solution Explorer and select Set As Start Page
before running this app.] When the user clicks Submit, the selection is sent to the web server
for processing. The web server uses an HttpSessionState object to store the chosen lan-
guage and the ISBN number for one of our books on that topic. Each user that visits the site
has a unique HttpSessionState object, so the selections made by one user are maintained
separately from all other users. After storing the selection, the server returns the page to the
browser (Fig. 23.27(b)) and displays the user’s selection and some information about the us-
er’s unique session (which we show just for demonstration purposes). The page also includes
links that allow the user to choose between selecting another programming language or view-
ing the Recommendations.aspx page (Fig. 23.27(e)), which lists recommended books per-
taining to the programming language(s) that the user selected previously. If the user clicks
the link for book recommendations, the information stored in the user’s unique HttpSes-
sionState object is read and used to form the list of recommendations. To test this app:

1. Select Open Web Site… from the FILE menu.

2. In the Open Web Site dialog, ensure that File System is selected, then navigate to
this chapter’s examples, select the Sessions folder and click the Open Button.

3. Select Options.aspx in the Solution Explorer, then type Ctrl + F5 to execute the
web app in your default web browser.

Fig. 23.27 | ASPX file that presents a list of programming languages. (Part 1 of 2.)

a) User selects a language from
the Options.aspx page,

then presses Submit to send
the selection to the server

b) Options.aspx page is
updated to hide the controls for

selecting a language and to
display the user’s selection; the

user clicks the hyperlink to
return to the list of languages

and make another selection

928 Chapter 23 Web App Development with ASP.NET

Creating the Web Site
To begin, follow the steps in Section 23.4.1 to create an Empty Web Site named Sessions,
then add two Web Forms named Options.aspx and Recommendations.aspx to the proj-
ect. Set the Options.aspx document’s Title property to "Sessions" and the Recommen-
dations.aspx document’s Title property to "Book Recommendations". To ensure that
Options.aspx is the first page to load for this app, right click it in the Solution Explorer
and select Set As Start Page.

23.7.3 Options.aspx: Selecting a Programming Language
The Options.aspx page Fig. 23.27(a) contains the following controls arranged vertically:

1. A Label with its (ID) property set to promptLabel and its Text property set to
"Select a programming language:". We used the techniques shown in Step 5 of
Section 23.4.1 to create a CSS style for this label named .labelStyle, and set the
style’s font-size attribute to large and the font-weight attribute to bold.

Fig. 23.27 | ASPX file that presents a list of programming languages. (Part 2 of 2.)

c) User selects another
language from the

Options.aspx page, then
presses Submit to send the

selection to the server

d) Options.aspx page is
updated to hide the controls for

selecting a language and to
display the user’s selection; the
user clicks the hyperlink to get a

list of book recommendations

e) Recommendations.aspx
displays the list of

recommended books based on
the user’s selections

23.7 Session Tracking 929

2. The user selects a programming language by clicking one of the radio buttons in a
RadioButtonList. Each radio button has a Text property and a Value property.
The Text property is displayed next to the radio button and the Value property rep-
resents a value that’s sent to the server when the user selects that radio button and
submits the form. In this example, we’ll use the Value property to represent the
ISBN for the recommended book. Create a RadioButtonList with its (ID) prop-
erty set to languageList. Use the ListItem Collection Editor to add five radio but-
tons with their Text properties set to Visual Basic, Visual C#, C, C++ and Java,
and their Value properties set to 0-13-340695-4, 0-13-337933-7, 0-13-299044-X,
0-13-337871-3 and 0-13-294094-9, respectively.

3. A Button with its (ID) property set to submitButton and its Text property set to
Submit. In this example, we’ll handle this Button’s Click event. You can create
its event handler by double clicking the Button in Design view.

4. A Label with its (ID) property set to responseLabel and its Text property set to
"Welcome to Sessions!". This Label should be placed immediately to the right
of the Button so that the Label appears at the top of the page when we hide the
preceding controls on the page. Reuse the CSS style you created in Step 1 by set-
ting this Label’s CssClass property to labelStyle.

5. Two more Labels with their (ID) properties set to idLabel and timeoutLabel,
respectively. Clear the text in each Label’s Text property—you’ll set these pro-
grammatically with information about the current user’s session.

6. A HyperLink with its (ID) property set to languageLink and its Text property
set to "Click here to choose another language". Set its NavigateUrl property
by clicking the ellipsis next to the property in the Properties window and selecting
Options.aspx from the Select URL dialog.

7. A HyperLink with its (ID) property set to recommendationsLink and its Text
property set to "Click here to get book recommendations". Set its NavigateUrl
property by clicking the ellipsis next to the property in the Properties window and
selecting Recommendations.aspx from the Select URL dialog.

8. Initially, the controls in Steps 4–7 will not be displayed, so set each control’s Vis-
ible property to false.

Session Property of a Page

Every ASP.NET Web app includes a user-specific HttpSessionState object, which is acces-
sible through property Session of class Page. Throughout this section, we use this property
to manipulate the current user’s HttpSessionState object. When the user first requests a
page in a Web app, a unique HttpSessionState object is created by ASP.NET and assigned
to the Page’s Session property. The same object is also available to the app’s other pages.

Code-Behind File for Options.aspx
Fig. 23.28 presents the code-behind file for the Options.aspx page. When this page is re-
quested, the Page_Load event handler (lines 10–40) executes before the response is sent to
the client. Since the first request to a page is not a postback, the code in lines 16–38 does
not execute the first time the page loads.

930 Chapter 23 Web App Development with ASP.NET

1 // Fig. 23.28: Options.aspx.cs
2 // Processes user's selection of a programming language by displaying
3 // links and writing information in an HttpSessionState object.
4 using System;
5
6 public partial class Options : System.Web.UI.Page
7 {
8 // if postback, hide form and display links to make additional
9 // selections or view recommendations

10 protected void Page_Load(object sender, EventArgs e)
11 {
12 if (IsPostBack)
13 {
14 // user has submitted information, so display message
15 // and appropriate hyperlinks
16 responseLabel.Visible = true;
17 idLabel.Visible = true;
18 timeoutLabel.Visible = true;
19 languageLink.Visible = true;
20 recommendationsLink.Visible = true;
21
22 // hide other controls used to make language selection
23 promptLabel.Visible = false;
24 languageList.Visible = false;
25 submitButton.Visible = false;
26
27 // if the user made a selection, display it in responseLabel
28 if (languageList.SelectedItem != null)
29 responseLabel.Text += " You selected " +
30 languageList.SelectedItem.Text;
31 else

32 responseLabel.Text += " You did not select a language.";
33
34
35
36
37
38
39 } // end if
40 } // end method Page_Load
41
42 // record the user's selection in the Session
43 protected void submitButton_Click(object sender, EventArgs e)
44 {
45 // if the user made a selection
46 if (languageList.SelectedItem != null)
47
48
49
50 } // end method submitButton_Click
51 } // end class Options

Fig. 23.28 | Process user's selection of a programming language by displaying links and writing
information in an HttpSessionState object.

// display session ID
idLabel.Text = "Your unique session ID is: " + Session.SessionID;

// display the timeout
timeoutLabel.Text = "Timeout: " + Session.Timeout + " minutes.";

// add name–value pair to Session
Session.Add(languageList.SelectedItem.Text,

languageList.SelectedItem.Value);

23.7 Session Tracking 931

Postback Processing
When the user presses Submit, a postback occurs. The form is submitted to the server and
Page_Load executes. Lines 16–20 display the controls shown in Fig. 23.27(b) and lines
23–25 hide the controls shown in Fig. 23.27(a). Next, lines 28–32 ensure that the user
selected a language and, if so, display a message in the responseLabel indicating the se-
lection. Otherwise, the message "You did not select a language" is displayed.

The ASP.NET app contains information about the HttpSessionState object (prop-
erty Session of the Page object) for the current client. The object’s SessionID property
(displayed in line 35) contains the unique session ID—a sequence of random letters and
numbers. The first time a client connects to the web server, a unique session ID is created
for that client and a temporary cookie is written to the client so the server can identify the
client on subsequent requests. When the client makes additional requests, the client’s ses-
sion ID from that temporary cookie is compared with the session IDs stored in the web
server’s memory to retrieve the client’s HttpSessionState object. (Since users can disable
cookies in their browsers, you can also use cookieless sessions. For more information, see
msdn.microsoft.com/en-us/library/aa479314.aspx.) HttpSessionState property
Timeout (displayed in line 38) specifies the maximum amount of time that an Http-

SessionState object can be inactive before it’s discarded. By default, if the user does not
interact with this web app for 20 minutes, the HttpSessionState object is discarded by
the server and a new one will be created if the user interacts with the app again.
Figure 23.29 lists some common HttpSessionState properties.

Method submitButton_Click

We store the user’s selection in an HttpSessionState object when the user clicks the Submit
Button. The submitButton_Click event handler (lines 43–50) adds a key–value pair to the
HttpSessionState object for the current user, specifying the language chosen and the ISBN
number for a book on that language. The HttpSessionState object is a dictionary—a data
structure that stores key–value pairs. A program uses the key to store and retrieve the asso-
ciated value in the dictionary. We covered dictionaries in Chapter 21.

The key–value pairs in an HttpSessionState object are often referred to as session
items. They’re placed in an HttpSessionState object by calling its Add method. If the user
made a selection (line 46), lines 48–49 get the selection and its corresponding value from

Properties Description

Count Specifies the number of key–value pairs in the Session object.

IsNewSession Indicates whether this is a new session (that is, whether the session was
created during loading of this page).

Keys Returns a collection containing the Session object’s keys.

SessionID Returns the session’s unique ID.

Timeout Specifies the maximum number of minutes during which a session can
be inactive (that is, no requests are made) before the session expires. By
default, this property is set to 20 minutes.

Fig. 23.29 | HttpSessionState properties.

932 Chapter 23 Web App Development with ASP.NET

the languageList by accessing its SelectedItem’s Text and Value properties, respec-
tively, then call HttpSessionState method Add to add this name–value pair as a session
item in the HttpSessionState object (Session).

If the app adds a session item that has the same name as an item previously stored in
the HttpSessionState object, the session item is replaced—session item names must be
unique. Another common syntax for placing a session item in the HttpSessionState
object is Session[Name] = Value. For example, we could have replaced lines 48–49 with

23.7.4 Recommendations.aspx: Displaying Recommendations Based
on Session Values
After the postback of Options.aspx, the user may request book recommendations. The
book-recommendations hyperlink forwards the user to the page Recommendations.aspx
(Fig. 23.27(e)) to display the recommendations based on the user’s language selections.
The page contains the following controls arranged vertically:

1. A Labelwith its (ID) property set to recommendationsLabel and its Text property
set to "Recommendations". We created a CSS style for this label named .label-

Style, and set the font-size attribute to x-large and the font-weight attribute
to bold. (See Step 5 in Section 23.4.1 for information on creating a CSS style.)

2. A ListBox with its (ID) property set to booksListBox. We created a CSS style
for this ListBox named .listBoxStyle. In the Position category, we set the
width attribute to 450px and the height attribute to 125px. The px indicates that
the measurement is in pixels.

3. A HyperLink with its (ID) property set to languageLink and its Text property
set to "Click here to choose another language". Set its NavigateUrl property
by clicking the ellipsis next to the property in the Properties window and selecting
Options.aspx from the Select URL dialog. When the user clicks this link, the Op-
tions.aspx page will be reloaded. Requesting the page in this manner is not con-
sidered a postback, so the original form in Fig. 23.27(a) will be displayed.

Code-Behind File for Recommendations.aspx
Figure 23.30 presents the code-behind file for Recommendations.aspx. Event handler
Page_Init (lines 8–28) retrieves the session information. If a user has not selected a lan-

Session[languageList.SelectedItem.Text] =
languageList.SelectedItem.Value

Software Engineering Observation 23.1
A Web Form should not use instance variables to maintain client state information,
because each new request or postback is handled by a new instance of the page. Instead,
maintain client state information in HttpSessionState objects, because such objects are
specific to each client.

Software Engineering Observation 23.2
A benefit of using HttpSessionState objects (rather than cookies) is that they can store
any type of object (not just Strings) as attribute values. This provides you with increased
flexibility in determining the type of state information to maintain for clients.

23.8 Case Study: Database-Driven ASP.NET Guestbook 933

guage in the Options.aspx page, the HttpSessionState object’s Count property will be 0
(line 11). This property provides the number of session items contained in a HttpSes-
sionState object. If the Count is 0, then we display the text No Recommendations (line
22), hide the ListBox (line 23) and update the Text of the HyperLink back to Op-

tions.aspx (line 26).

If the user chose at least one language, the loop in lines 14–16 iterates through the
HttpSessionState object’s keys (line 14) by accessing the HttpSessionState’s Keys

property, which returns a collection containing all the keys in the session. Lines 15–16
concatenate the keyName, the String " How to Program. ISBN#: " and the key’s corre-
sponding value, which is returned by Session[keyName]. This String is the recommen-
dation that’s added to the ListBox.

23.8 Case Study: Database-Driven ASP.NET Guestbook
Many websites allow users to provide feedback about the website in a guestbook. Typical-
ly, users click a link on the website’s home page to request the guestbook page. This page
usually consists of a form that contains fields for the user’s name, e-mail address, message/

1 // Fig. 23.30: Recommendations.aspx.cs
2 // Creates book recommendations based on a Session object.
3 using System;
4
5 public partial class Recommendations : System.Web.UI.Page
6 {
7 // read Session items and populate ListBox with recommendations
8 protected void Page_Init(object sender, EventArgs e)
9 {

10 // determine whether Session contains any information
11 if (!= 0)
12 {
13
14
15
16
17 } // end if
18 else

19 {
20 // if there are no session items, no language was chosen, so
21 // display appropriate message and clear and hide booksListBox
22 recommendationsLabel.Text = "No Recommendations";
23 booksListBox.Visible = false;
24
25 // modify languageLink because no language was selected
26 languageLink.Text = "Click here to choose a language";
27 } // end else
28 } // end method Page_Init
29 } // end class Recommendations

Fig. 23.30 | Session data used to provide book recommendations to the user.

Session.Count

// display Session's name-value pairs
foreach (string keyName in Session.Keys)

booksListBox.Items.Add(keyName +
" How to Program. ISBN#: " + Session[keyName]);

934 Chapter 23 Web App Development with ASP.NET

feedback and so on. Data submitted on the guestbook form is then stored in a database
located on the server.

In this section, we create a guestbook Web Form app. The GUI (Fig. 23.31) contains
a GridView data control, which displays all the entries in the guestbook in tabular format.
This control is located in the Toolbox’s Data section. We explain how to create and con-
figure this data control shortly. The GridView displays abc in Design mode to indicate data
that will be retrieved from a data source at runtime. You’ll learn how to create and con-
figure the GridView shortly.

The Guestbook Database
The app stores the guestbook information in a SQL Server database called Guestbook.mdf
located on the web server. (We provide this database in the databases folder with this
chapter’s examples.) The database contains a single table named Messages.

Testing the App
To test this app:

1. Select Open Web Site… from the FILE menu.

2. In the Open Web Site dialog, ensure that File System is selected, then navigate to
this chapter’s examples, select the Guestbook folder and click the Open Button.

3. Select Guestbook.aspx in the Solution Explorer, then type Ctrl + F5 to execute
the web app in your default web browser.

Figure 23.32(a) shows the user submitting a new entry. Figure 23.32(b) shows the
new entry as the last row in the GridView.

Fig. 23.31 | Guestbook app GUI in Design mode.

GridView
control

23.8 Case Study: Database-Driven ASP.NET Guestbook 935

23.8.1 Building a Web Form that Displays Data from a Database
You’ll now build this GUI and set up the data binding between the GridView control and
the database. Many of these steps are similar to those performed in Chapter 22 to access and
interact with a database in a Windows app. We discuss the code-behind file in Section 23.8.2.

Step 1: Creating the Web Site
To begin, follow the steps in Section 23.4.1 to create an Empty Web Site named Guestbook
then add a Web Form named Guestbook.aspx to the project. Set the document’s Title
property to "Guestbook". To ensure that Guestbook.aspx loads when you execute this
app, right click it in the Solution Explorer and select Set As Start Page.

Fig. 23.32 | Sample execution of the Guestbook app.

a) User enters
data for the

name, e-mail and
message, then

presses Submit
to send the data

to the server

b) Server stores
the data in the
database, then

refreshes the
GridView with
the updated data

936 Chapter 23 Web App Development with ASP.NET

Step 2: Creating the Form for User Input
In Design mode, add the text Please leave a message in our guestbook:, then use the
Block Format ComboBox in the IDE’s toolbar to change the text to Heading 3 format. Insert
a table with four rows and two columns. Place the appropriate text (see Fig. 23.31) in the
top three cells in the table’s left column. Then place TextBoxes named nameTextBox,
emailTextBox and messageTextBox in the top three table cells in the right column. Con-
figure the TextBoxes as follows:

• Select FORMAT > New Style… to display the New Style dialog. In the Selector field,
specify .textBoxWidth as the new style’s name. Select the Category named Posi-
tion, then set the width: to 300px and click OK to create the style and dismiss the
dialog. Next set the CssClass property for both the nameTextBox and emailText-
Box to textBoxWidth. This uses the style to set both TextBoxes to 300 pixels wide.

• Select FORMAT > New Style… to display the New Style dialog. In the Selector
field, specify .textBoxHeight as the new style’s name. Select the Category named
Position, then set the height: to 100px and click OK to create the style and dismiss
the dialog. Next set messageTextBox’s CssClass property to

This uses both the .textBoxWidth and .textBoxHeight styles to set message-
TextBox’s width to 300 pixels and height to 100 pixels. Also set messageTextBox’s
TextMode property to MultiLine so the user can type a message containing mul-
tiple lines of text.

Finally, add Buttons named submitButton and clearButton to the bottom-right table
cell. Set the buttons’ Text properties to Submit and Clear, respectively. We discuss the
buttons’ event handlers when we present the code-behind file. You can create these event
handlers now by double clicking each Button in Design view.

Step 3: Adding a GridView Control to the Web Form
Add a GridView named messagesGridView that will display the guestbook entries. This
control is located in the Toolbox’s Data section. The colors for the GridView are specified
through the Auto Format... link in the GridView Tasks smart-tag menu that opens when you
place the GridView on the page. Clicking this link displays an AutoFormat dialog with sev-
eral choices. In this example, we chose Professional. We show how to set the GridView’s
data source (that is, where it gets the data to display in its rows and columns) shortly.

Step 4: Creating the Entity Data Model
Next, you’ll add an entity data model to the project. Perform the following steps:

1. Right click the project name in the Solution Explorer and select Add > Add New
Item… to display the Add New Item dialog.

2. Select ADO.NET Entity Data Model, change the Name to GuestbookModel.edmx

and click Add. A dialog appears asking if you would like to put your new entity
data model classes in the App_Code folder; click Yes. The IDE will create an
App_Code folder and place the entity data model classes information in that fold-
er. For security reasons, this folder can be accessed only by the web app on the
server—clients cannot access this folder over a network.

textBoxWidth textBoxHeight

23.8 Case Study: Database-Driven ASP.NET Guestbook 937

3. Next, the Entity Data Model Wizard dialog appears. Ensure that Generate from
database is selected so that you can generate the model from the Guestbook.mdf
database, then click Next >.

4. In the Entity Data Model Wizard dialog’s Choose Your Data Connection step, click
New Connection… then use the Connection Properties dialog to locate the Guest-
book.mdf database file (included in the databases folder with this chapter’s ex-
amples). Click OK to create the connection, then click Next > to complete the
Choose Your Data Connection step.

5. A dialog appears asking if you would like to copy the database file into your proj-
ect. Click Yes. The IDE will create an App_Data folder and place the Guest-
book.mdf file in that folder. Like the App_Code folder, this folder can be accessed
only by the web app on the server.

6. In the Entity Data Model Wizard dialog’s Choose Your Database Objects and Set-
tings step, select the Messages table from the database. By default, the IDE names
the model GuestbookModel. Ensure that Pluralize or singularize generated object
names is checked, keep the other default settings and click Finish. The IDE dis-
plays the GuestbookModel in the editor, where you can see that a Message has a
MessageID, Date, Name, Email and Message1 property. Message1 was renamed
from Message by the IDE so that it does not conflict with the entity data model’s
Message class.

7. Select BUILD > Build Solution to ensure that the new entity data model classes are
compiled.

Step 5: Binding the GridView to the Messages Table of the Guestbook Database
You can now configure the GridView to display the database’s data.

1. In the GridView Tasks smart-tag menu, select <New data source...> from the Choose
Data Source ComboBox to display the Data Source Configuration Wizard dialog.

2. In this example, we use a EntityDataSource control that allows the app to inter-
act with the Guestbook.mdf database. Select Entity, then in the Specify an ID for
the data source field enter messagesEntityDataSource and click OK to begin the
Configure Data Source wizard.

3. In the Configure ObjectContext step, select GuestbookEntities in the Named
Connection ComboBox, then click Next >.

4. The Configure Data Selection screen (Fig. 23.33) allows you to specify which data
the EntityDataSource should retrieve from the data context. The EntitySetName
drop-down list contains DbContext properties that represent database’s tables. For
the Guestbook database, select Messages from the drop-down list. In the Choose
the properties in the query result: pane, ensure that the Select All checkbox is selected
to indicate that you want to retrieve all the columns in the Messages table.

5. Click Finish to complete the wizard. A control named messagesEntityData-

Source now appears on the Web Form directly below the GridView. It’s repre-
sented in Design mode as a gray box containing its type and name. It will not
appear on the web page—the gray box simply provides a way to manipulate the

938 Chapter 23 Web App Development with ASP.NET

control visually through Design mode—similar to how the objects in the compo-
nent tray are used in Design mode for a Windows Forms app.

6. Click the messagesEntityDataSource, then select Refresh Schema from its
smart-tag menu. The GridView updates to display column headers that corre-
spond to the columns in the Messages table (Fig. 23.34). The rows each contain
either a number (which signifies an autoincremented column) or abc (which indi-
cates string data). The actual data from the Guestbook.mdf database file will ap-
pear in these rows when you view the ASPX file in a web browser.

Step 6: Customizing the Columns of the Data Source Displayed in the GridView
It’s not necessary for site visitors to see the MessageID column when viewing past guest-
book entries—this column is merely a unique primary key required by the Messages table
within the database. So, let’s modify the GridView to prevent this column from displaying
on the Web Form. We’ll also modify the column Message1 to read Message.

1. In the GridView Tasks smart tag menu, click Edit Columns to display the Fields di-
alog (Fig. 23.35).

2. Select MessageID in the Selected fields pane, then click the Button. This re-
moves the MessageID column from the GridView.

Fig. 23.33 | Configuring the EntityDataSource.

23.8 Case Study: Database-Driven ASP.NET Guestbook 939

Fig. 23.34 | Design mode displaying EntityDataSource control for a GridView.

Fig. 23.35 | Removing the MessageID column from the GridView.

EntityDataSource
control

940 Chapter 23 Web App Development with ASP.NET

3. Select Message1 in the Selected fields pane and change its HeaderText property
to Message. The IDE renamed this field to prevent a naming conflict in the entity
data model classes. Click OK to return to the main IDE window.

4. Next create a style to specify the width of the GridView. Select FORMAT > New
Style… to display the New Style dialog. In the Selector field, specify .gridView-
Width as the new style’s name. Select the Category named Position, then set the
width: to 650px and click OK to create the style and dismiss the dialog. Next set
the CssClass property for the messagesGridView to gridViewWidth.

The GridView should now appear as shown in Fig. 23.31.

23.8.2 Modifying the Code-Behind File for the Guestbook App
After building the Web Form and configuring the data controls used in this example, dou-
ble click the Submit and Clear buttons in Design view to create their corresponding Click
event handlers in the code-behind file (Fig. 23.36). The IDE generates empty event han-
dlers, so we must add the appropriate code to make these buttons work properly. The
event handler for clearButton (lines 39–44) clears each TextBox by setting its Text prop-
erty to an empty string. This resets the form for a new guestbook submission.

1 // Fig. 23.36: Guestbook.aspx.cs
2 // Code-behind file that defines event handlers for the guestbook.
3 using System;
4
5 public partial class Guestbook : System.Web.UI.Page
6 {
7 // Submit Button adds a new guestbook entry to the database,
8 // clears the form and displays the updated list of guestbook entries
9 protected void submitButton_Click(object sender, EventArgs e)

10 {
11 // use GuestbookEntities DbContext to add a new message
12 using (GuestbookEntities dbcontext = new GuestbookEntities())
13 {
14
15
16
17
18
19
20
21
22
23
24
25
26
27 } // end using statement
28

Fig. 23.36 | Code-behind file for the guestbook app. (Part 1 of 2.)

// create a new Message to add to the database; Message is
// the entity data model class representing a table row
Message message = new Message();

// set new Message's properties
message.Date = DateTime.Now.ToShortDateString();
message.Name = nameTextBox.Text;
message.Email = emailTextBox.Text;
message.Message1 = messageTextBox.Text;

// add new Message to GuestbookEntities DbContext
dbcontext.Messages.Add(message);
dbcontext.SaveChanges(); // save changes to the database

23.9 Online Case Study: ASP.NET AJAX 941

Lines 9–36 contain submitButton’s event-handling code, which adds the user’s infor-
mation to the Guestbook database’s Messages table. The using statement in lines 12–27
begins by creating a GuestbookEntities object to interact with the database. Recall that
the using statement will call Dispose on this GuestbookEntities object when the using
statement terminates. This is a good practice for an ASP.NET web page request, so that
we don’t maintain a connection to the database beyond the request.

Line 16 creates an object of the entity data model’s Message class, which represents a
row in the database’s Messages table. Lines 19–22 set the new Message object’s properties
to the values that should be stored in the database. Line 25 calls the Add method of the
GuestbookEntities object’s Messages property, which represents the Messages table in
the database. This adds a new record to the entity data model’s representation of the table.
Line 26 then saves the changes into the database.

After the data is inserted into the database, lines 30–32 clear the TextBoxes, and line
35 invokes messagesGridView’s DataBind method to refresh the data that the GridView
displays. This causes messagesEntityDataSource (the GridView’s data source) to obtain
the Messages table’s updated data from the database.

23.9 Online Case Study: ASP.NET AJAX
In the online Chapter 29, Web App Development with ASP.NET: A Deeper Look, you
learn the difference between a traditional web app and an AJAX (Asynchronous
JavaScript and XML) web app. You also learn how to use ASP.NET AJAX to quickly and
easily improve the user experience for your web apps, giving them responsiveness compa-
rable to that of desktop apps. To demonstrate ASP.NET AJAX capabilities, you enhance
the validation example by displaying the submitted form information without reloading
the entire page. The only modifications to this web app appear in Validation.aspx file.
You use AJAX-enabled controls to add this feature.

29 // clear the TextBoxes
30 nameTextBox.Text = String.Empty;
31 emailTextBox.Text = String.Empty;
32 messageTextBox.Text = String.Empty;
33
34
35
36 } // submitButton_Click
37
38 // Clear Button clears the Web Form's TextBoxes
39 protected void clearButton_Click(object sender, EventArgs e)
40 {
41 nameTextBox.Text = String.Empty;
42 emailTextBox.Text = String.Empty;
43 messageTextBox.Text = String.Empty;
44 } // clearButton_Click
45 } // end class Guestbook

Fig. 23.36 | Code-behind file for the guestbook app. (Part 2 of 2.)

// update the GridView with the new database table contents
messagesGridView.DataBind();

942 Chapter 23 Web App Development with ASP.NET

23.10 Online Case Study: Password-Protected Books
Database App
In the online Chapter 29, Web App Development with ASP.NET: A Deeper Look, we
include a web app case study in which a user logs into a password-protected website to
view a list of publications by a selected author. The app consists of several pages and pro-
vides website registration and login capabilities. You’ll learn about ASP.NET master pag-
es, which allow you to specify a common look-and-feel for all the pages in your app. We
also introduce the Web Site Administration Tool and use it to configure the portions of the
app that can be accessed only by users who are logged into the website.

23.11 Wrap-Up
In this chapter, we introduced web-app development using ASP.NET and Visual Studio
Express 2012 for Web. We began by discussing the simple HTTP transactions that take
place when you request and receive a web page through a web browser. You then learned
about the three tiers (that is, the client or top tier, the business logic or middle tier and the
information or bottom tier) that comprise most web apps.

Next, we explained the role of ASPX files (that is, Web Form files) and code-behind
files, and the relationship between them. We discussed how ASP.NET compiles and exe-
cutes web apps so that they can be displayed in a web browser. You also learned how to
build an ASP.NET web app using Visual Studio Express For Web.

The chapter demonstrated several common ASP.NET web controls used for dis-
playing text and images on a Web Form. We also discussed validation controls, which
allow you to ensure that user input on a web page satisfies certain requirements.

We discussed the benefits of maintaining a user’s state information across multiple
pages of a website. We then demonstrated how you can include such functionality in a web
app by using session tracking with HttpSessionState objects.

Finally, we built a guestbook app that allows users to submit comments about a web-
site. You learned how to save the user input in a database and how to display past submis-
sions on the web page.

Summary
Section 23.1 Introduction
• ASP.NET technology is Microsoft’s technology for web-app development.

• Web Form files have the file-name extension .aspx and contain the web page’s GUI. A Web
Form file represents the web page that’s sent to the client browser.

• The file that contains the programming logic of a Web Form is called the code-behind file.

Section 23.2 Web Basics
• URIs (Uniform Resource Identifiers) identify resources on the Internet. URIs that start with
http:// are called URLs (Uniform Resource Locators).

• A URL contains information that directs a browser to the resource that the user wishes to access.
Computers that run web server software make such resources available.

Summary 943

• In a URL, the hostname is the name of the server on which the resource resides. This computer
usually is referred to as the host, because it houses and maintains resources.

• A hostname is translated into a unique IP address that identifies the server. This translation is
performed by a domain-name system (DNS) server.

• The remainder of a URL specifies the location and name of a requested resource. For security
reasons, the location is normally a virtual directory. The server translates the virtual directory into
a real location on the server.

• When given a URL, a web browser uses HTTP to retrieve the web page found at that address.

Section 23.3 Multitier App Architecture
• Multitier apps divide functionality into separate tiers—logical groupings of functionality—that

commonly reside on separate computers for security and scalability.

• The information tier (also called the bottom tier) maintains data pertaining to the app. This tier
typically stores data in a relational database management system.

• The middle tier implements business logic, controller logic and presentation logic to control in-
teractions between the app’s clients and the app’s data. The middle tier acts as an intermediary
between data in the information tier and the app’s clients.

• Business logic in the middle tier enforces business rules and ensures that data is reliable before
the server app updates the database or presents the data to users.

• The client tier, or top tier, is the app’s user interface, which gathers input and displays output.
Users interact directly with the app through the user interface (typically viewed in a web brows-
er), keyboard and mouse. In response to user actions, the client tier interacts with the middle tier
to make requests and to retrieve data from the information tier. The client tier then displays to
the user the data retrieved from the middle tier.

Section 23.4.1 Building the WebTime App
• File System websites are created and tested on your local computer. Such websites execute in IIS

Express and can be accessed only by web browsers running on the same computer. You can later
“publish” your website to a production web server for access via a local network or the Internet.

• HTTP websites are created and tested on an IIS web server and use HTTP to allow you to put
your website’s files on the server. If you own a website and have your own web server computer,
you might use this to build a new website directly on that server computer.

• FTP websites use File Transfer Protocol (FTP) to allow you to put your website’s files on the serv-
er. The server administrator must first create the website on the server for you. FTP is commonly
used by so called “hosting providers” to allow website owners to share a server computer that runs
many websites.

• A Web Form represents one page in a web app and contains a web app’s GUI.

• You can view the Web Form’s properties by selecting DOCUMENT in the Properties window. The
Title property specifies the title that will be displayed in the web browser’s title bar when the
page is loaded.

• Controls and other elements are placed sequentially on a Web Form one after another in the or-
der in which you drag-and-drop them onto the Web Form. The cursor indicates the insertion
point in the page. This type of layout is known as relative positioning. You can also use absolute
positioning in which controls are located exactly where you drop them on the Web Form.

• When a Label does not contain text, its name is displayed in square brackets in Design view as a
placeholder for design and layout purposes. This text is not displayed at execution time.

• Formatting in a web page is performed with Cascading Style Sheets (CSS).

944 Chapter 23 Web App Development with ASP.NET

• A Web Form’s Init event occurs when the page is requested by a web browser. The event handler
for this event—named Page_Init—initialize the page.

Section 23.4.2 Examining WebTime.aspx’s Code-Behind File
• A class declaration can span multiple source-code files—the separate portions of the class decla-

ration in each file are known as partial classes. The partial modifier indicates that the class in a
particular file is part of a larger class.

• Every Web Form class inherits from class Page in namespace System.Web.UI. Class Page repre-
sents the default capabilities of each page in a web app.

• The ASP.NET controls are defined in namespace System.Web.UI.WebControls.

Section 23.5 Standard Web Controls: Designing a Form
• An Image control’s ImageUrl property specifies the location of the image to display.

• By default, the contents of a table cell are aligned vertically in the middle of the cell. You can
change this with the cell’s valign property.

• A TextBox control allows you to obtain text from the user and display text to the user.

• A DropDownList control is similar to the Windows Forms ComboBox control, but doesn’t allow
users to type text. You can add items to the DropDownList using the ListItem Collection Editor,
which you can access by clicking the ellipsis next to the DropDownList’s Items property in the
Properties window, or by using the DropDownList Tasks smart-tag menu.

• A HyperLink control adds a hyperlink to a Web Form. The NavigateUrl property specifies the
resource or web page that will be requested when the user clicks the HyperLink.

• A RadioButtonList control provides a series of radio buttons from which the user can select only
one. The RadioButtonList Tasks smart-tag menu provides an Edit Items… link to open the ListItem

Collection Editor so that you can create the items in the list.

• A Button control triggers an action when clicked.

Section 23.6 Validation Controls
• A validation control determines whether the data in another web control is in the proper format.

• When the page is sent to the client, the validator is converted into JavaScript that performs the
validation in the client web browser.

• Some client browsers might not support scripting or the user might disable it. For this reason,
you should always perform validation on the server.

• A RequiredFieldValidator control ensures that its ControlToValidate is not empty when the
form is submitted. The validator’s ErrorMessage property specifies what to display on the Web
Form if the validation fails. When the validator’s Display property is set to Dynamic, the validator
occupies space on the Web Form only when validation fails.

• A RegularExpressionValidator uses a regular expression to ensure data entered by the user is in
a valid format. Visual Studio Express 2012 for Web provides several predefined regular expressions
that you can simply select to validate e-mail addresses, phone numbers and more. A RegularEx-

pressionValidator’s ValidationExpression property specifies the regular expression to use for
validation.

• A Web Form’s Load event occurs each time the page loads into a web browser. The event handler
for this event is Page_Load.

• ASP.NET pages are often designed so that the current page reloads when the user submits the
form; this enables the program to receive input, process it as necessary and display the results in
the same page when it’s loaded the second time.

Summary 945

• Submitting a web form is known as a postback. Class Page’s IsPostBack property returns true if
the page is being loaded due to a postback.

• Server-side Web Form validation must be implemented programmatically. Class Page’s Validate
method validates the information in the request as specified by the Web Form’s validation con-
trols. Class Page’s IsValid property returns true if validation succeeded.

Section 23.7 Session Tracking
• Personalization makes it possible for e-businesses to communicate effectively with their custom-

ers and also improves users’ ability to locate desired products and services.

• To provide personalized services to consumers, e-businesses must be able to recognize clients
when they request information from a site.

• HTTP is a stateless protocol—it does not provide information regarding particular clients.

• Tracking individual clients is known as session tracking.

Section 23.7.1 Cookies
• A cookie is a piece of data stored in a small text file on the user’s computer. A cookie maintains

information about the client during and between browser sessions.

• The expiration date of a cookie determines how long the cookie remains on the client’s comput-
er. If you do not set an expiration date for a cookie, the web browser maintains the cookie for the
duration of the browsing session.

Section 23.7.2 Session Tracking with HttpSessionState

• Session tracking is implemented with class HttpSessionState.

Section 23.7.3 Options.aspx: Selecting a Programming Language
• Each radio button in a RadioButtonList has a Text property and a Value property. The Text

property is displayed next to the radio button and the Value property represents a value that’s
sent to the server when the user selects that radio button and submits the form.

• Every Web Form includes a user-specific HttpSessionState object, which is accessible through
property Session of class Page.

• HttpSessionState property SessionID contains a client’s unique session ID. The first time a cli-
ent connects to the web server, a unique session ID is created for that client and a temporary
cookie is written to the client so the server can identify the client on subsequent requests. When
the client makes additional requests, the client’s session ID from that temporary cookie is com-
pared with the session IDs stored in the web server’s memory to retrieve the client’s HttpSes-
sionState object.

• HttpSessionState property Timeout specifies the maximum amount of time that an Http-

SessionState object can be inactive before it’s discarded. Twenty minutes is the default.

• The HttpSessionState object is a dictionary—a data structure that stores key–value pairs. A pro-
gram uses the key to store and retrieve the associated value in the dictionary.

• The key–value pairs in an HttpSessionState object are often referred to as session items. They’re
placed in an HttpSessionState object by calling its Add method. Another common syntax for
placing a session item in the HttpSessionState object is Session[KeyName] = Value.

• If an app adds a session item that has the same name as an item previously stored in the HttpSes-
sionState object, the session item is replaced—session items names must be unique.

946 Chapter 23 Web App Development with ASP.NET

Section 23.7.4 Recommendations.aspx: Displaying Recommendations Based on Ses-
sion Values
• The Count property returns the number of session items stored in an HttpSessionState object.

• HttpSessionState’s Keys property returns a collection containing all the keys in the session.

Section 23.8 Case Study: Database-Driven ASP.NET Guestbook
• A GridView data control displays data in tabular format. This control is located in the Toolbox’s

Data section.

Section 23.8.1 Building a Web Form that Displays Data from a Database
• To use a SQL Server Express database file in an ASP.NET web app, you must first add the file

to the project’s App_Data folder. For security reasons, this folder can be accessed only by the web
app on the server—clients cannot access this folder over a network. The web app interacts with
the database on behalf of the client.

• An EntityDataSource control enables data bound Web Form controls to interact with a database
via the ADO.NET Entity Framework.

Section 23.8.2 Modifying the Code-Behind File for the Guestbook App
• To insert data into a database from a web page, you create an object of your entity data model’s

class that represents a row in a table, set the object’s properties, then use the Add method to add
the object to the DbContext’s object that represents the database table. When you call SaveChanges
on the DbContext, the new row is added to the database table.

• A GridView’s DataBind method refreshes the data that the GridView displays.

Terminology
Add method of class HttpSessionState
Add method of an entity data model class that

represents a database table
ASP.NET
ASP.NET server control
ASPX file
.aspx filename extension
bottom tier
business logic
Button control
client tier
code-behind file
controller logic
ControlToValidate property of a validation

control
cookie
Count property of class HttpSessionState
DataBind method of a GridView
Display property of a validation control
DNS (domain name system) server
DOCUMENT in the Properties window
DropDownList control
EntityDataSource control
ErrorMessage property of a validation control

expiration date of a cookie
GridView control
host
hostname
HTTP (HyperText Transfer Protocol)
HttpSessionState class
HyperLink control
IIS (Internet Information Services)
Image control
ImageUrl property of an Image web control
information tier
Init event of a Web Form
IP (Internet Protocol) address
IsPostBack property of Page class
IsValid property of Page class
key–value pair
Keys property of HttpSessionState class
Load event of Web Form
middle tier
multitier app
n-tier app
NavigateUrl property of a HyperLink control
Page class
Page_Init event handler

Self-Review Exercises 947

Page_Load event handler
partial class
partial modifier
personalization
postback
presentation logic
RadioButtonList control
RegularExpressionValidator validation control
RequiredFieldValidator control
session item
Session property of Page class
session tracking
SessionID property of HttpSessionState class
System.Web.UI namespace
System.Web.UI.WebControls namespace
Target property of a HyperLink control
TextBox control

tier in a multitier app
Timeout property of HttpSessionState class
Title property of a Web Form
top tier
unique session ID of an ASP.NET client
Validate property of Page class
validation control
ValidationExpression property of a Regular-

ExpressionValidator control
validator
Visible property of an ASP.NET control
Visual Studio Express 2012 for Web
web-app development
web control
Web Form
web server
Web.config ASP.NET configuration file

Self-Review Exercises
23.1 State whether each of the following is true or false. If false, explain why.

a) Web Form file names end in .aspx.
b) App.config is a file that stores configuration settings for an ASP.NET web app.
c) A maximum of one validation control can be placed on a Web Form.
d) An EntityDataSource control enables data bound Web Form controls to interact with

a database via the ADO.NET Entity Framework.

23.2 Fill in the blanks in each of the following statements:
a) Web apps contain three basic tiers: , , and .
b) The web control is similar to the ComboBox Windows control.
c) A control which ensures that the data in another control is in the correct format is called

a(n) .
d) A(n) occurs when a page requests itself.
e) Every ASP.NET page inherits from class .
f) The file contains the functionality for an ASP.NET page.

Answers to Self-Review Exercises
23.1 a) True. b) False. Web.config is the file that stores configuration settings for an ASP.NET
web app. c) False. An unlimited number of validation controls can be placed on a Web Form.
d) True.

23.2 a) bottom (information), middle (business logic), top (client). b) DropDownList. c) valida-
tor. d) postback. e) Page. f) code-behind.

Exercises
23.3 (WebTime Modification) Modify the WebTime example to contain drop-down lists that allow
the user to modify such Label properties as BackColor, ForeColor and Font-Size. Configure these
drop-down lists so that a postback occurs whenever the user makes a selection—to do this, set their
AutoPostBack properties to true. When the page reloads, it should reflect the specified changes to
the properties of the Label displaying the time.

948 Chapter 23 Web App Development with ASP.NET

23.4 (Page Hit Counter) Create an ASP.NET page that uses session tracking to keep track of
how many times the client computer has visited the page. Set the HttpSessionState object’s Time-
out property to 1440 (the number of minutes in one day) to keep the session in effect for one day
into the future. Display the number of page hits every time the page loads.

23.5 (Guestbook App Modification) Add validation to the guestbook app in Section 23.8. Use
validation controls to ensure that the user provides a name, a valid e-mail address and a message.

23.6 (Project: WebControls Modification) Modify the example of Section 23.5 to add function-
ality to the Register Button. When the user clicks the Button, validate all of the input fields to ensure
that the user has filled out the form completely and entered a valid email address and phone number.
If any of the fields are not valid, appropriate messages should be displayed by validation controls. If
the fields are all valid, direct the user to another page that displays a message indicating that the reg-
istration was successful followed by the registration information that was submitted from the form.

23.7 (Project: Web-Based Address Book) Using the techniques you learned in Section 23.8, cre-
ate a web-based Address book with similar functionality to the Address Book app that you created
in Section 22.9. Display the address book’s contents in a GridView. Allow the user to search for en-
tries with a particular last name.

Chapters on the Web

The following chapters are available as PDF documents from this book’s Companion
Website (www.pearsonhighered.com/deitel/):

• Chapter 24, XML and LINQ to XML

• Chapter 25, Windows 8 UI and XAML

• Chapter 26, Windows 8 Graphics and Multimedia

• Chapter 27, Building a Windows Phone 8 App

• Chapter 28, Asynchronous Programming with async and await

• Chapter 29, Web App Development with ASP.NET: A Deeper Look

• Chapter 30, Web Services

• Chapter 31, Building a Windows Azure™ Cloud Computing App

• Chapter 32, GUI with Windows Presentation Foundation

• Chapter 33, WPF Graphics and Multimedia

• Chapter 34, ATM Case Study, Part 1: Object-Oriented Design with the UML

• Chapter 35, ATM Case Study, Part 2: Implementing an Object-Oriented Design

These files can be viewed in Adobe® Reader® (get.adobe.com/reader).
New copies of this book come with a Companion Website access code that is located

on the card inside the book’s front cover. If the access code is already visible or there is no
card, you purchased a used book or an edition that does not come with an access code. In
this case, you can purchase access directly from the Companion Website.

www.pearsonhighered.com/deitel/

A
Operator Precedence Chart

Operators are shown in decreasing order of precedence from top to bottom with each level
of precedence separated by a horizontal line. The associativity of the operators is shown in
the right column.

Operator Type Associativity

. member access left-to-right

() method call

[] element access

++ postfix increment

-- postfix decrement

new object creation

typeof get System.Type object for a type

sizeof get size in bytes of a type

checked checked evaluation

unchecked unchecked evaluation

+ unary plus right-to-left

- unary minus

! logical negation

~ bitwise complement

++ prefix increment

-- prefix decrement

(type) cast

* multiplication left-to-right

/ division

% remainder

+ addition left-to-right

- subtraction

Fig. A.1 | Operator precedence chart (Part 1 of 2.).

Operator Precedence Chart 951

>> right shift left-to-right

<< left shift

< less than left-to-right

> greater than

<= less than or equal to

>= greater than or equal to

is type comparison

as type conversion

!= is not equal to left-to-right

== is equal to

& logical AND left-to-right

^ logical XOR left-to-right

| logical OR left-to-right

&& conditional AND left-to-right

|| conditional OR left-to-right

?? null coalescing right-to-left

?: conditional right-to-left

= assignment right-to-left

*= multiplication assignment

/= division assignment

%= remainder assignment

+= addition assignment

-= subtraction assignment

<<= left shift assignment

>>= right shift assignment

&= logical AND assignment

^= logical XOR assignment

|= logical OR assignment

Operator Type Associativity

Fig. A.1 | Operator precedence chart (Part 2 of 2.).

B
Simple Types

Type Size in bits Value range Standard

bool 8 true or false

byte 8 0 to 255, inclusive

sbyte 8 –128 to 127, inclusive

char 16 '\u0000' to '\uFFFF' (0 to 65535), inclusive Unicode

short 16 –32768 to 32767, inclusive

ushort 16 0 to 65535, inclusive

int 32 –2,147,483,648 to 2,147,483,647, inclusive

uint 32 0 to 4,294,967,295, inclusive

float 32 Approximate negative range:
–3.4028234663852886E+38 to
–1.40129846432481707E–45
Approximate positive range:
1.40129846432481707E–45 to
3.4028234663852886E+38
Other supported values:
positive and negative zero
positive and negative infinity
not-a-number (NaN)

IEEE 754
IEC 60559

long 64 –9,223,372,036,854,775,808 to
9,223,372,036,854,775,807, inclusive

ulong 64 0 to 18,446,744,073,709,551,615, inclusive

Fig. B.1 | Simple types. (Part 1 of 2.)

Simple Types 953

Additional Simple Type Information
• This appendix is based on information from Sections 4.1.4–4.1.8 of Microsoft’s

version of the C# Language Specification and Sections 11.1.4–11.1.8 of the
ECMA-334 (the ECMA version of the C# Language Specification). These docu-
ments are available from the following websites:

• Values of type float have seven digits of precision.

• Values of type double have 15–16 digits of precision.

• Values of type decimal are represented as integer values that are scaled by a power
of 10. Values between –1.0 and 1.0 are represented exactly to 28 digits.

• For more information on IEEE 754 visit grouper.ieee.org/groups/754/. For
more information on Unicode, see Appendix F.

double 64 Approximate negative range:
–1.7976931348623157E+308 to
–4.94065645841246544E–324
Approximate positive range:
4.94065645841246544E–324 to
1.7976931348623157E+308
Other supported values:
positive and negative zero
positive and negative infinity
not-a-number (NaN)

IEEE 754
IEC 60559

decimal 128 Negative range:
–79,228,162,514,264,337,593,543,950,335
(–7.9E+28) to –1.0E–28
Positive range:
1.0E–28 to
79,228,162,514,264,337,593,543,950,335
(7.9E+28)

msdn.microsoft.com/en-us/vcsharp/aa336809.aspx
www.ecma-international.org/publications/standards/Ecma-334.htm

Type Size in bits Value range Standard

Fig. B.1 | Simple types. (Part 2 of 2.)

www.ecma-international.org/publications/standards/Ecma-334.htm

C
ASCII Character Set

The digits at the left of the table are the left digits of the decimal equivalent (0–127) of the
character code, and the digits at the top of the table are the right digits of the character
code. For example, the character code for “F” is 70, and the character code for “&” is 38.

Most users of this book are interested in the ASCII character set used to represent
English characters on many computers. The ASCII character set is a subset of the Unicode
character set used by C# to represent characters from most of the world’s languages. For
more information on the Unicode character set, see Appendix F.

0 1 2 3 4 5 6 7 8 9

0 nul soh stx etx eot enq ack bel bs ht

1 nl vt ff cr so si dle dc1 dc2 dc3

2 dc4 nak syn etb can em sub esc fs gs

3 rs us sp ! " # $ % & ‘

4 () * + , - . / 0 1

5 2 3 4 5 6 7 8 9 : ;

6 < = > ? @ A B C D E

7 F G H I J K L M N O

8 P Q R S T U V W X Y

9 Z [\] ^ _ ’ a b c

10 d e f g h i j k l m

11 n o p q r s t u v w

12 x y z { | } ~ del

Fig. C.1 | ASCII Character Set.

Appendices on the Web

The following appendices are available as PDF documents from this book’s Companion
Website (www.pearsonhighered.com/deitel/):

• Appendix D, Number Systems

• Appendix E, UML 2: Additional Diagram Types

• Appendix F, Unicode®

• Appendix G, Using the Visual Studio 2012 Debugger

These files can be viewed in Adobe® Reader® (get.adobe.com/reader).
New copies of this book come with a Companion Website access code that is located

on the card inside the book’s front cover. If the access code is already visible or there is no
card, you purchased a used book or an edition that does not come with an access code. In
this case, you can purchase access directly from the Companion Website.

www.pearsonhighered.com/deitel/

This page intentionally left blank

Symbols
^, boolean logical exclusive OR 211, 213

truth table 213
--, predecrement/postdecrement 171,

172
--, prefix/postfix decrement 171, 172
-, private visibility symbol 121
-, subtraction 87, 88
!, logical negation 211, 213

truth table 214
!=, not equals 90, 93
?:, ternary conditional operator 149, 174
.NET 4.5 16
.NET Framework 816
"", empty string 124
{, left brace 70
}, right brace 70
@ verbatim string character 640
*, multiplication 87, 88
*=, multiplication compound assignment

operator 171
/, division 87, 88
/* */ delimited comment 67
//, single-line comment 66
\, escape character 80
\", double-quote escape sequence 79
\=, division compound assignment

operator 171
\n, newline escape sequence 79
\r, carriage-return escape sequence 80
\t, horizontal tab escape sequence 79
&, boolean logical AND 211, 213
&, menu access shortcut 571, 573
&&, conditional AND 211, 212

truth table 211
%, remainder 87, 88
%=, remainder compound assignment

operator 171
+, addition 87, 88
+, concatenation operator 650
+, public visibility symbol 112
++, prefix/postfix increment 171
++, preincrement/postincrement 171
+=, addition compound assignment

operator 171
<, less than 90
<=, less than or equal 90
=, assignment operator 84
-=, subtraction compound assignment

operator 171
==, comparison operator 643
==, is equal to 90
=>, lambda operator 868
>, greater than 90
>=, greater than or equal to 90
|, boolean logical inclusive OR 211, 213

||, conditional OR 211, 212
truth table 212

A
abbreviating assignment expressions 171
Abs method of Math 235
absolute positioning 908
absolute value 235
abstract class 443, 448, 449, 450, 467
abstract data type (ADT) 395
abstract keyword 423, 449
abstract method 449, 450, 452
accelerometer 6
AcceptButton property of class Form

522
AcceptsReturn property of class
TextBox 534

access modifier 109, 118
private 376, 409
protected 376, 409
public 109, 376, 409

access shortcut 570
accessibility heuristic 341
accessor 118
Account class

inheritance hierarchy exercise 439
Account class with a constructor to

initialize instance variable balance
129

Accounts Payable System Modification
exercise 484

accounts-receivable file 672
accumulator register 344, 347
action 148, 153, 395
action expression in the UML 145, 147,

149
action state in the UML 145, 218
action state symbol 145
action/decision model of programming

147
Activation property of class ListView

603, 604
activation record 241
active control 530
active tab 38
active window 521
ActiveLinkColor property of class
LinkLabel 584

ActiveMdiChild property of class Form
615

activity 145
activity diagram 145, 147, 218

do...while statement 201
for statement 195
if statement 147
if...else statement 148

activity diagram (cont.)
in the UML 153
sequence statement 145
switch statement 208
while statement 153

add a database to a project 859
add a reference to a class library 863
add a row to an entity collection 941
Add method of class ArrayList 822,

823
Add method of class Dictionary 681
Add method of class Hashtable 832
Add method of class
HttpSessionState 931

Add method of class List<T> 363
Add method of class
ObjectCollection 589

Add Tab menu item 610
Add User Control… option in Visual

Studio .NET 628
Add Windows Form… option in Visual

Studio 614
AddDay method of structure DateTime

583
addition 6, 87
AddLast method of class LinkedList

839
AddYears method of structure
DateTime 583

“administrative” section of the computer
7

ADO.NET Entity Data Model 856
data source for data binding 864
entities 861

ADO.NET Entity Framework 851
add a row to a table 941
DbContext class 868
DBExtensions class 869
entity data model 856

ADT (abstract data type) 395
advertisement 925
AfterSelected event of class
TreeView 599

Airline Reservation System 338
Airline Reservation System exercise 338
AJAX (Asynchronous Javascript and

XML) 941
AJAX web app 941
Alarm Clock GUI exercise 63
algebraic notation 87
algorithm 143, 147, 148, 154, 161
Alphabetic icon 45
alphabetizing 643
Alt key 556
Alt key shortcut 570
Alt property of class KeyEventArgs

557, 559

Index

958 Index

ALU (arithmetic and logic unit) 6
anchor a control 530
Anchor property of class Control 532
anchoring a control 530
Anchoring demonstration 531
Android

operating system 16
anonymous method 868
anonymous object-creation expression 877
anonymous type 361, 877

Equals method 877
ToString method 877

Any extension method of interface
IEnumerable<T> 361

Apache HTTP Server 899
app 70
app bar 17
app-development process 395
Appearance property of class CheckBox

539
Append method of class
StringBuilder 655

AppendFormat method of class
StringBuilder 656, 657

AppendText method of class File 674
application 34
Application class 578
Application counts the number of

occurrences of each word in a string
and stores them in a generic sorted
dictionary 834

Application counts the number of
occurrences of each word in a string
and stores them in a hash table 830

Application.Exit method 591
Applicaton class

Exit method 578
arbitrary number of arguments 327
area of a circle 280
args parameter of Main method 329
argument promotion 242
argument to a method 71, 113
ArgumentException class 832
ArgumentOutOfRangeException class

373, 382, 383, 641, 650, 657, 825
arithmetic and logic unit (ALU) 6
arithmetic calculation 86
arithmetic mean 88
arithmetic operators 86
arithmetic overflow 395
ARPAnet 11
ArrangeIcons value of enumeration
MdiLayout 616

array 286
bounds checking 296
ignoring element zero 298
Length property 287
pass an array element to a method

305
pass an array to a method 305

array-access expression 286
Array class 331, 817, 817, 818, 820
Array class static methods for

common array manipulations 818
array-creation expression 288
array initializer 290

for jagged array 318
for rectangular array 317
nested 317

Array Manipulations exercise 337
array-access expression

for jagged arrays 318
for rectangular arrays 317

ArrayList class 817, 822, 823
property Capacity 822
property Count 822

arrays as references 307
arrow 145
as operator (downcasting) 464
ascending modifier of a LINQ
orderby clause 356

ASCII (American Standard Code for
Information Interchange) character
set 4, 30, 208, 349, 954

ASCII character, test for 558
ASP.NET 13, 14, 29, 898

AJAX 941
login 942
registration 942
server control 898
start page 911, 914, 919, 928, 935
validation control 918

ASPX file 898
.aspx filename extension 898
assembler 7
assembly 863
assembly (compiled code) 76
assembly language 7
assign a value to a variable 84
Assigning base class and derived class

references to base class and derived
class variables 446

assignment operator, = 84, 90
assignment operators 171
assignment statement 84
associate

left to right 174
right to left 165, 174

associativity of operators 88, 94, 174
left to right 94
right to left 88, 94

async xx, 13
asynchronous programming 13
attribute

in the UML 10, 112
of an object 10

AuthorISBN table of Books database
852, 854

Authors table of Books database 852,
853

auto-implemented property 123
auto-hide 42
auto-implemented properties 685
autoincremented database column 853
automatic garbage collection 497
automatically implemented property 123
AutoPopDelay property of class
ToolTip 550

AutoScroll property of class Form 522
AutoScroll property of class Panel 536
AutoSize property of class TextBox 51
average 88, 154, 157
await xx, 13

B
BackColor property of a form 49

BackColor property of class Control
530

background color 49, 567
BackgroundImage property of class
Control 530

backslash, (\) 79
backward reference 761
bandwidth 11
bar chart 228, 293, 294
Bar chart printing application 293
bar of asterisks 293, 294
base

for constructor initializers 422
for invoking overridden methods

431
keyword 409, 422, 431, 433

base case 263
base class 406

constructor 413
default constructor 413
direct 406, 408
indirect 406, 408
method overridden in a derived class

431
BASIC (Beginner’s All-purpose Symbolic

Instruction Code) 14
Big O notation 720, 726, 730, 734, 740
BigInteger 404
BigInteger struct 265
binary 282
binary arithmetic operators 165
binary digit 670
binary digit (bit) 3, 30
binary integer 186
binary operator 84, 86, 213
binary search algorithm 721, 726
binary search tree 770, 775
binary tree 747, 770, 776
binary tree sort 776
Binary, Octal and Hexadecimal exercise

282
BinaryFormatter class 701

Deserialize method 701
Serialize method 703

BinarySearch method of class Array
820

BinarySearch method of class
ArrayList 825

BindingNavigator class 858, 865
BindingSource class 865

DataSource property 869
EndEdit method 869
MoveFirst method 873

bit 670
bit (binary digit) 3, 30
bit manipulation 670
BitArray class 817
bitwise operators 541
bitwise Xor operator 579
Bjarne Stroustrup 13
BlackBerry OS 16
blank line 68, 161
block 238
block of statements 151, 164
BMP (Windows bitmap) 54
body

of a class declaration 70
of a loop 153
of a method 71
of an if statement 90

Index 959

body mass index (BMI) 32
calculator 32

Books database 852
table relationships 855

bool simple type 149, 952
boolean expression 149
boolean logical AND, & 211, 213
boolean logical exclusive OR, ^ 211, 213

truth table 213
boolean logical inclusive OR, | 213
Boolean struct 747
BorderStyle property of class Panel

536
bottom tier 901
boundary of control 627
bounds checking 296
boxing 828, 832
boxing conversion 748
braces ({ and }) 151, 164, 193
braces not required 206
braces, { } 290
break keyword 205
break statement 205, 209, 229

exiting a for statement 209
bricks-and-mortar store 925
brittle software 427
brute force 341, 342

Knight’s Tour 342
bubble sort 743, 744

improving performance 744
bucket sort 744
buffer 673
BufferedStream class 673
buffering 673
BUILD menu 39
Build Web Site command 913
building block appearance 218
Building Your Own Computer 344
built-in array capabilities 817
business logic 901
business rule 901
button 519
Button ASP.NET web control 918
Button class 20, 24, 520, 534

Click event 534
FlatStyle property 534
Text property 534

Button properties and events 534
Button property of class
MouseEventArgs 554

ButtonBase class 534
byte 4, 671
byte simple type 952
Byte struct 747

C
C format specifier 132
C programming language 13
.cs file name extension 70
C# keywords 68
C# Language Specification 795
C# programming language 12
C++ 13
Calculating Sales exercise 228
Calculating the Value of π exercise 229
Calculating values to be placed into the

elements of an array 291
calculations 7, 95, 145

Calculator GUI exercise 62
Calendar and Appointments GUI

exercise 62
CalendarForeColor property of class
DateTimePicker 581

CalendarMonthBackground property
of class DateTimePicker 581

call stack 505
calling method (caller) 109, 233
CancelButton property of class Form

522
Canvas class 24
capacity of a collection 822
Capacity property of class ArrayList

822, 825
Capacity property of class List<T>

362, 365
Capacity property of class
StringBuilder 653

carbon footprint calculator 32
Card class represents a playing card 299
card games 299
card shuffling

Fisher-Yates 302
Card shuffling and dealing

application 302
exercise 344

carriage return 80
Cascade value of enumeration
MdiLayout 616

cascaded window 616
Cascading Style Sheets (CSS) 910
case 205, 206

keyword 205
case sensitive 69
casino 245, 250
cast

downcast 445
cast expression 104
cast operator 104, 164, 243, 254
catch

general catch clause 493
catch all exception types 493
catch an exception 491
Catch block 298
catch block (or handler) 493
catch block with no exception type 493
catch block with no identifier 493
catch-related errors 496
Categorized icon 45
Ceiling method of Math 235
Celsius

equivalent of a Fahrenheit tempera-
ture 280

central processing unit (CPU) 7
char

simple type 83
char array 641
char simple type 952
Char struct 639

CompareTo method 662
IsDigit method 662
IsLetter method 662
IsLetterOrDigit method 662
IsLower method 662
IsPunctuation method 662
IsSymbol method 662
IsUpper method 662
IsWhiteSpace method 662

Char struct (cont.)
static character-testing methods

and case-conversion methods 660
ToLower method 662
ToUpper method 662

character 4, 244, 670
constant 208
set 4, 103
string 71

character constant 640
character set 671
Character struct 747
check box 534
CheckBox class 64, 520, 539

Appearance property 539
Checked property 539
CheckedChanged event 539
CheckState property 539
CheckStateChanged event 539
Text property 539
ThreeState property 539

CheckBox properties and events 539
CheckBoxes property of class ListView

603, 604
CheckBoxes property of class TreeView

599
Checked property of class CheckBox 539
Checked property of class RadioButton

542
Checked property of class
ToolStripMenuItem 574, 578

Checked property of class TreeNode 599
CheckedChanged event of class
CheckBox 539

CheckedChanged event of class
RadioButton 542

CheckedIndices property of class
CheckedListBox 592

CheckedItems property of class
CheckedListBox 592

CheckedListBox class 570, 587, 591
CheckedIndices property 592
CheckedItems property 592
GetItemChecked method 592
ItemCheck event 591, 592
SelectionMode property 592

CheckedListBox properties and events
592

Checkerboard Pattern of Asterisks
exercise 186

CheckOnClick property of class
ToolStripMenuItem 574

CheckState property of class CheckBox
539

CheckStateChanged event of class
CheckBox 539

child node 598, 769
child window 614
child window maximized 616
child window minimized 616
Choose Items… option in Visual Studio

629
Choosing Repetition Statements exercise

182
chromeless window 17
Circle Area exercise 280
circular, doubly linked list 761
circular, singly linked list 760
circumference 103

960 Index

class 9, 232
class keyword 109
declaration 68, 70
declare a method 108
instance variable 108, 116, 235
instantiating an object 108
name 68, 70, 522, 623
partial 913
partial class 913
user defined 68

class average 154
class-average problem 161
class cannot extend a sealed class 466
class constraint 797
class hierarchy 406, 449
class keyword 109
Class Library 14
class library 407, 434, 622

add a reference 863
assembly 863

Class View (Visual Studio .NET) 396
“class-wide” information 390
Classes

Application 578
ArgumentException 832
ArgumentOutOfRangeException

382, 383, 825
Array 331, 817, 818, 820, 821
ArrayList 817, 822, 823, 825
BinaryFormatter 701
BindingNavigator 865
BindingSource 865, 869
BitArray 817
BufferedStream 673
Button 534
ButtonBase 534
CheckBox 539
CheckedListBox 570, 587, 591
ComboBox 570, 594
Console 71, 78, 80, 672, 673
Control 529, 530, 532, 627
Convert 84, 330
DataContext 862
DataGridView 858
DateTimePicker 580
DbContext 857, 862
Delegate 527
Dictionary 681, 682, 817
Directory 674, 678
DirectoryInfo 608, 674
DivideByZeroException 490,

492, 496
DropDownList 917
Enumerable 857
EventArgs 524
Exception 496
ExecutionEngineException 496
File 673, 674, 677, 682
FileInfo 608
FileStream 673
Font 541
Form 521, 522, 615
FormatException 490, 492
Graphics 556, 597
GroupBox 536
Hashtable 829, 830, 832
HttpSessionState927, 931, 931,

932, 933
Image 915

Classes (cont.)
ImageList 599, 603
IndexOutOfRangeException 298
InvalidCastException 464,

748, 816, 833
InvalidOperationException

821, 828, 839
ItemCheckEventArgs 592
KeyEventArgs 556, 557, 559
KeyNotFoundException 836
LinkedList 817, 836, 839
LinkedListNode 836
LinkLabel 570, 583, 584
List 817
List<T> 362, 363, 365, 817
ListBox 570, 587
ListBox.ObjectCollection 588
ListView 603
ListViewItem 604
Match 639, 662
Math 234, 235
MemoryStream 673
MenuStrip 571
MonthCalendar 579
MouseEventArgs 554
MulticastDelegate 527
NullReferenceException 496
NumericUpDown 520, 551
object 410, 434
ObjectCollection 588, 589, 591
ObservableCollection<T> 869,

873
OpenFileDialog 695, 700
OutOfMemoryException 496, 749
Page 913, 924, 929
PaintEventArgs 626
Panel 536
Path 603, 681
PictureBox 547, 617
Process 586
Queryable 857
Queue 817
RadioButton 539, 542
Random 245, 338
Rational 403
ResourceManager 549
Resources 549
SaveFileDialog 689
SolidBrush 556
SortedDictionary 817, 834, 835
SortedList 817, 817
SortedSet<T> 842
Stack 799, 817, 826
StackOverflowException 496
Stream 673, 673
StreamReader 673
StreamWriter 673
string 639
StringBuilder 639, 652, 655,

656, 657
SystemException 496
TabControl 609
TabPage 609
TextBox 520
TextReader 673
TextWriter 673
Timer 628
ToolStripMenuItem 571, 573
ToolTip 549, 550

Classes (cont.)
TreeNode 598, 599
TreeNodeCollection 598
TreeView 570, 598, 599
TreeViewEventArgs 599
Type 435, 464
UnauthorizedAccessException

603
UserControl 627
ValueType 660, 748

Clear method of class Array 821
Clear method of class ArrayList 822
Clear method of class Dictionary 682
Clear method of class Graphics 597
Clear method of class List<T> 362
Clear method of class
ObjectCollection 591

ClearSelected method of class
ListBox 588

click a Button 522, 534
Click event of class Button 534
Click event of class PictureBox 547
Click event of class
ToolStripMenuItem 573, 574

Clicks property of class
MouseEventArgs 554

client code 233, 445
client of a class 395
client of a method 233
client tier 901
ClipRectangle property of class
PaintEventArgs 626, 627

clock 628
cloning objects

shallow copy 435
close a project 39
close a window 522
close box 56, 57
Close method of class Form 522
closed tour 342
cloud computing 19
CLR (Common Language Runtime) 15,

497, 511
code 7
code-behind file 898
code reuse 406, 815
code snippets 123
code snippets (IDE)

switch 255
code walkthrough 66
coin tossing 245
Coin Tossing exercise 281
collapse a tree 43
Collapse method of class TreeNode

599
collapse node 598
collection 362, 790, 815
collection class 815
collection initializers 366
collision 829
Color structure 556
column 316
column index 321
column of a database table 851, 852
columns of a two-dimensional array 316
Combining Control Statements exercise

182
ComboBox class 520, 570, 594

DropDownStyle property 594, 595

Index 961

ComboBox class (cont.)
Items property 594, 595
MaxDropDownItems property 594
SelectedIndex property 595
SelectedIndexChanged event

595
SelectedItem property 595
Sorted property 595

ComboBox control
SelectedIndexChanged event

handler 873
ComboBox demonstration 594
ComboBox properties and an event 594
ComboBox used to draw a selected shape

595
ComboBoxStyle enumeration 595

DropDown value 595
DropDownList value 595
Simple value 595

comma (,) 196
comma in an argument list 80
comma-separated list 196

of parameters 238
of arguments 80, 83

command-line argument 236, 329, 330
Command-Line Arguments exercise 337
Command Prompt 66, 329
comment 66
commission 183, 337
CommissionEmployee class represents a

commission employee 411, 428
CommissionEmployee class that

extends Employee 457
Common Language Runtime (CLR) 15,

497, 511
Common Programming Errors overview

xxxiv
CompareTo method

of IComparable 796
of interface IComparable 476

CompareTo method of IComparable
777

CompareTo method of struct Char
662

comparison operator 476
comparison operators 90
compilation error 67
compile 72
compile-time error 67
compiler 8
compiler error 67
compile-time type safety 790
compiling 747
complex number 403
Complex Numbers (exercise) 403
ComplexNumber class 477
component 520
component selection drop-down list 45
component tray 550, 865
composite key 851
composite primary key 854
composition 386, 407, 409
compound assignment operators 171,

173
*= 171
\= 171
%= 171
+= 171
-= 171

compound interest 197, 228
Compound Interest Program exercise

(modified) 228
compound-interest

calculating with for 197
computer-assisted instruction (CAI)

exercise 284
computer-assisted instruction (CAI)

exercise: Reducing Student Fatigue
284

computer program 2, 27
computer programmer 2
computer simulator 346
computer simulator exercise 346
computer-assisted instruction (CAI)

exercise 284
Computerization of Health Records 141
computers in education 284
Concat method of class string 650
concatenate strings 392
concrete class 448
concrete derived class 453
condition 90, 200
conditional AND (&&) operator 211,

212, 213, 360
truth table 211

conditional expression 149
conditional operator, ?: 149, 174
conditional OR, || 211, 212

truth table 212
confusing the equality operator == with

the assignment operator = 90
connect to a database 857, 859
connection string 860, 864
console app 66, 72
Console class 672, 673

ReadLine method 114
console window 66, 78, 79
Console.Write method 80
Console.WriteLine method 71, 78
const

keyword 208, 235, 291
const keyword 393
constant 208, 235, 291

declare 291
must be initialized 291

constant integral expression 201, 208
constant run time 720
constant string expression 201, 208
constant variable 292
Constants

Math.PI 103
Nan of structure Double 490, 511
NegativeInfinity of structure
Double 490

PositiveInfinity of structure
Double 490

constituent controls 627
constrained version of a linked list 762
constructor 125

naming 126
parameter list 126

constructor constraint (new()) 798
constructor initializer 382, 422

with keyword base 422
container 520, 521
Contains method of class ArrayList

822, 825
Containsmethod of class List<T> 362,

365

Contains method of class Stack 828
ContainsKey method of class
Dictionary 681

ContainsKey method of Hashtable
832

context-sensitive help 46
contextual keyword 119
contextual keywords 68, 69
continue keyword 209
continue statement 209, 210, 229, 230

terminating an iteration of a for
statement 210

contravariance 842
control 38, 44, 520
control boundary 627
Control class 529, 627

Anchor property 532
BackColor property 530
BackgroundImage property 530
Dock property 532
Enabled property 530
Focused property 530
Font property 530
ForeColor property 530
Hide method 530
KeyDown event 556, 557
KeyPress event 556, 557
KeyUp event 556, 557
Location property 532
MaximumSize property 532
MinimumSize property 532
MouseDown event 554
MouseEnter event 554
MouseHover event 554
MouseLeave event 554
MouseMove event 554
MouseUp event 554
MouseWheel event 554
OnPaint method 626
Padding property 532
Select method 530
Show method 530
Size property 532
TabIndex property 530
TabStop property 530
Text property 530
Visible property 530

control layout and properties 529
Control property of class
KeyEventArgs 557, 559

control statement 146, 147, 190
nesting 146, 218
stacking 146, 218

control structure 144
control variable 154, 190, 191, 192, 193
controller logic 901
Controls 20, 24

BindingNavigator 865
Button 20, 24, 918
Canvas 24
CheckBox 64
DataGridView 858
DropDownList 917
EntityDataSource 937
GroupBox 20, 24, 63
HyperLink 918
Image 915
Label 38, 47, 50
MenuStrip 61

962 Index

Controls (cont.)
MonthCalendar 62
Panel 20, 63
PictureBox 38, 47, 53
RadioButton 20, 24, 25, 63
RadioButtonList 918
RegularExpressionValidator

922
RequiredFieldValidator 921,

922
RichTextBox 61
TextBlock 24
TextBox 63
TrackBar 64

Controls property of class GroupBox
536, 537

Controls property of class Panel 536
ControlToValidate property of an

ASP.NET validation control 922
converge on a base case 263
convert

an integral value to a floating-point
value 243

Convert class 84, 91, 330
ToDecimal method 133
ToInt32 method 330

Converting Grade Averages to a Four-
Point Scale exercise 281

cookie 926, 926
deletion 926
expiration 926
expiration date 926
header 926

Cooking with Healthier Ingredients
exercise 667

Copy method of class Array 820
Copy method of class File 674
copying objects

shallow copy 435
CopyTo method of class string 642
Cos method of Math 235
cosine 235
Count extension method of interface
IEnumerable<T> 361

Count method (LINQ) 681
Count property

of Hashtable 833
Count property of class ArrayList 822,

825
Count property of class
HttpSessionState 931, 933

Count property of class List<T> 364
counter 154, 160, 167
counter-controlled repetition 154, 163,

166, 167, 190, 191, 192, 346
with the for repetition statement

192
with the while repetition statement

190
covariance 841
covariant

interface 841
CPU (central processing unit) 7
craps (casino game) 245, 250, 281, 338
Craps class simulates the dice game craps

251
Craps game exercise 338
Craps Game Modification exercise 281
create a reusable class 622

create an object of a class 111
Create and write to a sequential-access file

685
Create method of class File 674
CreateDirectory method of class
Directory 674

CreateInstance method of class
Array 821

CreateText method of class File 674
creating a child Form to be added to an

MDI Form 614
creating a generic method 806
creating and initializing an array 289
creating GradeBook object 157, 165
credit inquiry 696
Credit Limit Calculator exercise 183
credit limit on a charge account 183
.cs file name extension 43
.csproj file extension 54
CSS attribute 910
CSS class 910
Ctrl key 204, 556
Ctrl + z 204
Current property of IEnumerator 820
current time 629
CurrentValue property of class
ItemCheckEventArgs 592

cursor 71, 78
custom control 626, 627

creation 627, 629
Custom palette 50
Custom tab 50
Custom value of enumeration
DateTimePickerFormat 580

CustomFormat property of class
DateTimePicker 581

customize a Form 44
customize Visual Studio IDE 40

D
D format specifier 132, 294
dangling-else problem 150, 185

exercise 185
data 2, 27
data abstraction 395
data binding 857
data hierarchy 3, 671
data in support of actions 395
data representation 395
data source 355
data source (entity data model) 864
Data Source Configuration Wizard 864
Data Sources window 864, 864
data structure 286, 747
data validation 122
database 5, 29, 672, 850

add to a project 859
saving changes in LINQ to Entities

869
schema 852

database connection 859
database management system (DBMS)

672, 850
database schema 852, 856
database table 851
DataBind method of a GridView 941
DataContext class 862

SaveChanges method 857

DataGridView class 858
DataGridView control 858, 864
DataSource property

BindingSource class 869
Date property of a DateTime 580
DateChanged event of class
MonthCalendar 579, 580

DateTime structure 629
AddDay method 583
AddYears method 583
DayOfWeek property 583
Now property 629, 913
ToLongDateString method 583
ToLongTimeString method 629

DateTimePicker class 580
CalendarForeColor property 581
CalendarMonthBackground prop-

erty 581
CustomFormat property 581
Format property 580, 581
MaxDate property 581, 583
MinDate property 581, 583
ShowCheckBox property 581
ShowUpDown property 581
Value property 580, 581, 583
ValueChanged event 581

DateTimePickerFormat enumeration
580
Custom value 580
Long value 580
Short value 580
Time value 580

DayOfWeek enumeration 583
DayOfWeek property of structure
DateTime 583

DB2 850
DbContext class 857, 868

SaveChanges method 869
DBExtensions class 869

Load extension method 869, 871
DBMS (database management system)

672, 850
dealing 299
debug a web application 912
DEBUG menu 40
Debugging 40
decimal 128, 129
decimal digit 3, 670
decimal point 165
decimal simple type 83, 128, 953
DecimalPlaces property of class
NumericUpDown 551

decision 90, 147
decision symbol 147
declaration 82

class 68, 70
method 71

declarative programming 353
declare a constant 291
declare a method of a class 108
decrement 190
decrement operator, -- 171, 172
decrypt 188
deeply nested statement 219
default

case in a switch 205
keyword 205

default case 249
default constructor 385, 413
default event of a control 527

Index 963

default initial value of a field 120
default settings 21, 25
default type constraint (object) of a type

parameter 802
default value 175
default value for optional parameter 260,

261
deferred execution 366
definite repetition 154
definitely assigned 156, 253
delegate 526

Delegate class 527
MulticastDelegate class 527
registering an event handler 526

Delegate class 527
delegate keyword 526
Delete method of class Directory 674
Delete method of class File 674, 682
deletion 751
delimited comments 67
dependent condition 212
dequeue operation of queue 766
derived class 406
descending modifier of a LINQ
orderby clause 356

deselected state 542
Deserialize method of class
BinaryFormatter 701

deserialized object 701
design mode 56
design process 10, 28
Design view 36, 48
destructor 390
dialog 36
DialogResult enumeration 547, 690
diameter 103
diamond 145, 147
diamond symbol 229
dice game 250
Dice Rolling exercise 338
dictionary 834, 931
Dictionary(Of K, V) generic class

681, 817
Add method 681
Clear method 682
ContainsKey method 681
Keys property 682
Remove method 682

DictionaryEntry structure 833
digit 83
digits reversed 281
direct base class 406, 408
Directory class 674, 678

CreateDirectory method 674
GetFiles method 681

Directory class methods (partial list)
674

DirectoryInfo class 608, 674
Exists method 609
FullName property 608
GetDirectories method 608
GetFiles method 608
Name property 608
Parent property 609

disk 3
display output 94
Display property of an ASP.NET

validation control 922
Displaying a Bar Chart exercise 228

Displaying a Diamond exercise 229
Displaying a Square of Any Character

exercise 280
displaying line numbers in the IDE xlii
Displaying Square of Asterisks exercise

280
Displaying the Decimal Equivalent of a

Binary Number exercise 186
Displaying Triangles exercise 228
Dispose method of interface
IDisposable 477, 504

Distance Between Two Points exercise
281

distance between values (random
numbers) 250

Distinct extension method of interface
IEnumerable<T> 361

Distinct query operator (LINQ) 681
divide-and-conquer approach 232, 233
divide by zero 161, 490, 492
DivideByZeroException class 490,

492, 493, 496
division 6, 87
division by zero is undefined 395
.dll file 76, 623
DNS (Domain Name System) server 899
do keyword 199
do...while repetition statement 146,

199, 200, 201, 221
dock a control 531
Dock property of class Control 532, 866
docking demonstration 532
DOCUMENT (representing a Web Form

Properties window) 908
domain name system (DNS) server 899
dotted line in the UML 145
Double 796
(double) cast 164
double equals, == 90
double-precision floating-point number

128
double quote, " 71, 79
double selection 220
double-selection statement 146, 167
double simple type 83, 162, 953
Double struct 747
Double.NaN 490, 511
Double.NegativeInfinity 490
Double.PositiveInfinity 490
doubly linked list 761
down-arrow button 50
downcast 463, 833
downcasting 445
drag the mouse 45
Draw event of class ToolTip 550
draw on control 627
DrawEllipse method of class
Graphics 597

DrawPie method of class Graphics 598
DrawRectangle method of class
Graphics 598

DreamSpark xxxv
drop-down list 520, 594
DropDown value of enumeration
ComboBoxStyle 595

DropDownList ASP.NET web control
917

DropDownList value of enumeration
ComboBoxStyle 595

DropDownStyle property of class
ComboBox 594, 595

dual-core processor 7, 28
dummy value 159
duplicate elimination 776
Duplicate Elimination exercise 337
Duplicate Word Removal exercise 370
dynamic binding 463
dynamic data structures 747
dynamic memory allocation 749, 750
dynamic resizing 352
dynamic resizing of a List collection 363
dynamically linked library 76, 623

E
E formatting code 132
Ecofont 568
EDIT menu 39
editable list 595
EF (ADO.NET Entity Framework) 851
efficiency of

binary search 726
bubble sort 744
insertion sort 734
linear search 721
merge sort 740
selection sort 730

Eight Queens exercise 342
Brute Force Approaches 342

electronic mail (e-mail) 11
element of an array 286
element of chance 245
eligible for destruction 389, 393
eligible for garbage collection 390, 393
eliminate resource leak 498
ellipsis button 51
else 148
e-mail (electronic mail) 11
embedded systems 3
Employee abstract base class 453, 472
Employee class with FirstName,
LastName and MonthlySalary
properties 357

Employee class with references to other
objects 388

Employee hierarchy test application 460
employee identification number 5
empty set 403
empty statement 152
empty statement (semicolon by itself) 93,

200
empty string

"" 124
string.Empty 124

EmptyStackException indicates a
stack is empty 801

Enabled property of class Control 530
encapsulation 10, 118, 122, 466
encrypt 188
“end of data entry” 159
end-of-file (EOF)

indicator 204
end-of-file marker 672
EndEdit method of class
BindingSource 869

EndsWith method of class string 645,
646

964 Index

Enforcing Privacy with Cryptography
exercise 188

English-like abbreviations 7
Enhancing Class Date (exercise) 403
enqueue operation of queue 766
EnsureCapacity method of class
StringBuilder 653

Enter (or Return) key 48, 71
enter data from the keyboard 520
entities in an entity data model 861
entity connection string 860
Entity Data Model 856
entity data model 851, 868

create from database 858
data source for data binding 864
entities 861

entity data model (ADO.NET Entity
Framework) 856

EntityDataSource ASP.NET data
control 937

entity-relationship diagram 855
entry point 216
entry point of an application 236
enum 253

keyword 253
Enumerable class 857
enumeration 253
enumeration constant 254
enumerations

ComboBoxStyle 595
DateTimePickerFormat 580
DayOfWeek 583
MdiLayout 616
SelectionMode 587

enumerator 815, 820
fail fast 821
of a LinkedList 839

equal likelihood 247
Equals method of an anonymous type

877
Equals method of class object 435
Equals method of class string 643
Error List window 77
Error property of class Console 672
ErrorMessage property of an ASP.NET

validation control 922
escape character 79
escape sequence 79, 83

carriage return, \r 80
escape character, \ 80
horizontal tab, \t 79
newline, \n 79, 83

Euler 340
Even or Odd exercise 280
event 522
event driven 12, 28, 522
event handler 522, 526
event handling 522
event handling model 522
event multicasting 527
event sender 526
EventArgs class 524
events 12
events at an interval 628
examination-results problem 168
exception 84, 296, 298, 298, 487

ArgumentException 832
ArgumentOutOfRangeException

825

exception (cont.)
handler 298
handling 296
IndexOutOfRangeException 298
InvalidCastException464, 816,

833
InvalidOperationException

821, 828, 839
KeyNotFoundException 836
Message property 299
parameter 298

Exception Assistant 494
Exception class 496
exception handler 487, 496
exception handling 84
.exe file name extension 76
executable 76
executable file 15
execute 3
execute an application 72
ExecutionEngineException class

496
exhausting memory 265
Exists method of class Directory 674
Exists method of class
DirectoryInfo 609

Exit method of class Application
578, 591

exit point 216
of a control statement 146

Exp method of Math 235
expand a tree 43
Expand method of class TreeNode 600
expand node 598
ExpandAll method of class TreeNode

600
expiration date of a cookie 926
explicit conversion 165
explicit type argument 795
explicitly shut down a Windows 8 UI app

27
exponential method 235
exponentiation 349
Exponentiation exercise 279
exponentiation operator 198
expression 85
extend a class 406
extensibility 445
extensible language 111
extension method 361, 857
extension methods (Linq to Entities) 868

F
F formatting code 132
factorial 187, 228, 263
Factorial method 263, 264
Factorials exercise 187, 228
Fahrenheit equivalent of a Celsius

temperature 280
“FairTax” 230
false keyword 90, 148, 149
fatal error 152, 349
fault tolerant 84
fault-tolerant program 298, 487
field 4, 116, 671

in a database table 851
field of a class 5
field width 198

fields 236, 256
FIFO (first-in, first-out) 396
file 5, 672

as a collection of bytes 672
File class 673, 677

Delete method 682
File class methods (partial list) 674
FILE menu 39
File name extensions

.aspx 898

.cs 43

.csproj 54
File Name property of a file in the

Solution Explorer 73
FileAccess enumeration 690
FileInfo class 608

FullName property 608
Name property 608

file-position pointer 695
files 670
FileStream class 673, 690, 695, 706

Seek method 701
FillEllipse method of class
Graphics 556, 598

FillPie method of class Graphics 598
FillRectangle method of class
Graphics 598

filter a collection using LINQ 352
final state in the UML 145, 218
final value 191
Finalize method

of class object 435
finally block 493, 498
finally blocks always execute, even

when no exception occurs 499
Find method of class LinkedList 840
Find the Error exercise 182, 283
Find the Largest Number exercise 184
Find the Minimum exercise 280
Find the Smallest Value exercise 227
Find the Two Largest Numbers exercise

184
Finished design of MasterDetail app 882
First extension method of interface
IEnumerable<T> 361

first-in, first-out (FIFO) data structure
396, 766

first refinement 159, 167
FirstDayOfWeek property of class
MonthCalendar 580

FirstNode property of class TreeNode
599

Fisher-Yates shuffling algorithm 302
fixed text 85

in a format string 81
flag 159
FlatStyle property of class Button 534
float simple type 83, 128, 952
floating-point literal 128
floating-point number 158, 162, 163

division 165
double precision 128
double simple type 128
float simple type 128
single precision 128

floating-point 128
floating-point literal

double by default 128
Floor method of Math 235

Index 965

flow of control 153, 163
in the if statement 147
in the if...else statement 148
in the while statement 153

focus 521
Focused property of class Control 530
Font class 541

Style property 541
Font dialog 51
Font property of a Label 51
Font property of class Control 530
Font property of class Form 522
font size 51
font style 51, 540
Font window 52
FontStyle enumeration 541
for keyword 191
for repetition statement 146, 191, 192,

194, 195, 196, 198, 221
activity diagram 195
header 193

foreach statement 303, 821, 823, 828
on rectangular arrays 325

ForeColor property of class Control
530

foreign key 854, 856
form 38
form background color 49
Form class 521

AcceptButton property 522
ActiveMdiChild property 615
AutoScroll property 522
CancelButton property 522
Close method 522
Font property 522
FormBorderStyle property 522
Hide method 522
IsMdiChild property 615
IsMdiContainer property 614,

615
LayoutMdi method 615, 616
Load event 522
MaximumSize property 532
MdiChildActivate event 615
MdiChildren property 615
MdiParent property 614
MinimumSize property 532
Padding property 532
Show method 522
Text property 522

Form properties, methods and events 522
Form1.cs 56
formal parameter 238
format item 81
FORMAT menu 40
Format method of String 374
Format property of class
DateTimePicker 580, 581

format specifier 132
F for floating-point numbers 165

format specifier D 294
format specifier table 132
format string 81
FormatException class 490, 492, 493
FormatString 657
formatted output

field width 198
left justify 198
right justify 198

formatting
display formatted data 80

FormBorderStyle property of class
Form 522

formulating algorithms 154
forward reference 761
fragile software 427
Framework Class Library 796
from clause of a LINQ query 355
FullName property of class
DirectoryInfo 608

FullName property of class FileInfo
608

FullName property of class Type 435
FullPath property of class TreeNode

599
FullStackException indicates a stack

is full 801
fully qualified class name 116, 243, 522,

523, 623
function 233
function key 559

G
G formatting code 132
Game of Craps exercise 338
game playing 245
garbage collection 498
garbage collector 389, 390
Gas Mileage exercise 183
Gates, Bill 14
general catch clause 493
general class average problem 158
generic class 362, 790, 799
Generic classes

Dictionary 817
LinkedList 817, 836
LinkedListNode 836
List 817
Queue 817
SortedDictionary 817, 834, 835
SortedList 817
SortedSet<T> 842
Stack 817

generic interface 790
Generic List<T> collection

demonstration 363
generic method 790, 793

creating 806
implementation 793

generics 790
class 790
class constraint 797
compile-time type safety 790
constructor constraint (new()) 798
default type constraint (object) of a

type parameter 802
interface 790
interface constraint 797
method 793
overloading 798
reference type constraint class 798
reusability 799
scope of a type parameter 802
specifying type constraints 796
Stack class 799
type argument 795, 802
type checking 790

generics (cont.)
type constraint of a type parameter

796, 797
type parameter 794
type parameter list 794
value type constraint struct 798
where clause 797

get accessor of a property 108, 118, 121
get keyword 119
GetCreationTime method of class
Directory 674

GetCreationTime method of class
File 674

GetDirectories method of class
Directory 603, 674

GetDirectories method of class
DirectoryInfo 608

GetEnumerator method of interface
IEnumerable 820

GetExtension method of class Path
681

GetFiles method of class Directory
674, 681

GetFiles method of class
DirectoryInfo 608

GetHashCode method of class Object
830

GetItemChecked method of class
CheckedListBox 592

GetLastAccessTime method of class
Directory 674

GetLastAccessTime method of class
File 674

GetLastWriteTime method of class
Directory 674

GetLastWriteTime method of class
File 674

GetLength method of an array 320
GetNodeCount method of class
TreeNode 600

GetObject method of class
ResourceManager 549

GetSelected method of class ListBox
588

GetType method of class object 435,
464

GIF (Graphic Interchange Format) 54
gigabyte 6
global namespace 116
Global Warming Facts Quiz 230
Good Programming Practices overview

xxxiv
goto elimination 144
goto statement 144
GPS device 6
graph 228
graph information 294
Graphic Interchange Format (GIF) 54
graphical user interface (GUI) 14, 36,

244, 519
Graphics class 556, 597

Clear method 597
DrawEllipse method 597
DrawPie method 598
DrawRectangle method 598
FillEllipse method 556, 598
FillPie method 598
FillRectangle method 598

966 Index

Graphics property of class
PaintEventArgs 626, 627

Greatest Common Divisor exercise 281
GridView ASP.NET data control 934
GridView class

DataBind method 941
gross pay 184
GroupBox class 20
GroupBox control 63, 536

Controls property 537
properties 536
Text property 536

guard condition 147, 149
Guess the Number exercise 281

enhanced 281
Guestbook Application Modification

exercise 948
guestbook on a website 933
GUI (graphical user interface) 14, 36,

519
GUI control 520
GUI control, basic examples 520

H
half word 349
handle an event 526
handle an exception 491
hard drive 2, 7, 28
hardware 2, 7
has-a relationship 386, 406
hash function 830
hash table 829
hashing 829
Hashtable class 817, 817, 829

ContainsKey method 832
Count property 833
method Add 832
property Values 833

head of a queue 747, 766
Height property of structure Size 532
HELP menu 40, 46
helper method 207, 775
HelpLink property of Exception 506
heuristic 341
hexadecimal (base 16) number system

282, 349
“hidden” fields 256
hide implementation details 233, 376,

394, 396
Hide method of class Control 530
Hide method of class Form 522
hiding implementation details 830
hierarchical boss method/worker method

relationship 233
high-level language 8
horizontal tab 79
host 899
hostname 899
hot key 570
HourlyEmployee class that extends
Employee 455

HTML (HyperText Markup Language)
11, 899

HTTP (HyperText Transfer Protocol)
11, 899, 925

HttpSessionState class 927, 931,
932, 933
Add method 932

HttpSessionState diagram (cont.)
Count property 931
IsNewSession property 931
Keys property 931, 933
SessionID property 931
Timeout property 931

HugeInteger Class 404
exercise 404

HyperLink ASP.NET web control 918
HyperText Markup Language (HTML)

11, 899
HyperText Transfer Protocol (HTTP)

11, 899, 925
Hypotenuse of a Right Triangle exercise

279

I
IBM

DB2 850
ICollection interface 816
IComparable interface 476, 777
IComparable<T> interface 796, 842

CompareTo method 796
IComparer<T> interface 842
IComponent interface 476, 520
icon 40
IDE (Integrated Development

Environment) 19, 34
identifier 69, 82
identity column in a database table 853
IDictionary interface 816
IDisposable interface 477, 504

Dispose method 477
IE10 (Internet Explorer 10) 17
IEC 60559 952
IEEE 754 952
IEnumerable interface

method GetEnumerator 820
IEnumerable<T> interface 357, 816,

820, 857
Any extension method 361
Count extension method 361
Distinct extension method 361
First extension method 361

IEnumerator interface 477, 820
if single-selection statement 90, 146,

147, 201, 220, 221
activity diagram 147

if...else double-selection statement
146, 148, 163, 201, 220
activity diagram 148

ignoring array element zero 298
IIS Express 904, 912
IList interface 816
Image ASP.NET web control 915
Image Collection Editor 604
Image property of class PictureBox 53,

547
image resource 549
ImageIndex property of class
ListViewItem 604

ImageIndex property of class TreeNode
599

ImageList class 599, 603
Images property 604

ImageList property of class
TabControl 611

ImageList property of class TreeView
599

Images property of class ImageList
604

ImageUrl property of an Image web
control 915

imaginary part of a complex number 403
immutable (strings) 392
immutable string 642
imperative programming 353
implement

an interface 443, 467, 474
multiple interfaces 471

implementation-dependent code 376
implementation of a function 453
implementing a dispose method (link to

MSDN article) 477
Implementing a queue by inheriting from

class List 767
Implementing a stack by inheriting from

class List 762
implicit conversion 165
implicit conversions between simple types

242
implicitly typed local variable 355, 356,

362
improve performance of bubble sort 744
In property of class Console 672
increment 190, 196

a control variable 191
expression 210
of a for statement 194

increment and decrement operators 172
increment operator, ++ 172
Increment property of class
NumericUpDown 551

indefinite repetition 159
indentation 71, 148, 150

indent size 70
independent software vendor (ISV) 434
index 286, 296
Index property of class
ItemCheckEventArgs 592

index zero 286
indexer 642

of a Hashtable 832
of an ArrayList 825

IndexOf method of class Array 821
IndexOf method of class ArrayList

822, 825
IndexOf method of class List<T> 362
IndexOf method of class string 646
IndexOfAny method of class string

646
IndexOutOfRangeException class

296, 298, 496
indirect base class 406, 408
infer a local variable’s type 355
infinite loop 153, 164, 194, 265
infinite recursion 265
infinite series 229
Infinite Series: ex exercise 187
Infinite Series: Mathematical Contant e

exercise 187
infinity symbol 856
information hiding 10, 118, 394, 466
information tier 901
inherit from class Control 627
inherit from Windows Form control 627

Index 967

inherit interface 484
inheritance 10, 406, 410, 434

examples 407
hierarchy 407
hierarchy for university Communi-
tyMembers 408

single 406
Inheritance hierarchy for class Shape 408
inheritance with exceptions 496
Init event of a Web Form 911
Init event of an ASP.NET web page 913
initial state 145
initial state in the UML 218
initial value of control variable 190
InitialDelay property of class
ToolTip 550

initialization phase 159
initializer list 290
Initializing jagged and rectangular arrays

319
initializing readonly arrays 823
Initializing the elements of an array with

an array initializer 290
initializing two-dimensional arrays in

declarations 319
inlining method calls 466
InnerException property of
Exception 505, 509

innermost set of brackets 297
inorder traversal of a binary tree 770
input data from the keyboard 95
input device 6
input/output operation 345
input–output operations 145
input unit 6
Insert method of class ArrayList 822
Insert method of class List<T> 363
Insert Separator option 573
Insert Snippet window 123
inserting separators in a menu 573
insertion point 750, 751
insertion sort algorithm 730, 734
instance 9
instance of a class 117
instance variable 108, 116, 117, 129, 235
instance variables 10
instantiate an object of a class 108
instruction execution cycle 347
int simple type 83, 162, 171, 952
Int16 struct 747
Int32 796
Int32 struct 747
Int64 struct 747
integer 81

division 86, 158
mathematics 395
value 83

integer array 290
Integer Division exercise 182
integer division without exception

handling 488
integer division yields an integer result

164
IntegerPower method 279
Integrated Development Environment

(IDE) 19, 34
IntelliSense 74, 355, 851, 856
interactions among objects 395
interest rate 197

interface 357, 443, 468, 474
declaration 467

interface constraint 797
interface keyword 467, 475
Interfaces

ICollection 816
IComparable 476, 777, 796
IComparable<T> 842
IComparer<T> 842
IComponent 476, 520
IDictionary 816
IDisposable 477, 504
IEnumerable 816, 820, 857
IEnumerable<T> 357, 857
IEnumerator 477, 820
IList 816
IQueryable<T> 857
ISerializable 702

internal data representation 396
Internet 11
Internet Explorer 10 (IE10) 17
Internet Information Services (IIS) 899
interpreter 8
intersection of two sets 403
Interval property of class Timer 628
InvalidCastException 464, 748
InvalidCastException class 816, 833
InvalidOperationException class

821, 828, 839
Invoice class implements IPayable

470
invoke a method 124, 233
iOS 16
IP address 899
IPayable interface declaration 469
IPayable interface hierarchy UML class

diagram 469
IQueryable<T> interface 857
is-a relationship 406, 444
is operator 463
IsDigit method of struct Char 662
ISerializable interface 702
IsLetter method of struct Char 662
IsLetterOrDigit method of struct
Char 662

IsLower method of struct Char 662
IsMdiChild property of class Form 615
IsMdiContainer property of class Form

614, 615
IsNewSession property of class
HttpSessionState 931

IsPostBack property of class Page 924
IsPunctuation method of struct
Char 662

IsSymbol method of struct Char 662
IsUpper method of struct Char 662
IsValid property of class Page 924
IsWhiteSpacemethod of struct Char

662
ItemActivate event of class ListView

604
ItemCheck event of class
CheckedListBox 591, 592

ItemCheckEventArgs class 592
CurrentValue property 592
Index property 592
NewValue property 592

Items property of class ComboBox 594,
595

Items property of class ListBox 587,
588

Items property of class ListView 604
ItemSize property of class TabControl

611
iterating (looping) 157
iteration

of a loop 190, 210
iteration (looping)

of a for loop 297
iteration statement 146
iteration variable 303
iterative 265

J
jagged array 316, 317, 319
Jagged Arrays exercise 337
Java programming language 14
JavaScript 918
JIT (just-in-time) compiler 15
joining database tables 855, 876

LINQ to Entities 875
Joint Photographic Experts Group

(JPEG) 54
JPEG (Joint Photographic Experts

Group) 54
just-in-time (JIT) compiler 15

K
key code 559
key data 559
key event 556, 557
key value 559, 776
key–value pair 931
keyboard 2, 28, 81, 520
keyboard shortcuts 570
KeyChar property of class
KeyPressEventArgs 556

KeyCode property of class
KeyEventArgs 557

KeyData property of class
KeyEventArgs 557

KeyDown event of class Control 556,
557

KeyEventArgs class 556
Alt property 557, 559
Control property 557, 559
KeyCode property 557
KeyData property 557
KeyValue property 557
Modifiers property 557
Shift property 557, 559

KeyEventArgs properties 557
KeyNotFoundException class 836
KeyPress event of class Control 556,

557
KeyPressEventArgs class 556

KeyChar property 556, 557
KeyPressEventArgs properties 557
keys

function 559
modifier 556

Keys enumeration 556
Keys property of class Dictionary 682
Keys property of Hashtable 832
Keys property of HttpSessionState

class 931, 933

968 Index

KeyUp event of class Control 556, 557
KeyValue property of class
KeyEventArgs 557

Keywords 68, 146
abstract 423, 449
as 464
base 409, 422, 431, 433
bool 149
break 205
case 205
char 83
class 68, 109
const 208, 235, 291, 393
continue 209
decimal 83, 128
default 205
delegate 526
do 199
double 128
else 148
enum 253
false 149
float 83
for 191
get 119
if 90, 147, 148
interface 467
is 463
namespace 623
new 111, 125, 288, 289, 318
null 120, 124, 175, 288
operator 478
out 266
override 299, 414, 422, 423
params 327
partial 524, 913
private 118, 376, 409
protected 376, 409
public 70, 109, 118, 238, 376, 409
readonly 394
ref 266, 305
return 119, 233, 241
sealed 466
set 119
static 198
struct 660
switch 205
this 377, 393
true 149
value (contextual) 119
var 355
virtual 423
void 71, 109
while 152, 199

Knight’s Tour exercise 340
Brute Force Approach 341
Closed Tour Test 342

Koenig, Andrew 487

L
Label 51
label 533
Label class 38, 47, 50
Label control 520, 533
label in a switch 205, 206
lambda expression 868, 873, 874

lambda operator 868
lambda operator 868

language independence 15
Language Integrated Query (LINQ) 352
language interoperability 15
LargeImageList property of class
ListView 604

last-in first-out (LIFO) order 805
Last property of class LinkedList 840
last-in, first-out (LIFO) data structure

762
LastIndexOf method of class Array

821
LastIndexOf method of class string

646, 648
LastIndexOfAny method of class
string 646

last-in-first-out (LIFO) 241
last-in-first-out (LIFO) data structure

395
LastNode property of class TreeNode

599
late binding 463
layout, control 529
LayoutMdi method of class Form 615,

616
leading 0 294
leaf node in a binary search tree 769, 775
left brace, { 70, 71, 82
left child 769
left justify output 198
left subtree 769, 775
left-to-right evaluation 89
Length property of an array 287
Length property of class string 642,

643
Length property of class
StringBuilder 653

let clause of a LINQ query 366
letter 3, 670
level of indentation 148
level-order binary tree traversal 777
LIFO (last-in-first-out) order 241, 395,

805
line numbers xlii
linear collection 749
linear data structure 769
linear run time 720
linear search algorithm 717, 726
link 750, 769
link for a self-referential class 748
LinkArea property of class LinkLabel

584
LinkBehavior property of class
LinkLabel 584

LinkClicked event of class LinkLabel
583, 584

LinkColor property of class LinkLabel
584

linked list 747, 749, 758
linked list data structure 747
linked list in sorted order 750
LinkedList generic class 817, 836

AddFirst method 839
AddLast method 839
method Find 840
method Remove 840
property First 840
property Last 840

LinkedListNode class
property Next 836

LinkedListNode diagram (cont.)
property Previous 836
property Value 836

LinkedListNode generic class 836
LinkLabel class 570, 583

ActiveLinkColor property 584
LinkArea property 584
LinkBehavior property 584
LinkClicked event 583, 584
LinkColor property 584
LinkVisited property 584
Text property 584
UseMnemonic property 584
VisitedLinkColor property 584

LinkLabel properties and an event 584
LinkVisited property of class
LinkLabel 584

LINQ (Language Integrated Query) 352,
677
anonymous type 361
ascending modifier 356
Count method 681
deferred execution 366
descending modifier 356
Distinct query operator 681
from clause 355
let clause 366
LINQ to Entities 353, 851
LINQ to Objects 352, 851
LINQ to XML 353
orderby clause 356
provider 353
query expression 352
range variable 355
Resource Center 889
select clause 356
where clause 356

LINQ provider 353
LINQ query syntax 857
LINQ to Entities 353, 851, 852, 868

data binding 857
DbContext class 857, 862
Object data source 864
primary keys 851
saving changes back to a database 869

Linq to Entities
extension methods 868

LINQ to Objects 352, 678, 851, 857
using a List<T> 365
using an array of Employee objects

358
using an int array 353

LINQ to SQL 851
LINQ to XML 353
LINQ usage throughout the book 352
LINQPad (www.linqpad.net) 889
Linux 16
list, editable 595
List<T> generic class 362, 817

Add method 363
Capacity property 362, 365
Clear method 362
Contains method 362, 365
Count property 364
IndexOf method 362
Insert method 363
Remove method 362, 364
RemoveAt method 363, 364
RemoveRange method 363

www.linqpad.net

Index 969

List<T> generic class (cont.)
Sort method 363
TrimExcess method 363

List<T> methods 362
ListBox control 520, 570, 587

ClearSelected method 588
GetSelected method 588
Items property 588
MultiColumn property 587
SelectedIndex property 588
SelectedIndexChanged event

587
SelectedIndices property 588
SelectedItem property 588
SelectedItems property 588
SelectionMode property 587
Sorted property 588

ListBox properties, method and event
587

ListBox.ObjectCollection class
588

ListNode, List and
EmptyListException class
declarations 751

ListView control 603
Activation property 603
CheckBoxes property 603
ItemActivate event 604
Items property 604
LargeImageList property 604
MultiSelect property 603
SelectedItems property 604
SmallImageList property 604
View property 603

ListView displaying files and folders
605

ListView properties and events 604
ListViewItem class 604

ImageIndex property 604
literal 71
literals

decimal 128
floating point 128
int 128

live-code approach xxxiii
Load event 923
Load event of an ASP.NET web page 923
Load event of class Form 522
Load extension method of class
DBExtensions 869, 871

load factor 829
load/store operations 345
local variable 116, 156, 255, 256, 257,

379
local variable “goes out of scope” 670
location in computer’s memory 85
Location property of class Control 532
Log method of Math 235
logarithm 235
logarithmic run time 726
logic error 84, 152, 192
logical decision 3
logical negation, ! 213, 214

operator truth table 214
logical operators 211, 213, 214
logical output operation 673
logical unit 6
logical XOR, ^ 213
login (ASP.NET) 942

Logo language 339
long simple type 952
long-term retention of data 670
Long value of enumeration
DateTimePickerFormat 580

loop 146, 153, 157
body 199
continuation condition 146
counter 190
infinite 153, 164
nested within a loop 167

loop-continuation condition 190, 191,
192, 194, 196, 199, 200, 210

lower camel casing 83
lowercase letter 4, 68

M
m-by-n array 317
Mac OS X 16
machine language 7
machine language programming exercise

344
magic numbers 292
magnetic disk 670
magnetic tape 670
Main method 70, 72, 82, 111
maintainability 747
make your point (game of craps) 250
making decisions 95
managed code 15
“manufacturing” section of the computer

6
many-to-many relationship 856, 861
mask the user input 533
master pages 942
master/detail view 879
Match class 639, 662
Math class 234, 235

Abs method 235
Ceiling method 235
Cos method 235
E constant 235
Exp method 235
Floor method 235
Log method 235
Max method 235
Min method 235
PI constant 235, 275
Powmethod 198, 199, 234, 235, 275
Sin method 235
Sqrt method 234, 235, 242, 511
Tan method 235

Math.PI constant 103
Max method of Math 235
MaxDate property of class
DateTimePicker 581, 583

MaxDate property of class
MonthCalendar 580

MaxDropDownItems property of class
ComboBox 594

maximum 184
Maximum method 236
Maximum property of class
NumericUpDown 551

MaximumSize property of class Control
532

MaximumSize property of class Form
532

MaxSelectionCount property of class
MonthCalendar 580

.mdf file extension 852
MDI (Multiple Document Interface) 614
MDI (Multiple Document Interface)

window 520
MDI child 621
MDI parent and MDI child properties,

method and event 615
MDI parent window class 618
MDI title bar 616
MdiChildActivate event of class Form

615
MdiChildren property of class Form 615
MdiLayout enumeration 616

ArrangeIcons value 616
Cascade value 616
TileHorizontal value 616
TileVertical value 616

MdiParent property of class Form 614
MdiWindowListItem property of class
MenuStrip 616

mean 88
member access (.) operator 198, 234, 391
member access operator 112
MemberwiseClone method of class
object 435

memory 3, 6
memory consumption 815
memory dump 348
memory leak 390, 497
memory location 85
memory unit 6
MemoryStream class 673
menu 39, 519, 570

BUILD 39
DEBUG 40
EDIT 39
FILE 39
FORMAT 40
HELP 40, 46
PROJECT 39
TEAM 40
TEST menu 40
TOOLS 40
VIEW 39, 41
WINDOW 40

menu access shortcut 570
menu access shortcut, create 571
menu bar 39, 519

in Visual Studio IDE 39
menu item 39, 570
menu, ellipsis convention 573
menu, expanded and checked 571
MenuItem property
MdiWindowListItem example 617

MenuStrip class 61, 571
MdiWindowListItem property 616
RightToLeft property 574

MenuStrip properties and events 574
merge sort algorithm 734, 740
merge symbol in the UML 153
merge two arrays 735
message 71
message (sent to an object) 108
Message property of an exception object

299
Message property of Exception 502,

505

970 Index

method 8, 70, 113
call 108
header 110
in the UML 10
parameter 115
parameter list 114
return type 109
static 198

method call 9, 233, 238
method call stack 241, 505, 762
method declaration 238
method overloading 232, 258
method parameter list 327
methods implicitly sealed 466
methods of class List<T> 362
Metro 17
Microsoft

SQL Server 850
SQL Server Express 850

Microsoft Developer Network (MSDN)
35

Microsoft Intermediate Language (MSIL)
15, 76

middle tier 901
mileage obtained by automobiles 183
Min method of Math 235
MinDate property of class
DateTimePicker 581, 583

MinDate property of class
MonthCalendar 580

minimized and maximized child window
616

Minimum property of class
NumericUpDown 551

MinimumSize property of class Control
532

MinimumSize property of class Form
532

modal dialog 690
model 858
model designer 861
Modified Compound Interest Program

exercise 228
Modified Diamond Program exercise 229
Modified Triangle Program exercise 229
modifier key 556
Modifiers property of class
KeyEventArgs 557

Modifying the Internal Data
Representation of a Class (exercise)
402

modularizing a program with methods
233

modulus operator (%) 86
monetary calculations 199
MonthCalendar class 62, 579

DateChanged event 579
FirstDayOfWeek property 580
MaxDate property 580
MaxSelectionCount property 580
MinDate property 580
MonthlyBoldedDates property

580
SelectionEnd property 580
SelectionRange property 580
SelectionStart property 580

MonthlyBoldedDates property of class
MonthCalendar 580

Moore’s Law 3
More Windows... option in Visual Studio

.NET 616
motion information 6
mouse 2, 28, 520

pointer 41
mouse click 553
mouse event 553, 554
mouse move 553
MouseDown event of class Control 554
MouseEnter event of class Control 554
MouseEventArgs class 554

Button property 554
Clicks property 554
X property 554
Y property 554

MouseEventArgs properties 554
MouseEventHandler delegate 554
MouseHover event of class Control 554
MouseLeave event of class Control 554
MouseMove event of class Control 554
MouseUp event of class Control 554
MouseWheel event of class Control 554
Move method of class Directory 674
Move method of class File 674
MoveFirst method of class
BindingSource 873

MoveNextmethod of IEnumerator 820
MSDN (Microsoft Developer Network)

68, 233
MSDN (Microsoft Developers Network)

35
MSIL (Microsoft Intermediate Language)

15
multi-core processor 7
multicast delegate 527
multicast event 527
MulticastDelegate class 527
MultiColumn property of class ListBox

587
multidimensional array 316
MultiExtended value of enumeration
SelectionMode 587

Multiline property of class
TabControl 611

Multiline property of class TextBox
534

multiple document interface (MDI) 520,
614

multiple-selection statement 146
Multiples exercise 279
Multiples of 2 exercise 187
multiplication, * 86
multiplicative operators: *, / and % 165
MultiSelect property of class
ListView 603

MultiSimple value of enumeration
SelectionMode 587

multitier app 900
mutual exclusion 542
mutually exclusive options 542
MySQL 850

N
N format specifier 132
n-tier app 900
name 85
name collision 523, 623

name conflict 523, 623
Name property of class DirectoryInfo

608
Name property of class FileInfo 608
named constant 292
named parameter 262
namespace 67, 232, 243

System.Web.UI 913
System.Web.UI.WebControls

913
namespace 623

declaration 622
keyword 623

namespace declaration 522
Namespaces

of the FCL 244
System 245
System.Collections 244, 762,

796, 815
System.Collections.Concur-

rent 815
System.Collections.Generic

244, 362, 681, 815, 835
System.Collections.Special-

ized 815
System.Data.Entity 244, 857
System.Data.Linq 244
System.Diagnostics 586
System.Drawing 541
System.IO 244, 673
System.Linq 244, 353, 857
System.Runtime.Serializa-

tion.Formatters.Binary
701

System.Text 244, 639
System.Text.RegularExpres-

sions 639
System.Web 244
System.Windows.Controls 244
System.Windows.Forms 244, 521
System.Windows.Input 244
System.Windows.Media 244
System.Windows.Shapes 244
System.Xml 244
System.Xml.Linq 244

NaN constant of structure Double 490,
511

natural logarithm 235
NavigateUrl property of a HyperLink

control 918
navigation property 856, 857, 864, 865
NegativeInfinity constant of

structure Double 490
NegativeNumberException represents

exceptions caused by illegal operations
performed on negative numbers 510

nested array initializer 317
nested building block 221
nested control statements 166, 218, 221,

249
nested for statement 294, 319, 320, 321
nested foreach statement 321
nested if...else selection statement 149,

150, 151
nested parentheses 87
nesting 147, 148
nesting rule 218

Index 971

.NET
Framework 14, 790
Framework Class Library 67, 232,

243, 476
Framework Class Library (FCL) 12,

14, 16
Framework documentation 68
initiative 14

.NET for Windows Store Apps 16
New keyword 877
new keyword 288, 289, 318
new operator 111, 125, 749
New Project dialog 36, 38, 48
new project in Visual Studio 39
new() (constructor constraint) 798
newline character 79
newline escape sequence, \n 79, 83, 349
NewValue property of class
ItemCheckEventArgs 592

Next method of class Random 245, 246,
249

Next property of class LinkedListNode
836

NextNode property of class TreeNode
599

Nginx web server 899
node 598

child 598
expand and collapse 598
parent 598
root 598
sibling 598

nodes in a linked list 749
Nodes property of a TreeView 598
Nodes property of class TreeNode 599
Nodes property of class TreeView 599
non-static class member 393
None value of enumeration
SelectionMode 587

nonfatal logic error 152
nonlinear data structures 750
not selected state 542
note (in the UML) 145
Notepad 584
Notepad GUI exercise 61
Now property of structure DateTime 629
null keyword 120, 124, 175, 288
null reference 749, 760
NullReferenceException class 496
NumericUpDown control 520, 551

DecimalPlaces property 551
Increment property 551
Maximum property 551
Minimum property 551
ReadOnly property 553
UpDownAlign property 552
Value property 552
ValueChanged event 552

NumericUpDown properties and events
551

O
O(1) time 720
O(log n) time 726
O(n log n) time 740
O(n) time 720
O(n2) time 720

object 2, 8, 29
send a message 124

object (or instance) 10
Object Browser (Visual Studio .NET)

396
object class 406, 410, 434

Equals method 435
Finalize method 435
GetHashCode method 435
GetType method 435, 464
MemberwiseClone method 435
ReferenceEquals method 435
ToString method 413, 435

object creation expression 111, 126
Object data source 864
object initializer 398
object initializer list 398
object methods that are inherited

directly or indirectly by all classes 435
object of a class 108
object of a derived class 445
object of a derived class is instantiated 433
object-oriented analysis and design

(OOAD) 10
object-oriented language 10
object-oriented programming (OOP) 2,

10, 406
object serialization 701
ObjectCollection collection

Add method 589
Clear method 591
RemoveAt method 591

ObservableCollection<T> class 869,
873

octal number system (base 8) 282
off-by-one error 192
one statement per line 94
one-to-many relationship 855, 856
One value of enumeration
SelectionMode 587

OnPaint method of class Control 626
OOAD (object-oriented analysis and

design) 10
OOP (object-oriented programming) 10,

406
Open method of class File 674
OpenFileDialog class 695, 700
opening a project 39
OpenRead method of class File 674
OpenText method of class File 674
OpenWrite method of class File 674
operand 165, 344
operands of a binary operator 85
operating system 16
operation code 344
operation in the UML 112
operation parameter in the UML 115
operations of an abstract data type 395
operator 86
operator keyword 478
operator overloading 477
operator precedence 87

operator precedence chart 165
rules 87

Operators 868
^, boolean logical exclusive OR 211,

213
--, prefix decrement/postfix decre-

ment 172

Operators diagram (cont.)
-, subtraction 87, 88
!, logical negation 211, 213
!=, not equals 90, 93
?:, ternary conditional operator 149,

174
*, multiplication 87, 88
*=, multiplication compound assign-

ment 171
/, division 87, 88
\=, division compound assignment

171
&, boolean logical AND 211, 213
&&, conditional AND 211, 212
%, remainder 87, 88
%=, remainder compound assign-

ment 171
+, addition 87, 88
++, prefix increment/postfix incre-

ment 172
+=, addition assignment operator

171
<, less than 90
<=, less than or equal 90
=, assignment operator 84
-=, subtraction compound assign-

ment 171
==, is equal to 90
>, greater than 90
>=, greater than or equal to 90
|, boolean logical inclusive OR 211,

213
||, conditional OR 211, 212
arithmetic 86
as 464
binary 84, 86
boolean logical AND, & 211, 213
boolean logical exclusive OR, ^ 211,

213
boolean logical inclusive OR, | 213
cast 164, 254
compound assignment operators

171, 173
conditional AND, && 211, 212, 213,

360
conditional operator, ?: 149, 174
conditional OR, || 211, 212, 213
decrement operator, -- 171, 172
increment and decrement 172
increment operator, ++ 172
is 463
logical negation, ! 214
logical operators 211, 213
logical XOR, ^ 213
member access (.) 198, 391
multiplicative: *, / and % 165
new 111, 125
postfix decrement 172
postfix increment 172
precedence chart 950
prefix decrement 172
prefix increment 172
remainder operator 186
remainder, % 86

optical disk 670
optimizing compiler 199
optional parameter 260, 262

default value 260, 261
Oracle Corporation 850

972 Index

order in which actions should execute
143

orderby clause of a LINQ query 356
ascending modifier 356
descending modifier 356

OrderBy extension method of class
Queryable 868, 873

orientation information 6
out keyword 266
out-of-range array index 496
Out property of class Console 672
outer set of brackets 297
OutOfMemoryException class 496, 749
output 79
output device 6
output parameter 266
output unit 6
overflow error 349
overloaded constructors 379
overloaded generic methods 798
overloaded methods 75, 258, 791

with identical signatures 260
overloaded operators for complex

numbers 479
override a base class method 409, 413
override keyword 299, 414, 422, 423

P
π calculation exercise 229
Padding property of class Control 532
Padding property of class Form 532
Page class 913, 924, 929

Session property 929
Page Hit Counter exercise 948
page layout software 639
Page_Init event handler 911, 913
Page_Load event handler 923
PaintEventArgs class 626

ClipRectangle property 626
Graphics property 626

PaintEventArgs properties 627
palette 50
palindrome 186
Palindromes exercise 186
Panel class 20, 63
Panel control 520, 536

AutoScroll property 536
BorderStyle property 536
Controls property 536

Panel properties 536
Panel with scrollbars 537
parameter 113, 115

output 266
parameter in the UML 115
Parameter Info window 75
parameter list 114, 126
parameterless constructor 382, 385, 798
params keyword 327
parent menu 570
parent node 598, 770
Parent property of class
DirectoryInfo 609

parent window 614
parentheses 70, 87

nested 87
redundant 90
unnecessary 90

Parking Charges exercise 278

partial class 913
partial class 521
partial keyword 524
partial modifier 913
partition step in quicksort 745
pass an array element to a method 305
pass an array to a method 305
pass-by-reference 266
pass-by-value 266, 305
Passing an array reference by value and by

reference 308
Passing arrays and individual array

elements to methods 305
passing options to a program with

command-line arguments 329
password TextBox 533
Path class 603, 681

GetExtension method 681
pattern of 0s and 1s 671
pattern of 1s and 0s 4
payroll file 672
payroll system 671
Payroll System Modification exercise 484
Peek method of class Stack 828
Perfect Numbers exercise 281
perform a calculation 95
perform a task 110
perform an action 71
permission setting 604
persistent 7
persistent data 670
personalization 925
phases of an application 159
Phishing Scanner 714
physical output operation 673
“pick off” each digit 104
PictureBox class 38, 47, 53
PictureBox control 547, 617

Click event 547
Image property 547
SizeMode property 547

PictureBox properties and event 547
Pig Latin 667
pin icon 42
platform 17, 31
platform independence 15, 28
PNG (Portable Network Graphics) 54
poker 344
Poll analysis application 296
Polymorphic banking program exercise

using Account hierarchy 485
polymorphic screen manager 444
polymorphically process Invoices and
Employees 474

polymorphism 209, 436, 442
polynomial 89
pop data off a stack 241
Pop method of class Stack 827, 828
pop stack operation 762
portability 15
Portability Tips overview xxxiv
Portable Network Graphics (PNG) 54
porting 15
position number 286
PositiveInfinity constant of

structure Double 490
postback event of an ASP.NET page 924
postfix decrement operator 172
postfix increment operator 172, 194

PostgreSQL 850
postorder traversal of a binary tree 770
Powmethod of Math 198, 199, 234, 235,

275
power (exponent) 235
Power method 282
power of 3 larger than 100 152
precedence 94, 174

arithmetic operators 88
chart 88

precedence chart 165
precedence chart appendix 950
precision

formatting a floating-point number
165

of double values 953
of float values 953

precision of a floating-point value 128
predicate 356
predicate method 755
prefix decrement operator 172
prefix increment operator 172
Prefix vs. Postfix Increment Operators

exercise 182
preorder traversal of a binary tree 770
prepackaged data structures 815
presentation logic 901
Previous property of class
LinkedListNode 836

PrevNode property of class TreeNode
599

primary key 851, 856
in LINQ to Entities 851

primary memory 6
prime 281
prime number 342, 848
Prime Numbers exercise 281
principal 197
principle of least privilege 393
print spooling 766
privacy protection 925
private

access modifier 377
static class member 391

private access modifier 118, 409
probability 245
procedure 143, 233
Process class 586

Start method 586
processing phase 159
processing unit 2, 28
Product of Odd Integers exercise 227
program 2
program control 144
program execution stack 241
program in the general 442, 484
program in the specific 442
programming languages

BASIC 14
C# 12
Visual Basic 14

project 36
PROJECT menu 39
projection 361
promotion 165, 197, 925
promotion rules 242
prompt 84
properties 116
Properties window 44, 45, 48, 52, 908
property 108

Index 973

property declaration 118
property for a form or control 44
proprietary class 434
protected

access modifier 376
protected access modifier 409
pseudocode 144, 148, 154, 166, 168

first refinement 159, 167
second refinement 160, 168

pseudocode algorithm 161
pseudorandom number 245, 250
public

access modifier 109, 118, 238
class 70
interface 372
keyword 70, 118
member of a derived class 409
method 373, 376
method encapsulated in an object

376
service 372
static class members 391
static method 391

public access modifier 409
public default constructor 125
push data onto a stack 241
Push method of class Stack 827
push stack operation 762
Pythagorean Triples exercise 229

Q
quad-core processor 7, 28
quadratic run time 720
query 352, 850, 852
query expression (LINQ) 352
Queryable class 857

OrderBy extension method 868,
873

ThenBy extension method 868
Where extension method 873

Querying an Array of Invoice Objects
exercise 370

queue 396, 747, 766
Queue class 817
queue data structure 747
Queue generic class 817
quicksort algorithm 745

R
radians 235
radio button 534, 542
radio button group 542
radio buttons, using with TabPage 613
Radio GUI exercise 64
RadioButton control 20, 24, 25, 63,

539, 542
Checked property 542
CheckedChanged event 542
Text property 542

RadioButton properties and events 542
RadioButtonList ASP.NET web

control 918
radius of a circle 280
Random class 245, 338

Next method 245, 246, 249
random number generation 299, 666
random numbers 250

in a range 250

random numbers (cont.)
scaling factor 246, 249, 250
seed value 245, 250
shifting value 249, 250

range variable of a LINQ query 355
Rational class 403
Rational Numbers (exercise) 403
Read method of class Console 673
readability 66, 168
Reading sequential-access files 691
ReadLine method of class Console 84,

114, 205, 673
readonly

keyword 394
ReadOnly property of class
NumericUpDown 553

ReadOnly property of class TextBox 534
real number 162
real part of a complex number 403
realization in the UML 469
“receiving” section of the computer 6
reclaim memory 393
recognizing clients 925
record 4, 671, 851
Record for sequential-access file-

processing applications 684
record key 672
rectangle 402
Rectangle Class (exercise) 402
rectangular array 316, 318

with three rows and four columns
317, 318

recursion 603
recursion exercises

binary search 744
linear search 744

recursion step 263
recursive binary search algorithm 744
recursive call 263
recursive evaluation 264

of 5! 264
recursive factorial 263
recursive linear search algorithm 744
recursive method 263
Recursive Power Calculation exercise 282
recursive Power method 282
recursive step 745
redundant parentheses 90
ref keyword 266, 305
refer to an object 124
reference 124
reference manipulation 747
reference type 123, 286
reference type constraint class 798
Reference, output and value parameters

267
ReferenceEquals method of object

435
refinement process 159
Regex class 639
registration (ASP.NET) 942
regular expression 662
RegularExpressionValidator

ASP.NET validation control 922
reinventing the wheel 67
relational database 850, 851
relational database management system

(RDBMS) 901
relational database table 851
relational operators 90

relative positioning 908
release resource 498
release unmanaged resources 477
remainder 86
remainder operator, % 86, 87, 186
Removemethod of class ArrayList 823,

825
Remove method of class Dictionary

682
Remove method of class LinkedList

840
Remove method of class List<T> 362,

364
Remove method of class
StringBuilder 657

RemoveAt method of class ArrayList
823

RemoveAtmethod of class List<T> 363,
364

RemoveAt method of class
ObjectCollection 591

RemoveRange method of class
ArrayList 823

RemoveRange method of class List<T>
363

repetition 219, 221
counter controlled 154, 163, 166,

167
definite 154
sentinel controlled 158, 160, 161,

163, 164
repetition statement 144, 146, 152, 160

do...while 146, 199, 201, 221, 201,
221

for 146, 195, 221
foreach 146
while 146, 152, 153, 157, 163, 221

repetition terminates 153
Replace method of class string 651,

652
Replace method of class
StringBuilder 659

RequiredFieldValidator ASP.NET
validation control 921, 922

requirements 10
reservations system 338
reserved word 68, 146
Reset method of interface
IEnumerator 820

ReshowDelay property of class ToolTip
550

Resize method of class Array 352, 362
resource 549
resource leak 389, 497
ResourceManager class 549

GetObject method 549
Resources class 549
responses to a survey 296, 298
result of an uncaught exception 494
resumption model of exception handling

495
rethrow an exception 503
return keyword 119, 233, 241
return statement 119, 263
return type of a method 109
reusability 747, 799
reusable component 407
reusable software components 244
reuse 67

974 Index

Reverse method of class Array 821
Reversing Digits exercise 281
RichTextBox control 61
right brace, } 71, 82, 156, 164
right child 769
right justify output 198
right subtree 769, 775
RightToLeft property of class
MenuStrip 574

rise-and-shine algorithm 143
Ritchie, Dennis 13
robust 84
robust application 487
Roll a six-sided die 6,000,000 times 295
Roll a six-sided die 6000 times 247
rolling two dice 253
root node 598, 769
root node, create 600
round a floating-point number for display

purposes 165
rounding a number 86, 158, 199, 235,

278
Rounding to a Specific Decimal Place

exercise 278
Rounding to Nearest Integer exercise 278
row objects 856
row of a database table 851
rows of a two-dimensional array 316
rules for forming structured applications

218
rules of operator precedence 87
Run command in Windows 586
run mode 56
run-time logic error 84
running an app 586
running total 160
runtime system 799

S
SalariedEmployee class that extends
Employee 454, 473

Salary Calculator exercise 184
Sales Commission Calculator exercise

183
Sales Commissions exercise 337
SaveChanges method of a LINQ to

Entities DbContext 857, 869
SaveFileDialog class 689
saving changes back to a database in

LINQ to Entities 869
savings account 197
SavingsAccount Class (exercise) 402
sbyte simple type 952
SByte struct 747
scaling factor (random numbers) 246,

249, 250
scanning images 6
schema (database) 852
scope 193

static variable 391
Scope class demonstrates instance and

local variable scopes 256
scope of a declaration 255
scope of a type parameter 802
screen 2, 6, 28, 30
screen cursor 71, 78, 79
screen-manager program 444
scrollbar 45

ScrollBars property of class TextBox
534

scrollbox 45
SDI (Single Document Interface) 614
sealed

class 466
keyword 466
method 466

Search Algorithms
binary search 721
linear search 717
recursive binary search 744
recursive linear search 744

search key 716
searching 747
Searching Algorithms

binary search 721
linear search 717
recursive binary search 744
recursive linear search 744

searching data 716
Searching for characters and substrings in
strings 647

second-degree polynomial 89
second refinement 160, 168
secondary storage 3
secondary storage device 670
secondary storage unit 7
seed value (random numbers) 245, 250
Seek method of class FileStream 701
SeekOrigin enumeration 701
select clause of a LINQ query 356
Select method of class Control 530
Select Resource dialog 54
selected state 542
SelectedImageIndex property of class
TreeNode 599

SelectedIndex property of class
ComboBox 595

SelectedIndex property of class
ListBox 588

SelectedIndex property of class
TabControl 611

SelectedIndexChanged event handler
ComboBox class 873

SelectedIndexChanged event of class
ComboBox 595

SelectedIndexChanged event of class
ListBox 587

SelectedIndexChanged event of class
TabControl 611

SelectedIndices property of class
ListBox 588

SelectedItem property of class
ComboBox 595

SelectedItem property of class
ListBox 588

SelectedItems property of class
ListBox 588

SelectedItems property of class
ListView 604

SelectedNode property of class
TreeView 599

SelectedTab property of class
TabControl 611

selecting an item from a menu 522
selecting data from a table 852
selection 146, 218, 219
selection sort algorithm 726, 727, 730
selection statement 144, 146

if 146, 147, 201, 220, 221
if...else 146, 148, 163, 201, 220
switch 146, 201, 207, 220

SelectionEnd property of class
MonthCalendar 580

SelectionMode enumeration 587
MultiExtended value 587
MultiSimple value 587
None value 587
One value 587

SelectionMode property of class
CheckedListBox 592

SelectionMode property of class
ListBox 587, 588

SelectionRange property of class
MonthCalendar 580

SelectionStart property of class
MonthCalendar 580

self-documenting code 83
self-referential class 748, 749
Self-referential Node class declaration 748
self-referential object 749
semicolon (;) 71, 82, 93
send a message to an object 124
sentinel-controlled repetition 158, 160,

161, 228, 163, 164, 346
sentinel value 159, 160, 164
Separating Digits exercise 280
separator bar 573
sequence 218, 219, 769
sequence of items 749
sequence statement 144
sequence structure 145
sequence-structure activity diagram 145
sequential-access file 685
sequential execution 144
sequential file 672

created using serialization 703
read using deserialzation 707

[Serializable] attribute 702
SerializationException class 703
Serialize method of class
BinaryFormatter 701, 703

serialized object 701, 702
service of a class 376
session 926
session item 931
Session property of Page class 929
session tracking 926, 927
SessionID property of
HttpSessionState class 931

set accessor of a property 108, 118, 121
Set as Startup Project 863
set keyword 119
Set of Integers (exercise) 403
set-theoretic intersection 403
set-theoretic union 403
shallow copy 435
Shape class hierarchy 408, 439
Shape Hierarchy exercise 484
shift 246
Shift key 556
Shift property of class KeyEventArgs

557, 559
Shifted and scaled random integers 246
shifting value (random numbers) 246,

249, 250
“shipping” section of the computer 6
shopping list 152

Index 975

short-circuit evaluation 212
short simple type 952
Short value of enumeration
DateTimePickerFormat 580

shortcut key 570
ShortcutKeyDisplayStringproperty

of class ToolStripMenuItem 571,
574

ShortcutKeys property of class
ToolStripMenuItem 571, 574

shortcuts with the & symbol 573
Show All Files icon 43
Show method of class Control 530
Showmethod of class Form 522, 614, 620
ShowCheckBox property of class
DateTimePicker 581

ShowDialog method of class
OpenFileDialog 695, 701

ShowDialog method of class
SaveFileDialog 690

ShowShortcutKeys property of class
ToolStripMenuItem 571, 574

ShowUpDown property of class
DateTimePicker 581

shuffling 299
Fisher-Yates 302

sibling 769
sibling node 598
side effect 213, 266
Sides of a Right Triangle exercise 187
Sides of a Triangle exercise 187
Sieve of Eratosthenes 342
Sieve of Eratosthenes exercise 342
signal value 159
signature of a method 259
simple condition 211
simple name 522, 623
simple type 83, 174, 242
Simple Types

bool 952
byte 952
char 83, 952
decimal 83, 128, 953
double 83, 128, 162, 953
float 83, 128, 952
int 82, 83, 162, 171, 952
long 952
names are keywords 83
sbyte 952
short 952
table of 952
uint 952
ulong 952
ushort 952

Simple value of enumeration
ComboBoxStyle 595

simplest activity diagram 218
Simpletron Machine Language (SML)

344
Simpletron simulator 347, 349
Simpletron Simulator Modifications

exercise 349
simulation

coin tossing 281
Simulation: Tortoise and the Hare

exercise 343
simulator 344

terminate a running app 22, 27
Sin method of Math 235

sine 235
Single Document Interface (SDI) 614
single entry point 216
single-entry/single-exit control statements

146, 218
single exit point 216
single inheritance 406
single-precision floating-point number

128
single-selection statement 146, 147, 220
Single struct 747
single-line comment 66
single-selection statement

if 147
singly linked list 760
size 85
Size property of class Control 532
Size structure 532

Height property 532
Width property 532

SizeMode property of class PictureBox
54, 547

sizing handle 48
sizing handle, enabled 48
.sln file extension 54
smallest of several integers 227
SmallImageList property of class
ListView 604

smart tag menu 871, 917
SMS Language 668
snap lines 533
software 2
software engineering

encapsulation 122
Software Engineering Observations

overview xxxiv
software model 346
software reuse 233, 406, 623
software simulation 344
solid circle 145
solid circle surrounded by a hollow circle

145
SolidBrush class 556
solution 20, 23, 36
Solution Explorer window 43
Some methods of class ArrayList 822
Sort Algorithms

bubble sort 743, 744
bucket sort 744
insertion sort 730
merge sort 734
quicksort 745
selection sort 726

sort key 716
Sort method of Array 722
Sort method of class Array 820
Sort method of class ArrayList 823
Sort method of class List<T> 363
sorted array 751
Sorted property of class ComboBox 595
Sorted property of class ListBox 588
SortedDictionary generic class 817,

834, 835
SortedList generic class 817
SortedSet<T> class 842
sorting 747
Sorting Algorithms

bubble sort 743, 744
bucket sort 744

Sorting Algorithms (cont.)
insertion sort 730
merge sort 734
quicksort 745
selection sort 726

sorting data 716, 726
Sorting Letters and Removing Duplicates

exercise 370
source code 434
Source property of Exception 506
space character 68
space/time trade-off 829
spacing convention 70
Spam Scanner 668
speaking to a computer 6
special character 83, 640
Special Section: Building Your Own

Computer 344
special symbol 3, 670
sphere 275
Split method of class Regex 832
Split method of class String 370, 695
split the array in merge sort 734
spooler 766
spooling 766
SQL 352, 850
SQL Server 850
SQL Server Express 859
SQL Server Express 2012 LocalDB 850
Sqrt method of class Math 511
Sqrt method of Math 234, 235, 242
square brackets, [] 286
Square of Asterisks exercise 186
square root 235
stack 241, 282, 394, 762, 799
Stack class 817, 826
stack data structure 747
stack frame 241
Stack generic class 799, 817

Stack< double> 808
Stack<int> 808

stack overflow 242
stack trace 490
stack unwinding 506
Stack unwinding and Exception class

properties 506
StackComposition class encapsulates

functionality of class List 765
stacked building block 221
stacking control statements 147, 221
stacking rule 218
StackOverflowException class 496
StackTrace property of Exception

505, 506, 509
standard error stream object 673
standard input stream object 672
standard input/output object 71
standard output stream object 673
standard reusable component 407
standard time format 374
“warehouse” section of the computer 7
Start method of class Process 586
Start Page 34
start page for a web application 911, 914,

919, 928, 935
StartsWith and EndsWith methods

646
StartsWith method of class string

366, 645

976 Index

startup project 43
state button 539
stateless protocol 925
statement 71, 110

empty 93
if 90

statements 160
break 205, 209, 229
continue 209, 229, 230
control statements 144, 146
control-statement nesting 146
control-statement stacking 146
do...while 146, 199, 201, 221
double selection 146, 167
empty statement 152
for 146, 191, 192, 194, 195, 196,

198, 221
if 146, 147, 201, 220, 221
if...else 146, 148, 163, 201, 220
iteration 146
multiple selection 146
nested 166
nested if...else 149, 150, 151
repetition 144, 146, 152
return 233, 241
selection 144, 146
single selection 146
switch 146, 201, 207, 220
switchmultiple-selection statement

249
throw 373, 502
try 298, 495
using 504
while 146, 152, 153, 157, 163, 221

static
class member 390
method 111, 198
variable 390, 391

static binding 466
Static member demonstration 392
static method cannot access non-
static class members 393

static method Concat 650
static variable scope 391
Static variable used to maintain a count of

the number of Employee objects in
memory 391

stereotype in the UML 121
straight-line form 87
stream

standard error 673
standard input 672
standard output 673

Stream class 673
stream of bytes 672
StreamReader class 673
StreamWriter class 673
StretchImage value 54
string 71, 244

literal 71
of characters 71
verbatim 640

string
verbatim 586

string array 288
String class

Split method 370, 695
string class 639

Concat method 650
constructors 641

string class (cont.)
CopyTo method 642
EndsWith method 645, 646
Equals method 643
Format method 374
immutable 642
IndexOf method 646
IndexOfAny method 646
LastIndexOf method 646, 648
LastIndexOfAny method 646, 649
Length property 642, 643
method ToCharArray 404
method ToLower 832
method ToUpper 840
Replace method 651, 652
StartsWith method 366, 645
Substring method 649
ToLower method 651, 652
ToUpper method 366, 651, 652
Trim method 651, 652
verbatim string literal 240

String Collection Editor in Visual Studio
.NET 589

string concatenation 239, 392
string constant 640
string constructors 641
string format specifiers 132
string indexer 643
string indexer, Length property and
CopyTo method 642

string literal 640
string.Empty 124
StringBuilder class 639, 652

Append method 655
AppendFormat method 656
Capacity property 653
constructors 653
EnsureCapacity method 653
Length property 653
Remove method 657
Replace method 659
ToString method 653

StringBuilder constructors 652
StringBuilder size manipulation 653
StringBuilder text replacement 659
strongly typed languages 174
Stroustrup, Bjarne 487
struct 748
struct 747

Boolean 747
Byte 747
Character 747
DateTime 629
Decimal 747
Double 747
Int16 747
Int32 747
Int64 747
Single 747
UInt16 747
UInt64 747

struct keyword 660
Structs

UInt32 747
Structured Equivalent of break

Statement exercise 229
Structured Equivalent of continue

Statement exercise 230

structured programming 143, 144, 210,
218
summary 216

Structured Query Language (SQL) 850
Structures

BigInteger 404
Student Poll exercise 714
Style property of class Font 541
subarray 721
submenu 570
Substring method of class string 649
substrings generated from strings 649
subtraction 6, 87
summarizing responses to a survey 296
summing integers with the for statement

196
suspended app 27, 29
swapping values 726, 730
switch code snippet (IDE) 255
switch expression 205
switch keyword 205
switch logic 209
switch multiple-selection statement

146, 201, 207, 220, 249
activity diagram with break state-

ments 208
case label 205, 206
controlling expression 205
default label 205, 249

Sybase 850
synchronous programming 13
syntax 67
syntax error 67, 71, 76
syntax error underlining 77
syntax-color highlighting 73
System namespace 68, 245, 639
System.Collections namespace 244,

762, 796, 815
System.Collections.Concurrent

namespace 815
System.Collections.Generic

namespace 244, 362, 681, 815, 835
System.Collections.Specialized

namespace 815
System.Data.Entity namespace 244,

857
System.Diagnostics namespace 586
System.Drawing namespace 541
System.IO namespace 244, 673
System.Linq namespace 244, 353, 857
System.Runtime.Serialization.F
ormatters.Binary namespace 701

System.Text namespace 244, 639
System.Text.RegularExpressions

namespace 639
System.Web namespace 244
System.Web.UI namespace 913
System.Web.UI.WebControls

namespace 913
System.Windows.Controls

namespace 244
System.Windows.Forms namespace

244, 521
System.Windows.Input namespace

244
System.Windows.Media namespace

244
System.Windows.Shapes namespace

244

Index 977

System.Xml namespace 244
System.Xml.Linq namespace 244
SystemException class 496, 511

T
tab 520
tab character, \t 68, 79
Tab key 70
tab stops 70, 79
Tabbed pages in Visual Studio .NET 610
tabbed window 38
TabControl class 609

ImageList property 611
ItemSize property 611
Multiline property 611
SelectedIndex property 611
SelectedIndexChanged event

611
SelectedTab property 611
TabCount property 611
TabPages property 610, 611

TabControl with TabPages example
610

TabControl, adding a TabPage 611
TabCount property of class TabControl

611
TabIndex property of class Control

530
table 316, 851
table element 316
table of simple types 952
table of values 316
TabPage class 609

Text property 610
TabPage, add to TabControl 610
TabPage, using radio buttons 613
TabPages added to a TabControl 611
TabPages property of class TabControl

610, 611
TabStop property of class Control 530
tabular format 290
Tabular Output exercise 184
tail of a queue 747, 766
Tan method of Math 235
tangent 235
Target property of a HyperLink control

918
Target-Heart-Rate Calculator 141
TargetSite property of Exception

506
Tax Plan Alternatives 230
TCP (Transmission Control Protocol) 11
TCP/IP 11
TEAM menu 40
Telephone-Number Word Generator

exercise 713
template 36
temporary 164
temporary data storage 670
terabyte 7
terminate a loop 160
terminate an app running in the simulator

22, 27
termination housekeeping 390
termination model of exception handling

495
termination phase 159
ternary operator 149

test harness 316
Testing class
BasePlusCommissionEmployee
419, 426, 432

Testing class CommissionEmployee
414

Testing class List 755
Testing class QueueInheritance 768
Testing class StackInheritance 763
Testing class Tree with a binary tree 773
Testing class Tree with IComparable

objects 780
Testing generic class Stack 802, 806
Testing the insertion sort class 733
Testing the merge sort class 738
Testing the selection sort class 729
Tests interface IPayable with disparate

classes 475
text editor 71, 639
Text property 48, 52
Text property of class Button 534
Text property of class CheckBox 539
Text property of class Control 530
Text property of class Form 522
Text property of class GroupBox 536
Text property of class LinkLabel 584
Text property of class RadioButton 542
Text property of class TabPage 610
Text property of class TextBox 534
Text property of class
ToolStripMenuItem 574

Text property of class TreeNode 599
TextAlign property of a Label 53
TextBlock control 24
textbox 533
TextBox ASP.NET web control 916
TextBox control 63, 520, 533

AcceptsReturn property 534
Multiline property 534
ReadOnly property 534
ScrollBars property 534
Text property 534
TextChanged event 534
UseSystemPasswordChar proper-

ty 533
TextChanged event of class TextBox

534
Text-displaying application 67
TextReader class 673
TextWriter class 673
ThenBy extension method of class
Queryable 868

this
keyword 377, 393
reference 377
to call another constructor of the

same class 382
this used implicitly and explicitly to

refer to members of an object 378
ThreeDimensionalShape 439
ThreeState property of class CheckBox

539
throw an exception 298, 298, 373, 382,

488, 493
throw point 490, 495
throw statement 502
throws an exception 373
Tick event of class Timer 628
TicTacToe 404

exercise 404

tier in a multitier application 900
tightly packed binary tree 776
tile 17
tiled window 616
TileHorizontal value of enumeration
MdiLayout 616

TileVertical value of enumeration
MdiLayout 616

time and date 629
Time value of enumeration
DateTimePickerFormat 580

Time1 class declaration maintains the
time in 24-hour format 372

Time1 object used in an app 375
Time2 class declaration with overloaded

constructors 380
TimeOfDay property of DateTime 580
Timeout property of
HttpSessionState class 931

Timer class 628
Interval property 628
Tick event 628

title bar 48
title bar, MDI parent and child 616
Title property of a Web Form 908
Titles table of Books database 852, 853
ToCharArray method of class string

404
ToDecimal method of class Convert

133
ToInt32 method of class Convert 84,

91, 330
tokenize a string 695
ToLongDateString method of

structure DateTime 583
ToLongTimeString method of

structure DateTime 629
ToLower method of class string 651,

652, 832
ToLower method of struct Char 662
tool bar 519
tool tip 41
toolbar 40
toolbar icon 40
Toolbox 44, 908
TOOLS menu 40
ToolStripMenuItem class 571

Checked property 574, 578
CheckOnClick property 574
Click event 573, 574
ShortcutKeyDisplayString

property 571, 574
ShortcutKeys property 571, 574
ShowShortcutKeys property 571,

574
Text property 574

ToolStripMenuItem properties and an
event 574

ToolTip class 549
AutoPopDelay property 550
Draw event 550
InitialDelay property 550
ReshowDelay property 550

ToolTip properties and events 550
top 159
top-down, stepwise refinement 159, 160,

161, 167, 168
top of a stack 747
top tier 901

978 Index

Tortoise and the Hare exercise 343
Tortoise and the Hare simulation 343
ToStringmethod of an anonymous type

877
ToString method of class Exception

509
ToStringmethod of class object 413,

435
ToString method of class
StringBuilder 653, 655

total 154, 160
Total Sales exercise 338
ToUpper method of class string 366,

651, 652, 840
ToUpper method of struct Char 662
Towers of Hanoi exercise 282
trace 805
TrackBar control 64
tracking customers 925
transfer of control 144, 346, 347, 348
transition 145
transition arrow 145, 147, 153
translation 7
translator program 7
Transmission Control Protocol (TCP) 11
traversals forwards and backwards 761
traverse a tree 775
traverse an array 319
tree 598, 769
TreeNode class 598, 599

Checked property 599
Collapse method 599
Expand method 600
ExpandAll method 600
FirstNode property 599
FullPath property 599
GetNodeCount method 600
ImageIndex property 599
LastNode property 599
NextNode property 599
Nodes property 599
PrevNode property 599
SelectedImageIndex property

599
Text property 599

TreeNode Editor 600
TreeNode properties and methods 599
TreeNodeCollection class 598
TreeView class 570, 598

AfterSelected event 599
CheckBoxes property 599
ImageList property 599
Nodes property 599
SelectedNode property 599

TreeView displaying a sample tree 598
TreeView properties and an event 599
TreeView used to display directories 601
TreeViewEventArgs class 599
trigger an event 520
trigonometric cosine 235
trigonometric sine 235
trigonometric tangent 235
Trim method of class string 651
TrimExcess method of class List<T>

363
TrimToSize method of class
ArrayList 822, 823

true 90, 148, 149
truncate 86, 158

truth table 211
truth tables

for operator ^ 213
for operator ! 214
for operator && 211
for operator || 212

try block 298, 493
try statement 298, 495
TryParse method of structure Int32

493
Turing Machine 144
Turtle Graphics exercise 339
24-hour clock format 372
two-dimensional array 316
two-dimensional data structure 769
two largest values 184
TwoDimensionalShape class 439
type 82, 83, 85
type argument 794, 795, 802
type checking 790
Type class 435, 464

FullName property 435
type constraint 796

specifying 796
type inference 795
type parameter 794, 799, 808

scope 802
type parameter list 794, 799
typesetting system 639
typing in a TextBox 522
Typing Tutor: Tuning a Crucial Skill in

the Computer Age exercise 568

U
uint simple type 952
UInt16 struct 747
UInt32 struct 747
UInt64 struct 747
ulong simple type 952
UML

activity diagram 145, 147, 153, 200
arrow 145
class diagram 112
diamond 147
dotted line 145
final state 145
guard condition 147
merge symbol 153
modeling properties 121
note 145
solid circle 145
solid circle surrounded by a hollow

circle 145
stereotype 121

UML (Unified Modeling Language) 10
UML class diagram 407
unary cast operator 164
unary operator 165, 213
UnauthorizedAccessException class

603
unboxing conversion 748
uncaught exception 494
uneditable text or icons 520
unhandled exception 490, 494
Unicode® character set 4, 175, 208, 640,

671
Unified Modeling Language (UML) 10
Uniform Resource Identifier (URI) 899

Uniform Resource Locator (URL) 899
union of two sets 403
unique session ID of an ASP.NET client

931
universal-time format 372, 373, 374
unmanaged resource 477
unnecessary parentheses 90
unobtrusive validation 924
unqualified name 243, 255, 522, 623
unwind a method from the call stack 508
UpDownAlign property of class
NumericUpDown 552

upper camel casing 69
uppercase letter 69, 83
URI (Uniform Resource Identifier) 899
URL (Uniform Resource Locator) 899
UseMnemonic property of class
LinkLabel 584

user-defined classes 68
user interface 901
UserControl control 627
UserControl defined clock 628
user-defined exception class 509
user-defined method 233
user-defined method Maximum 237
UseSystemPasswordChar property of

class TextBox 533
ushort simple type 952
using directive 67, 116, 243
utility method 207

V
valid identifier 82
Validate property of Page class 924
Validating User Input exercise 184
validation 130
validation control 918
ValidationExpression property of a
RegularExpressionValidator
control 922

validator 918
validity checking 130
value 85
value contextual keyword 119
Value property of class
DateTimePicker 580, 581, 583

Value property of class
LinkedListNode 836

Value property of class NumericUpDown
552

value to the nearest integer 278
value type 123, 286
value type constraint struct 798
ValueChanged event of class
DateTimePicker 581

ValueChanged event of class
NumericUpDown 552

Values property of class Hashtable
833

ValueType class 660, 748
var keyword 355
variable 81, 82

declaration statement 82
name 82, 85

variable is not modifiable 394
variable-length argument list 327
Variable-Length Argument List exercise

337

Index 979

variable scope 193
verbatim string 586
verbatim string 640
verbatim string literal 240
verbatim string syntax(@) 640
VIEW menu 39, 41
View property of class ListView 603,

604
virtual

keyword 423
virtual directory 900
virtual goods 18
virtual machine (VM) 15, 30
visibility symbols in the UML 112, 121
Visible property of an ASP.NET web

control 921
Visible property of class Control 530
VisitedLinkColor property of class
LinkLabel 584

visual app development 34
Visual Basic 14
visual programming 521
Visual Studio 19

component tray 550
IDE (integrated development envi-

ronment) 19
Visual Studio .NET Class View 396
Visual Studio .NET Object Browser 396
Visual Studio Express 2012 for Web 898
Visual Studio® 2012 34
void keyword 71, 109
volatile information 6
volume of a sphere 275, 277

W
W3C (World Wide Web Consortium)

11
waiting line 747
walk the list 760
Web app development 898
web control 898

Web Form 898, 905, 926, 932
Init event 911
Load event 923

web server 899
Web.config ASP.NET configuration

file 912
WebTime Modification exercise 947
What Does This Code Do? exercise 227,

230, 283
What Does This Program Do? exercise

182, 184, 185
What’s Wrong with This Code? exercise

187
where clause 797
where clause of a LINQ query 356
Where extension method of class
Queryable 873

while keyword 199
while repetition statement 146, 152,

153, 157, 163, 221
activity diagram in the UML 153

whitespace 68, 71, 93
characters 68

whitespace character (regular expressions)
652

widget 520
Width property of structure Size 532
window auto hide 42
window gadget 520
WINDOW menu 40
window tab 38
Windows

Font 52
Properties 44, 45, 48, 52
Solution Explorer 43

Windows 8 17
Windows 8 UI 16, 17, 23
Windows Azure 19, 30
Windows bitmap (BMP) 54
Windows Explorer 586
Windows Form 520
Windows Forms app 36

Windows operating system 16
Windows Phone 7 16
Windows Phone 8 operating system 17,

29
Windows Phone Dev Center 18
Windows Phone Emulator 18, 28
Windows Phone Marketplace 18
Windows Phone operating system 17, 28
Windows Store 17
Windows Store developer 17
word processor 639, 646
workflow 145
World Population Growth 187
World Wide Web 11
World Wide Web Consortium (W3C)

11
worst-case run time for an algorithm 720
Write method of class Console 78, 673
WriteLinemethod of class Console 71,

78, 673
WriteLine method of class
StreamWriter 690

www.deitel.com/LINQ/ 367
www.unicode.org 671

X
X format specifier 132
X property of class MouseEventArgs 554
XOR bitwise operator 579

Y
Y property of class MouseEventArgs 554

Z
zero-based counting 192
zeroth element 287

www.deitel.com/LINQ/
www.unicode.org

	Cover
	Title Page
	Copyright Page
	Contents
	Preface
	Before You Begin
	1 Introduction to Computers, the Internet and Visual C#
	1.1 Introduction
	1.2 Hardware and Moore’s Law
	1.3 Data Hierarchy
	1.4 Computer Organization
	1.5 Machine Languages, Assembly Languages and High-Level Languages
	1.6 Object Technology
	1.7 Internet and World Wide Web
	1.8 C#
	1.8.1 Object-Oriented Programming
	1.8.2 Event-Driven Programming
	1.8.3 Visual Programming
	1.8.4 An International Standard; Other C# Implementations
	1.8.5 Internet and Web Programming
	1.8.6 Introducing async/await
	1.8.7 Other Key Contemporary Programming Languages

	1.9 Microsoft’s .NET
	1.9.1 .NET Framework
	1.9.2 Common Language Runtime
	1.9.3 Platform Independence
	1.9.4 Language Interoperability

	1.10 Microsoft’s Windows® Operating System
	1.11 Windows Phone 8 for Smartphones
	1.11.1 Selling Your Apps in the Windows Phone Marketplace
	1.11.2 Free vs. Paid Apps
	1.11.3 Testing Your Windows Phone Apps

	1.12 Windows Azure™ and Cloud Computing
	1.13 Visual Studio Express 2012 Integrated Development Environment
	1.14 Painter Test-Drive in Visual Studio Express 2012 for Windows Desktop
	1.15 Painter Test-Drive in Visual Studio Express 2012 for Windows 8

	2 Dive Into® Visual Studio Express 2012 forWindows Desktop
	2.1 Introduction
	2.2 Overview of the Visual Studio Express 2012 IDE
	2.3 Menu Bar and Toolbar
	2.4 Navigating the Visual Studio IDE
	2.4.1 Solution Explorer
	2.4.2 Toolbox
	2.4.3 Properties Window

	2.5 Using Help
	2.6 Using Visual App Development to Create a Simple App that Displays Text and an Image
	2.7 Wrap-Up
	2.8 Web Resources

	3 Introduction to C# Apps
	3.1 Introduction
	3.2 A Simple C# App: Displaying a Line of Text
	3.3 Creating a Simple App in Visual Studio
	3.4 Modifying Your Simple C# App
	3.5 Formatting Text with Console.Write and Console.WriteLine
	3.6 Another C# App: Adding Integers
	3.7 Memory Concepts
	3.8 Arithmetic
	3.9 Decision Making: Equality and Relational Operators
	3.10 Wrap-Up

	4 Introduction to Classes, Objects, Methods and strings
	4.1 Introduction
	4.2 Classes, Objects, Methods, Properties and Instance Variables
	4.3 Declaring a Class with a Method and Instantiating an Object of a Class
	4.4 Declaring a Method with a Parameter
	4.5 Instance Variables and Properties
	4.6 UML Class Diagram with a Property
	4.7 Software Engineering with Properties and set and get Accessors
	4.8 Auto-Implemented Properties
	4.9 Value Types vs. Reference Types
	4.10 Initializing Objects with Constructors
	4.11 Floating-Point Numbers and Type decimal
	4.12 Wrap-Up

	5 Control Statements: Part 1
	5.1 Introduction
	5.2 Algorithms
	5.3 Pseudocode
	5.4 Control Structures
	5.5 if Single-Selection Statement
	5.6 if…else Double-Selection Statement
	5.7 while Repetition Statement
	5.8 Formulating Algorithms: Counter-Controlled Repetition
	5.9 Formulating Algorithms: Sentinel-Controlled Repetition
	5.10 Formulating Algorithms: Nested Control Statements
	5.11 Compound Assignment Operators
	5.12 Increment and Decrement Operators
	5.13 Simple Types
	5.14 Wrap-Up

	6 Control Statements: Part 2
	6.1 Introduction
	6.2 Essentials of Counter-Controlled Repetition
	6.3 for Repetition Statement
	6.4 Examples Using the for Statement
	6.5 do…while Repetition Statement
	6.6 switch Multiple-Selection Statement
	6.7 break and continue Statements
	6.8 Logical Operators
	6.9 Structured-Programming Summary
	6.10 Wrap-Up

	7 Methods: A Deeper Look
	7.1 Introduction
	7.2 Packaging Code in C#
	7.3 static Methods, static Variables and Class Math
	7.4 Declaring Methods with Multiple Parameters
	7.5 Notes on Declaring and Using Methods
	7.6 Method-Call Stack and Activation Records
	7.7 Argument Promotion and Casting
	7.8 The .NET Framework Class Library
	7.9 Case Study: Random-Number Generation
	7.9.1 Scaling and Shifting Random Numbers
	7.9.2 Random-Number Repeatability for Testing and Debugging

	7.10 Case Study: A Game of Chance; Introducing Enumerations
	7.11 Scope of Declarations
	7.12 Method Overloading
	7.13 Optional Parameters
	7.14 Named Parameters
	7.15 Recursion
	7.16 Passing Arguments: Pass-by-Value vs. Pass-by-Reference
	7.17 Wrap-Up

	8 Arrays; Introduction to Exception Handling
	8.1 Introduction
	8.2 Arrays
	8.3 Declaring and Creating Arrays
	8.4 Examples Using Arrays
	8.4.1 Creating and Initializing an Array
	8.4.2 Using an Array Initializer
	8.4.3 Calculating a Value to Store in Each Array Element
	8.4.4 Summing the Elements of an Array
	8.4.5 Using Bar Charts to Display Array Data Graphically
	8.4.6 Using the Elements of an Array as Counters
	8.4.7 Using Arrays to Analyze Survey Results; Introduction to Exception Handling

	8.5 Case Study: Card Shuffling and Dealing Simulation
	8.6 foreach Statement
	8.7 Passing Arrays and Array Elements to Methods
	8.8 Passing Arrays by Value and by Reference
	8.9 Case Study: GradeBook Using an Array to Store Grades
	8.10 Multidimensional Arrays
	8.11 Case Study: GradeBook Using a Rectangular Array
	8.12 Variable-Length Argument Lists
	8.13 Using Command-Line Arguments
	8.14 Wrap-Up

	9 Introduction to LINQ and the List Collection
	9.1 Introduction
	9.2 Querying an Array of int Values Using LINQ
	9.3 Querying an Array of Employee Objects Using LINQ
	9.4 Introduction to Collections
	9.5 Querying a Generic Collection Using LINQ
	9.6 Wrap-Up
	9.7 Deitel LINQ Resource Center

	10 Classes and Objects: A Deeper Look
	10.1 Introduction
	10.2 Time Class Case Study
	10.3 Controlling Access to Members
	10.4 Referring to the Current Object’s Members with the this Reference
	10.5 Time Class Case Study: Overloaded Constructors
	10.6 Default and Parameterless Constructors
	10.7 Composition
	10.8 Garbage Collection and Destructors
	10.9 static Class Members
	10.10 readonly Instance Variables
	10.11 Data Abstraction and Encapsulation
	10.12 Class View and Object Browser
	10.13 Object Initializers
	10.14 Wrap-Up

	11 Object-Oriented Programming: Inheritance
	11.1 Introduction
	11.2 Base Classes and Derived Classes
	11.3 protected Members
	11.4 Relationship between Base Classes and Derived Classes
	11.4.1 Creating and Using a CommissionEmployee Class
	11.4.2 Creating a BasePlusCommissionEmployee Class without Using Inheritance
	11.4.3 Creating a CommissionEmployee–BasePlusCommissionEmployee Inheritance Hierarchy
	11.4.4 CommissionEmployee–BasePlusCommissionEmployee Inheritance Hierarchy Using protected Instance Variables
	11.4.5 CommissionEmployee–BasePlusCommissionEmployee Inheritance Hierarchy Using private Instance Variables

	11.5 Constructors in Derived Classes
	11.6 Software Engineering with Inheritance
	11.7 Class object
	11.8 Wrap-Up

	12 OOP: Polymorphism, Interfaces and Operator Overloading
	12.1 Introduction
	12.2 Polymorphism Examples
	12.3 Demonstrating Polymorphic Behavior
	12.4 Abstract Classes and Methods
	12.5 Case Study: Payroll System Using Polymorphism
	12.5.1 Creating Abstract Base Class Employee
	12.5.2 Creating Concrete Derived Class SalariedEmployee
	12.5.3 Creating Concrete Derived Class HourlyEmployee
	12.5.4 Creating Concrete Derived Class CommissionEmployee
	12.5.5 Creating Indirect Concrete Derived Class BasePlusCommissionEmployee
	12.5.6 Polymorphic Processing, Operator is and Downcasting
	12.5.7 Summary of the Allowed Assignments Between Base-Class and Derived-Class Variables

	12.6 sealed Methods and Classes
	12.7 Case Study: Creating and Using Interfaces
	12.7.1 Developing an IPayable Hierarchy
	12.7.2 Declaring Interface IPayable
	12.7.3 Creating Class Invoice
	12.7.4 Modifying Class Employee to Implement Interface IPayable
	12.7.5 Modifying Class SalariedEmployee for Use with IPayable
	12.7.6 Using Interface IPayable to Process Invoices and Employees Polymorphically
	12.7.7 Common Interfaces of the .NET Framework Class Library

	12.8 Operator Overloading
	12.9 Wrap-Up

	13 Exception Handling: A Deeper Look
	13.1 Introduction
	13.2 Example: Divide by Zero without Exception Handling
	13.3 Example: Handling DivideByZeroExceptions and FormatExceptions
	13.3.1 Enclosing Code in a try Block
	13.3.2 Catching Exceptions
	13.3.3 Uncaught Exceptions
	13.3.4 Termination Model of Exception Handling
	13.3.5 Flow of Control When Exceptions Occur

	13.4 .NET Exception Hierarchy
	13.4.1 Class SystemException
	13.4.2 Determining Which Exceptions a Method Throws

	13.5 finally Block
	13.6 The using Statement
	13.7 Exception Properties
	13.8 User-Defined Exception Classes
	13.9 Wrap-Up

	14 Graphical User Interfaces with Windows Forms: Part 1
	14.1 Introduction
	14.2 Windows Forms
	14.3 Event Handling
	14.3.1 A Simple Event-Driven GUI
	14.3.2 Auto-Generated GUI Code
	14.3.3 Delegates and the Event-Handling Mechanism
	14.3.4 Another Way to Create Event Handlers
	14.3.5 Locating Event Information

	14.4 Control Properties and Layout
	14.5 Labels, TextBoxes and Buttons
	14.6 GroupBoxes and Panels
	14.7 CheckBoxes and RadioButtons
	14.8 PictureBoxes
	14.9 ToolTips
	14.10 NumericUpDown Control
	14.11 Mouse-Event Handling
	14.12 Keyboard-Event Handling
	14.13 Wrap-Up

	15 Graphical User Interfaces with Windows Forms: Part 2
	15.1 Introduction
	15.2 Menus
	15.3 MonthCalendar Control
	15.4 DateTimePicker Control
	15.5 LinkLabel Control
	15.6 ListBox Control
	15.7 CheckedListBox Control
	15.8 ComboBox Control
	15.9 TreeView Control
	15.10 ListView Control
	15.11 TabControl Control
	15.12 Multiple Document Interface (MDI) Windows
	15.13 Visual Inheritance
	15.14 User-Defined Controls
	15.15 Wrap-Up

	16 Strings and Characters: A Deeper Look
	16.1 Introduction
	16.2 Fundamentals of Characters and Strings
	16.3 string Constructors
	16.4 string Indexer, Length Property and CopyTo Method
	16.5 Comparing strings
	16.6 Locating Characters and Substrings in strings
	16.7 Extracting Substrings from strings
	16.8 Concatenating strings
	16.9 Miscellaneous string Methods
	16.10 Class StringBuilder
	16.11 Length and Capacity Properties, EnsureCapacity Method and Indexer of Class StringBuilder
	16.12 Append and AppendFormat Methods of Class StringBuilder
	16.13 Insert, Remove and Replace Methods of Class StringBuilder
	16.14 Char Methods
	16.15 (Online) Introduction to Regular Expressions
	16.16 Wrap-Up

	17 Files and Streams
	17.1 Introduction
	17.2 Data Hierarchy
	17.3 Files and Streams
	17.4 Classes File and Directory
	17.5 Creating a Sequential-Access Text File
	17.6 Reading Data from a Sequential-Access Text File
	17.7 Case Study: Credit Inquiry Program
	17.8 Serialization
	17.9 Creating a Sequential-Access File Using Object Serialization
	17.10 Reading and Deserializing Data from a Binary File
	17.11 Wrap-Up

	18 Searching and Sorting
	18.1 Introduction
	18.2 Searching Algorithms
	18.2.1 Linear Search
	18.2.2 Binary Search

	18.3 Sorting Algorithms
	18.3.1 Selection Sort
	18.3.2 Insertion Sort
	18.3.3 Merge Sort

	18.4 Summary of the Efficiency of Searching and Sorting Algorithms
	18.5 Wrap-Up

	19 Data Structures
	19.1 Introduction
	19.2 Simple-Type structs, Boxing and Unboxing
	19.3 Self-Referential Classes
	19.4 Linked Lists
	19.5 Stacks
	19.6 Queues
	19.7 Trees
	19.7.1 Binary Search Tree of Integer Values
	19.7.2 Binary Search Tree of IComparable Objects

	19.8 Wrap-Up

	20 Generics
	20.1 Introduction
	20.2 Motivation for Generic Methods
	20.3 Generic-Method Implementation
	20.4 Type Constraints
	20.5 Overloading Generic Methods
	20.6 Generic Classes
	20.7 Wrap-Up

	21 Collections
	21.1 Introduction
	21.2 Collections Overview
	21.3 Class Array and Enumerators
	21.4 Nongeneric Collections
	21.4.1 Class ArrayList
	21.4.2 Class Stack
	21.4.3 Class Hashtable

	21.5 Generic Collections
	21.5.1 Generic Class SortedDictionary
	21.5.2 Generic Class LinkedList

	21.6 Covariance and Contravariance for Generic Types
	21.7 Wrap-Up

	22 Databases and LINQ
	22.1 Introduction
	22.2 Relational Databases
	22.3 A Books Database
	22.4 LINQ to Entities and the ADO.NET Entity Framework
	22.5 Querying a Database with LINQ
	22.5.1 Creating the ADO.NET Entity Data Model Class Library
	22.5.2 Creating a Windows Forms Project and Configuring It to Use the Entity Data Model
	22.5.3 Data Bindings Between Controls and the Entity Data Model

	22.6 Dynamically Binding Query Results
	22.6.1 Creating the Display Query Results GUI
	22.6.2 Coding the Display Query Results App

	22.7 Retrieving Data from Multiple Tables with LINQ
	22.8 Creating a Master/Detail View App
	22.8.1 Creating the Master/Detail GUI
	22.8.2 Coding the Master/Detail App

	22.9 Address Book Case Study
	22.9.1 Creating the Address Book App’s GUI
	22.9.2 Coding the Address Book App

	22.10 Tools and Web Resources
	22.11 Wrap-Up

	23 Web App Development with ASP.NET
	23.1 Introduction
	23.2 Web Basics
	23.3 Multitier App Architecture
	23.4 Your First Web App
	23.4.1 Building the WebTime App
	23.4.2 Examining WebTime.aspx’s Code-Behind File

	23.5 Standard Web Controls: Designing a Form
	23.6 Validation Controls
	23.7 Session Tracking
	23.7.1 Cookies
	23.7.2 Session Tracking with HttpSessionState
	23.7.3 Options.aspx: Selecting a Programming Language
	23.7.4 Recommendations.aspx: Displaying Recommendations Based on Session Values

	23.8 Case Study: Database-Driven ASP.NET Guestbook
	23.8.1 Building a Web Form that Displays Data from a Database
	23.8.2 Modifying the Code-Behind File for the Guestbook App

	23.9 Online Case Study: ASP.NET AJAX
	23.10 Online Case Study: Password-Protected Books Database App
	23.11 Wrap-Up

	Chapters on the Web
	A: Operator Precedence Chart
	B: Simple Types
	C: ASCII Character Set
	Appendices on theWeb
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

